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A PROOF OF THE C1 STABILITY CONJECTURE
by RICARDO MAN£

INTRODUCTION

Two continuous maps, f^:X^ and f^:X^ are topologically equivalent if there
exists a homeomorphism h: X^ -> X^ such that h~lf^h ==f^. A G1' diffeomorphism/
of a closed manifold M is C*" structurally stable if it has a G*" neighborhood ^ such that
every g e W is topologically equivalent to /. This concept was introduced in the thirties
by Andronov and Pontrjagin [I], in the limited (when compared with its present range)
framework of flows on the two dimensional disk. The turning point of its development
that connected it with much richer possibilities, came in the early sixties, through the
work of Smale who, as a consequence of his improved version of a classical result of
Birkhoff about homoclinic points, showed that structural stability can coexist with
highly developed forms of recurrence [24].

Immediatly afterwards, the understanding of the mechanisms that grant structural
stability grew substantially through the papers of Anosov [2], Smale [25] and Palis
and Smale [16], that proved several new classes of dynamical systems to be structurally
stable. On the light of these results, and intending to unify them, Palis and Smale conjec-
tured in their joint paper that the two conditions known as Axiom A and the Strong
Transversality Condition (whose definitions we shall recall below) are necessary and
sufficient for a G1" diffeomorphism to be G1' structurally stable. Their sufficiency was
proved in the well known papers of Robbin [20] for (r ^ 2) and Robinson [22] (for
r = 1). The question of their necessity was reduced to prove that G*" structural stability
implies Axiom A (Robinson [21]). This problem became known as the Stability Conjec-
ture, and it is the objective of this paper to prove it in the C1 case.

Theorem A. — Every C1 structurally stable dijfeomorphism of a closed manifold satisfies
Axiom A.

In the next section we shall prove this result. The proof will be supported on six
theorems. Three of them were already known; the other three will be proved in the
remaining sections.
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Several relevant problems closely connected with the Stability Conjecture remain
open; notably the G*" case (that looks beyond the scope of the available techniques)
and, even in the C1 case, the characterization of the more flexible form of stability known
as Q-stability as well as the corresponding problems for flows, for which the methods
we use here open realistic possibilities. The case of flows on compact manifolds with
boundary that are tangent to the boundary pose a different type of problem. Recent
examples show that Axiom A is not necessary for structural stability [7].

Before developing the discussion of these questions, we shall first recall the definition
and main virtues of Axiom A dynamics.

From now on M will denote a closed manifold and Diff^M) will be the space
of C1' diffeomorphisms of M endowed with the CV topology. We say that A is a hyperbolic
set off e Diff^M) if it is compact, invariant (i.e./(A) = A) and there exists a continuous
splitting TM/A == E' ® E" (where TM/A is the tangent bundle restricted to A) that is
invariant (i.e. (D/) E8 = E', (D/) E" == E") and there exist constants C > 0, 0 < X < 1
such that

IKD/^/E^II^GX",
IKDy-^/E^iKc^

for all A: e A and n > 0. Expositions of the rich theory of hyperbolic sets can be found
in the books of Bowen [3], Newhouse [14] and Shub [23]. Given/eDiff^M) and
x e M define the stable and unstable manifolds of x as:

W;W = {y e M | ̂  </(/"(x),/»(^)) == 0 }

W )̂ = {y e M | Urn d^f-^f-^y}} == 0 }.
-+00

When dealing with only one diffeomorphism, as will be the case in this section, we shall
denote these sets as W'(^) and W"(A;).

When x belongs to a hyperbolic set, then W'(^) and W^A?) are C'' injectively
immersed submanifolds ([25], [6]).

The nonwandering set n(/) of/is defined as the set of points A: e M such that
for every neighborhood U of x there exists n ̂  1 satisfying /"(U) n U 4= 0. When Q(/)
is a hyperbolic set and the periodic points are dense in Q(/), we say that/satisfies
Axiom A. In this case it is known [25] that
(1) M == U W^) = U W^J.

a?GQ(/) a?e0(/)

Using this property it is easy to see that W^j) and W"(^) are C*" injectively immersed
manifolds for allj/ e M, because by (1), for allj e M, there exists x e t2(/) such that
y G W^A?) and then W^) == W^jy). Since W^) is a C^ injectively immersed manifold,
the property is proved.

