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THE DEFORMATION THEORY OF REPRESENTATIONS
OF FUNDAMENTAL GROUPS

OF COMPACT KAHLER MANIFOLDS
by WiLriam M. GOLDMAN and Joun J. MILLSON*

Abstract. — Let T' be the fundamental group of a compact Kéhler manifold M and let G be a real algebraic
Lie group. Let R(I', G) denote the variety of representations I' — G. Under various conditions on p € R(T, G)
it is shown that there exists a neighborhood of p in R(I', G) which is analytically equivalent to a cone defined by
homogeneous quadratic equations. Furthermore this cone may be identified with the quadratic cone in the
space ZYT, 9,4 p) of Lie algebra-valued 1-cocycles on I' comprising cocycles u such that the cohomology class
of the cup/Lie product square [u, u] is zero in H(T', g, 4 o)+ We prove that R(T, G) is quadratic at p if either (i) G is
compact, (ii) p is the monodromy of a variation of Hodge structure over M, or (iii) G is the group of automorphisms
of a Hermitian symmetric space X and the associated flat X-bundle over M possesses a holomorphic section.
Examples are given where singularities of R(I", G) are not quadratic, and are quadratic but not reduced. These
results can be applied to construct deformations of discrete subgroups of Lie groups.

The purpose of this paper is to investigate the local structure of the space o
representations of a discrete group into a Lie group. If I is a finitely generated group
and G is a linear algebraic Lie group the set Hom(T', G) of homomorphisms I' - G
has the natural structure of an affine algebraic variety R(I', G), whose algebraic and
geometric properties reflect the structure of I'. In this paper we study one large class
of groups—fundamental groups of compact Kahler manifolds—and deduce a general
local property of their varieties of representations near representations satisfying fairly
general conditions.

Let V be an algebraic variety and x € V be a point. We say that V is quadratic at x
if there exists a neighborhood U of x in V and an analytic embedding of U into
an affine space such that the image of U is a cone defined by a system of finitely many
homogeneous quadratic equations. In particular the tangent cone to V at x will be defined
by a system of homogeneous quadratic equations in the Zariski tangent space of V
at x and V will be locally analytically equivalent to this quadratic cone.

Theorem 1. — Let T be the fundamental group of a compact Kihler manifold and G a real
algebraic Lie group. Let o € Hom(T', G) be a representation such that its image p(T') lies in a
compact subgroup of G. Then R(T, G) is quadratic at p.

(*) The first author was supported in part by National Science Foundation grant DMS-86-13576 and an
Alfred P. Sloan Foundation Fellowship; the second by National Science Foundation grant DMS-85-01742.
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Suppose that { H*% Q , ¢} is a polarized Hodge structure of weight n (see § 8.1),
that G is the group of real points of the isometry group of Q and X = G/V is the
classifying space for polarized Hodge structures of the above type (see Griffiths [Gr, p. 15]).
Suppose further M is a complex manifold with fundamental group I'. A representation
¢: ' = G determines a flat principal G-bundle P, over M and an associated X-bundle
P, Xo X. A horizontal holomorphic V-reduction of P, is a holomorphic section of P, Xo X
whose differential carries the holomorphic tangent bundle of M into the horizontal
subbundle T,(X) defined in [Gr, p. 20].

Theorem 2. — Let M. be a compact Kdhler manifold with fundamental group T and X = G|V
a classifying space for polarized real Hodge structures. Suppose that o : I' — G is a representation
such that the associated principal bundle over M admits a horizontal holomorphic V-reduction.
Then R(T', G) s quadratic at o.

Let =: E - M be a holomorphic family of smooth polarized projective varieties
parametrized by M; then the period mapping which attaches to x € M the polarized
Hodge structure on H”(n~*(x)) is a horizontal holomorphic V-reduction of the principal
bundle associated to the monodromy representation. Thus we obtain the following:

Corollary. — Suppose ¢ : I' — G is the monodromy of a variation of Hodge structure over M.
Then R(T', G) s quadratic at o.

The idea behind the proof ot Theorem 2 can be applied to a number of other
closely related situations. The next result appears to be one of the most useful of them.

Theorem 3. — Let M be a compact Kdihler manifold with fundamental group T' and
X = G/K a Hermitian symmetric space with automorphism group G. Suppose p: T — G is
a representation such that the associated principal G-bundle over M admits a holomorphic K-reduction.
Then R(T, G) is quadratic at p.

Recently C. Simpson has shown ([Si2, 5.3]) that for every reductive represen-
tation p the corresponding differential graded Lie algebra is formal, and by the tech-
niques developed here, R(I', G) is quadratic at p.

Perhaps the most important feature of such ‘ quadratic singularity > theorems is
that the quadratic functions are computable algebraic topological invariants. Thus
we obtain a criterion for nonsingularity of R(I', G) near a representation p. The Zariski
tangent space to R(I', G) near p equals the space ZY(I'; g,4,) of Eilenberg-MacLane
I-cocycles of I' with coefficients in the I'-module g,4, (given the action defined by the
composition of p:I' -G with Ad:G — Aut(g)). The quadratic cone is defined
by the cup-product where the Lie bracket [,]:g X g —g is used as a coefficient
pairing.
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Corollary. — Suppose that M is a compact Kihler manifold with fundamental group T,
that G is a real algebraic group, and that o : I' — G is a representation satisfying the hypotheses
of Theorems 1, 2 or 3. Suppose that the cup-product

HY(T, gaq,) X HY(T, gaq,) = HA(T, gaa,)
ts identically zero. Then R(T, G) is nonsingular at o.