We say that an Axiom A diffeomorphism/satisfies the Strong Transversality Condition
when

T,W^) +T,W^) =T,M
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for all x e M, or, what is equivalent by (1), if for all^ and q in ^2(/), W8^) and W"(y)
intersect transversally. There are several characterizations of diffeomorphisms satisfying
Axiom A and the Strong Transversality Condition. For instance, f e Diff^M) satisfies
Axiom A and the Strong Transversality Condition if and only if every tangent vector
v e TM can be decomposed as v = y4" + v~, where v^ and v~ satisfy

lim inf [KD/") ^11= lim inf IKD/") v- || = 0.
n-> + oo n-> •— oo

For this and other characterizations, see [11].
Let us now discuss the open problems related to Theorem A. The first one must

be the G*' case of Theorem A with r> 1. Unfortunately there is little to say about this
question. Not being even known whether a G2 structurally stable diffeomorphism has
at least one periodic point it seems, to say the least, difficult to prove that they are dense
in the nonwandering set as the definition of Axiom A requires. Even if this density
property is proved and unless the method used to achieve this feat sheds new light on
these questions, other disturbingly simple unanswered questions remain (see the Intro-
duction of [12]).

Turning to more feasible questions, we have the problem of characterizing
ti-stability, that is defined as follows:/is C" Q-stable if it has a Gr neighborhood ^ such
that gl^{g) is topologically equivalent to//t2(/) for all g e ̂ . Smale proved that if/
satisfies Axiom A plus the so called no cycles condition then/is ti-stable [26]. The
converse problem has been reduced to proving that Cr Q-stability implies Axiom A
(Palis [15]). When r> 1 this problem runs into the same (or worse) stumbling blocks
than the Stability Conjecture. When r === 1 we think, as we say above, that the tech-
niques developed here make of it a realistic target. Similar comments hold for the corres-
ponding problems for flows on boundaryless compact manifolds. But in the quite natural
attempt to study structural stability in the space of flows on a compact manifold with
boundary that are tangent to the boundary, new and different problems arise. Labarca
and Pacifico [7] have found examples that show that in this framework there exist struc-
turally stable flows that do not satisfy Axiom A. The conjecture itself, then, must be
reformulated in terms that so far have not been proposed.

Returning to the case of diffeomorphisms of a closed manifold M, define ^"(M)
as the set of diffeomorphisms /: M^ having a C*" neighborhood % such that all the
periodic points of every g e W are hyperbolic. It is easy to see [4] that Cr structurally
or i^-stable diffeomorphisms belong to ^"(M). Moreover most of the steps toward proving
that structural or Q-stability imply Axiom A use only the weaker fact that such diffeo-
morphisms belong to .^(M). For this reason we conjectured in [12] that every element
of ^"(M) satisfies Axiom A. For the reasons we have just explained, this conjecture
contains the questions of whether structural or ti-stability imply Axiom A. Once more,
and for the same reasons than in the previous problems, let us leave aside the case r > 1.
When dim M = 2 (and r = 1) we proved this conjecture in [12]. Even if the techniques
developed here fall short of extending this result to the ^-dimensional case, it is interesting,
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and promising, that most of the steps of the proof of Theorem A require only the hypo-
thesis ye<^l(M). It is only in the last step where we need the whole weight of the
structural stability off.

On the other hand, if we define ^^(M) for flows in the obvious, analogous form
to that used for diffeomorphisms, it is not true that flows in ^-{M) satisfy Axiom A.
An exemple is the Guckenheimer-Lorenz attractor [5], that also plays the key role in
the construction of the example of Labarca and Pacifico mentioned above.

I wish to thank Jacob Palis for several important corrections and to Claus Doering
for his deep and exhaustive revision of the first version of this work.

I. — Proof of Theorem A

As we explained in the Introduction, in this section we shall prove Theorem A,
using for this purpose six theorems that either have been already proved elsewhere or
will be proved in the next sections.

Let M be a closed manifold and let ^(M) be defined as in the Introduction.
Let P(/) denote the set of periodic points of the diffeomorphism / and, if x e P(/),
let E^) and E^x) be the stable and unstable subspaces of Ty, M, i.e. the subspaces
associated to the eigenvalues of D/^ : T^ M 4) (where n is the period of x) that have res-
pectively modulus < 1 and > 1. Clearly (D/) E8^) == ̂ (fW), (D/) E^) == EVW)
and, if A: is hyperbolic, T^ M = E'^) ® ̂ {x). Denote by P(/) the closure of P(/).

The first step of the proof of Theorem A is the following corollary ofPugh's Closing
Lemma [19] proved in the Introduction of [12].

Theorem I.I. — Iffe^M), then Q(/) =P(/).

Now define P^(/) as the set of points x e P(/) such that dim E'(A;) == i. By 1.1
dimM

D(/ )==^P<( / )
when fe ̂ (M). Then, if/e ̂ (M), it is sufficient to show that P,(/) is a hyperbolic
set for all 0 < i ̂  dim M. The cases i = 0 and i = dim M follow from a theorem due
to Pliss.

Theorem 1.2 (Pliss [18]). — Iffe^M), then Po(/) and f^^f) are finite.

Obviously this implies that Po(/) = Po(/) and P^^f)^ PdimM(/) are hyper-
bolic sets when/ e ̂ (M). To prove the hyperbolicity of the sets P,(/) for 1 ̂  i ̂  dim M
the basic strategy is the obvious one: to start with the splittings T^ M = E^-v) ® E^)
that we have when x eP(/) to show that this splitting of TM/P,(/) extends to a
splitting ofTM/P,(/) satisfying the definition of hyperbolicity. The next result provides
the extension and some indications of its hyperbolicity. Its statement uses the concept
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of dominated splitting^ that will appear also in several results of this section and is defined
as follows. Given a compact invariant set A of a diffeomorphism/we say that a splitting
TM/A = E ® F is a dominated splitting if it is continuous, invariant and there exists
00 and 0 < \ < 1 such that

IKD/^/EMil.lKDy—)^/^))!! < G^
for all x e A and n ̂  0. In geometric terms this is equivalent to say that for every one-
dimensional subspace LC Tg M, x eA, not contained in E(;c), the angle between (iy") L
and F^"^)) converge exponentially to zero as n -> + oo.

Theorem 1.3. — Iffe ̂ (M) there exist G > 0, 0 < X < 1, m > 0 and a C1 neigh-
borhood ^U off such that for all g e ^U and 0 < i < dim M there exists a dominated splitting
TM/P,^) = E,? C Er satisfying:

a) IKD^/EK^II.IKD^^/E^rW)!! < Ubr all x eP^),
b) EK^) = EW ^d ErW == E-W z/^ e P,(^)
c) If x e P^g) and has period n > m, then

[n/w]-l

n iKDr)/^^^))!!^^^
^==0

[n/m]n IKD^-^/E^^W)!!^^^
3 = 1

d) For all x e P,(^)

^ ̂  ̂  loglKDr)/^^^))!! ̂  log x

^ ^ ̂ loglKD^^/E^^W)!! ̂  logx.

Observe that d) is interesting only when the period of x is ^ w. Otherwise it is
just a corollary of c).

Theorem 1.3 was independently proved in [17], [10] and [8]. The statement used
above is taken from [12], where there is also a proof of 1.3.

After Theorem 1.3 the problem becomes to show that the splitting
TM/P,(/) =EfeE^ is hyperbolic for all 1^ KdimM. If there is a hyperbolic
splitting it must be this. The following, and fundamental, step is a theorem saying
that to prove the hyperbolicity of the splitting TM/P,(y) == E,?® E^ it suffices to show
only that Df contracts the subbundle E,?. To state this result it is convenient to intro-
duce a definition: given a compact invariant set A ofy: M^), we say that a subbundle
E C TM/A is contracting if it is continuous, invariant and there exist 00 and 0 < X < 1
such that

IKD/^/EWH^C^
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for all n > 0 and A? e A. We say that it is expanding if there exist 00 and 0 < \ < 1
such that

IKD/'^/E^II^G^

for all x e A and n ̂  0.

Theorem 1.4. — If/e^^M), 0<i<dimM W E,? is contracting, then t^ £y
expanding.

This theorem will be proved in Section II as a corollary of a slightly more general
result.

Now our problem is reduced to show that/e ̂ ^(M) implies that E^? is contracting
for all 0 < i < dim M. To recognize the contracting property the following easy lemma
is extremely useful because it translates this property into averages with respect to
ergodic measures.

Denote by ^(//A) the set of invariant probabilities on the Borel a-algebra of A
endowed with the weak topology, i.e. the unique metrizable topology such that

^n-^^jp^n-^j?^

for every continuous <p : A -> R.

Lemma 1.5. — Let A be a compact invariant set oy/eDiff^M) and ECTM/A^ a
continouus invariant subbundle. If there exists m > 0 such that

Jlog||(D/OT)/E||^<0

for every ergodic (JL e^/^/A), then E is contracting.

Proof. — It is easy to see that if for each x e A there exists n > 0 such that
IKDn/EW)!^!,

then E is contracting. Stronger than this is to say that for each x e A there exists n > 0
satisfying

^^Jl(D/CT)/E(/)»^))||<l.
Suppose this property is false. Then there exists x e A such that

^njKD/1")^/1"^))!!^!

for all n. Hence, for all n,

^^log||(D/ro)/E(/CT^))||^0.
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Define a probability (A^ by
^ n-i

^n ̂  n So8^

and let { (!„ | ^ ^ 0 } be a convergent subsequence. Its limit (AO belongs to ̂ (/^/A) and

Jlog IKDD/E || ̂ o = ̂ J^g IKDD/E I I ̂

= Urn ^w£llog||(D/w)/E(/TO^))||^0.
fc-^+oo 7^ ^«o

But if the integral with respect to (AQ of [KD/^/E || is ^ 0, by the Ergodic Decomposition
Theorem there exists an ergodic (A e.^y'^/A) with the same property and the lemma is
proved.

Now suppose that / e ̂ (M) and let us try to prove that / satisfies Axiom A,
which, as we explained above, is reduced to the contracting property of Uf for all
0 < i < dim M, and we shall try to do it by induction on i and using Lemma 1.5. If
/e ̂ (M), Po(/) is hyperbolic by Theorem 1.2. Now suppose that P^f) is hyperbolic
for 0 < k < j and let us try to prove the hyperbolicity of P^+i(/). For this purpose we
need the following result, that was implicitly proved in [12] and will be explicitly proved
in Section III.

Theorem 1.6. — Iffe ̂ (M) and m > 0 is given by 1.3, there exists 0 < \ < 1 such
that if Pfc(/) is hyperbolic for all 0 ̂  k < i and pi e^/^/P//)) satisfies

(1) JloglKD/^/E^ll^^log^

then

m '•<.<"< p•</))>o•
To complete the induction step, it suffices to show that

c) •t(.<u<,pl(•/'))-o
for all (A e^y^/P^^/)) because, by Theorem 1.6, this implies that there are no
measures (A e^C/^/P^^/)) satisfying (1). Hence

Jlog IKW/E^ill ̂  < log \ < 0

for all pi ^^(./"VP^iC/)) and then, by Lemma 1.5, £5+1 is contracting and, by 1.4,
p ^f) is hyperbolic. This would complete the induction step and also the proof of
the Axiom A property for/. However we are not able to prove that (3) holds for every
(A e^OTP,.^/)) using only the hypothesis /e^M). We shall do it when/is C1

structurally stable (thus proving Theorem A). For this we need the following theorem,
for whose statement we shall recall the definition of a basic set. A basic set off eDiff^M)
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is a hyperbolic set A that is transitive (i.e. there exists x e A whose co-limit set is A) and
isolated, i.e. it has a compact neighborhood U satisfying

n/"(u) =A.
n

The transitivity implies that the dimension of the fibers of the stable subspace of the
hyperbolic splitting of TM/A is constant and we shall call it the index of A and denote
it Ind(A). The stable and unstable sets of A are defined by

W;(A) = {y | ̂  ̂ /"(A A) = 0 }

W?(A) = {y | ̂  d(f-U A) = 0 }.

When it is clear with respect to which diffeomorphism we are considering W!(A)
and W;(A), we shall denote them by W^A) and W^A). The following theorem will
be proved in Section V.

Theorem 1.7. — Let A be a compact invariant set offe Diff^M) such that 0(//A) = A
and having a dominated splitting TM/A == E ® F. Suppose that there exist basic sets Ai, ..., A,
off and constants m > 0, c > 0 and 0 < \ < 1 satisfying:

I) Ind(A,) < dim E{x) for all 1 ^ i ̂  s and x e A.
II) There exists a C1 neighborhood W of f such that ifgeW coincides with fin a neigh-

s

borhood of U A^ then

W^)nW^(A,)=A,

for all 1 ̂  i < s.
Ill) If (JL e^y^/A) satisfies

JloglKD/^/EII^-.

then (JI(U)A^>O.

IV) ||(D/•W)/EM||.||(D/-W)/F(/W(^))1| ̂  > for all x eA.

Then, given 1 ^ i ̂  s such that A — A , is not closed, there exist g e Diff^M) arbitrarily C1

8

near to /, coinciding with f in a neighborhood of U A^ and 1 ^ r < j, r + z, such that A—A
is not closed and

W^A,)nW^)4=0.

Besides this theorem, we shall need the following minor remark. If g e^^M),
denote by N(t,^^) the number of fixed points of g" contained in P,(^).
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Lemma 1.8. — Iffe^-^M) there exists a G1 neighborhood % of f such that
a) N(i, TZ, g^) = N(i, n, g^) for all g^ e ̂ , g^ e ̂ , n > 0 and 0 < K dim M$
b) if g e ̂  wd g coincides with f in a neighborhood of P»(/) for some 0 ̂  i ̂  dim M, then

P^-PiC/).
Proof. — Let ^C^^M) be an open connected neighborhood of/. To prove a)

it suffices to show that N(t, n, g^) ^ N(i, n, g^) because then, reversing the roles of g^
and ^2, it follows that N^,^,^)^ N(z, 72,^1) and then N^ro.^i) = N(i, 72,^2) • Let
^(^) e ̂ , 0< ̂  1, be a continuous arc of diffeomorphisms with g{0) = g^y g{l) = g^.
For every fixed point x of g^ there exists an arc x{t) e M, 0^: ̂  1, such that
g{tY {x{t)) = x{t) and x(0 = ^. The existence of this arc follows from the implicit
function theorem recalling that, since g(t) e^C^^M) for all 0< t^ 1, then if
g{t)n{p)=P it follows that D(^).) {p) — I : Tp M^) is an isomorphism. Moreover
observe that ifx e P^i) then A:(^) e P« (,?(<)) for all 0 < ̂  1 (again because g{t) e ̂ (M)
for all 0^ ^< 1). Then, for each fixed point x of g^ in P,(^i) we have found a fixed
point A:(I) of g^ in P^^) and obviously the correspondance x^->x{l} is injective. This
proves that N(t, 71,^2) ^ N(^*, w,^i). To prove b), suppose that g e ̂  coincides with/
in a neighborhood ofP^(/). Clearly every periodic point of/ in P,(/) is also a periodic
point of g in P^). Then P,(^) 3P,(/). But since N(i, 71,^) = N(t, w,/) for all n > 0,
we have f^g) = P,(/) and then P,^) == P,(/) completing the proof of b).

Now let us return to the problem to which we had reduced the proof of Theorem A.
The problem was to show that if/is C1 structurally stable (and then/ e ̂ (M)) and ?»(/)
is hyperbolic for all 0^ k^j, then P,+i(/) is hyperbolic. As we explained above, the
hyperbolicity of P,+i(/) is reduced to show that (3) holds for all ^ e ̂ (/"VP,+i(/))-
Suppose that there exists (JL() e.^/^/?,.^/)) which does not satisfy (3), i.e.:

(4) ^o( U P.(/))>0.
O^fc^ j

To exhibit a contradiction between the existence of [LQ and the structural stability
of/we shall use 1.7 and 1.8. First observe that the hyperbolic set U Pfc(/) can be
, , O^Jk<3decomposed as

U P,(/)=AiU... uA,,
O^fc^a

where A^, . . . , A, are disjoint basic sets. This follows from a straighforward adaptation
of Smale's Spectral Decomposition Theorem [25]. Moreover, let us show that there
exist sets A, such that P,4-i(/) — A, is not closed. This will follow from the next lemma.

Lemma 1.9. — If A, n P,+i(/) =t= 0 then Pj+i{f) — A^ is not closed.

Proof. — Suppose that there exists A^ such that A, n ^j+i{f) =t= 0 ^d
P^+i(/) ~~ ^i ls closed. Then we can decompose P,+i(/) as

P,+i(/) = (P,4-i(/) ^AJ u (P,+,(/) -A,)
22
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and both sets in the union at right are compact and obviously disjoint. Moreover
^j+iU) — A! is not empty because if it were, then P,+i(/) would be a subset of the
hyperbolic set A, that has index ^j and this is impossible because P,+i(/) contains
hyperbolic periodic points whose stable subspace has dimension j + 1. Now take neigh-
borhoods U and V of A, nP,^(/) and P,+i(/) -A, respectively, such that
(5) /(U) n V = 0.

Take a sequence of points { ̂  }CP,+i(/) converging to a point of P,+i(/) nA,.
Let y^ be the orbit of x^. We claim that for n sufficiently large, YnC U. If this is false
there exist arbitrarily large values of n with Yn — U + 0. On the other hand, since
^n e Tn converges to a point in P,4-i(/) n A^, for large values ofn we have Yn n U + 0.
Then for infinitely many values of n the orbit Yn contains points both in U and U6.
By (5), an orbit Yn lhat intersects U cannot be contained in U U V. Then there are
infinitely many values of n such that y^ contains points in the complement of U U V.
Therefore, since every y» is contained in P,-+i(/), this contradicts the fact that P,+i(/)
is contained in U U V and proves the claim, i.e. that for n large, YnC U. Then

(6) Tn<= n/^(U).

Taking U very small, the intersection at right is a hyperbolic set close to the hyperbolic
set A,. Then its stable fibers have dimensions^ Ind(A<) ̂ j. Then by (6) the stable
subspaces of the points ofy^ have dimensions ̂  j, contradicting the property Yn c P, +1 (/) •
This contradiction completes the proof of the lemma.

Corollary 1.10. — There exist values of i such that P^+i(/) — \ is not closed.

Proof. — If P,+i(/) — A, is closed for all 1 ̂  t< s then, by Lemma 1.9, the
intersections P,-+i(/) nA, are empty for all 1 ̂  i^ s. But then

^^W^-^^-ou^k^:} 1

because the support of ^ is contained in P^i(/), thus contradicting (4).
Now let us show that we can apply Theorem 1.7 to the set A = P,+i(/), the

dominated splitting TM/P,+i(/) = E;.^ C E^+i, the basic sets Ai, . . . , A,, m > 0 and
0< ^< 1 given by 1.3 and c = — log\» given by Theorem 1.6. Since Ind(A,) < j
for alH and dim E^^) ==j+l for all x e P,4-i(/), hypothesis (I) is satisfied. Clearly
^(//P,+i(/)) = P,+i(/) because of the density of the periodic points in P,4.i(/);
also IV) follows from 1.3. Moreover, Theorem 1.6 says that every (JL ^^(/"VP,-^/))
satisfying

Jlog IKD/^/E^ || ̂  ̂  - , = log \

must also satisfy
^(A,u... UA,)=(X( U P,(/))>0,

o^&<?