When G is compact, that the tangent cones to Hom(T', G) are quadratic was
proved in Goldman-Millson [GM2]. When p is a reductive representation of the funda-
mental group of a closed surface into a reductive group, it was shown in Goldman [G1]
that the tangent cone to Hom(I', G) is quadratic. It seems quite likely that there are
further cases under which the above conclusion is true.

The proof given here uses a categorical language suggested to us by Deligne. We
follow the philosophy that a deformation problem consists of a groupoid ¥ whose objects
are the items to be classified and whose morphisms are the allowable equivalences
between them. As such the ¢ moduli space ” is the associated set Iso € of isomorphism
classes of objects. Two deformation problems are regarded as equivalent if there is an
equivalence of categories between the corresponding groupoids.

Although our principal aim is the space of representations, its deformation theory
can be replaced by the equivalent deformation theory of flat connections on an associated
principal bundle P. The groupoid here consists of gauge transformations acting on flat
connections on P; the equivalence of flat connections with representations associates
to a flat connection its holonomy homomorphism. In turn, this groupoid can be replaced
by an isomorphic groupoid associated with a purely algebraic object: the differential
graded Lie algebra of ad P-valued exterior differential forms on M associated with
the flat connection on P. (Here ad P denotes the vector bundle associated with P by
the adjoint representation of G on its Lie algebra.) Thus the deformation theory of
representations of fundamental groups is equivalent to a deformation theory associated
with differential graded Lie algebras.

The importance of differential graded Lie algebras in deformation theory was
recognized early on in numerous contexts. In [NR2] Nijenhuis and Richardson detail
an abstract approach to the Gerstenhaber deformation theory of algebras, the Kodaira-
Spencer-Kuranishi deformation theory of complex manifolds, etc. If L denotes a diffe-
rential graded Lie algebra, then the objects of the associated groupoid are those elements
of L having degree 1 satisfying the deformation equation

dac—|—é[a,ot]=0.

If & is a simply connected Lie group with Lie algebra L° then there is a natural action
of &# by affine transformations on L! given by
I — exp(tad )

ad A (@)

exp(fA) : a > exp(tad A) («) +
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for the one-parameter subgroup of £ corresponding to A € L% This affine action pre-
serves the solutions of the deformation equation in Ll. A morphism from « to B in this
groupoid is an element n € £ with n(«x) = B.

For the local questions with which we are concerned we introduce formal infini-
tesimal parameters, given by elements of an Artin local k-algebra A. For each such ring A
we consider the set of morphisms from Spec(A) into the solution space of the deformation
equation. In other words we are led to consider solutions of the deformation equation
¢ parametrized > by Spec(A). This leads to a groupoid ¥(L; A) which depends both on
the differential graded Lie algebra L and the Artin local ring A. The functor which
associates to A the groupoid #(L; A) captures the local deformation theory associated
with L.

The basic result concerning the groupoids #(L; A) is the following ¢ equivalence
theorem °, first observed and stated by Deligne, although an equivalent version can
be found in the earlier work [SS] of Schlessinger-Stasheff:

Equivalence theorem. — Let k be a field of characteristic zero and ¢ : L — L be a homo-
morphism of differential graded Lie k-algebras such that the induced maps Hi(o) : H (L) — Hi(L)
are isomorphisms for ¢ = 0, 1 and injective for 1 = 2. Let A be an Artin local k-algebra. Then
the induced functor

o,: 4(L; A) - %(L; A)
is an equivalence of groupoids.

A differential graded algebra is formal if it is quasi-isomorphic to its cohomology
algebra. In that case the deformation equation simplifies considerably, since the dif-
ferential is identically zero. In particular the deformation equation is now a homo-
geneous quadratic equation whose set of solutions is a quadratic cone. The analogue of the
fundamental observation of Deligne-Griffiths-Morgan-Sullivan [DGMS] that the de Rham
algebra of a compact Kéhler manifold is formal can then be applied (in various cases)
to differential graded Lie algebras of exterior differential forms taking values in certain
flat vector bundles. The key in all of these cases is the existence of a real variation of
Hodge structure on ad Py and the corresponding Hodge theory taking coefficients there.
What seems to be crucial is that the covariant exterior differential and the covariant
holomorphic (and anti-holomorphic) differential both give rise to the same harmonic
spaces and satisfy the ¢ principle of two types ”. It follows from the Equivalence Theorem
above that the deformation space is locally equivalent to the corresponding quadratic
cone.

In [AMM], Arms, Marsden, and Moncrief prove that the inverse image of zero
under the momentum map of an affine Hamiltonian action on a symplectic affine space
is quadratic whenever the action preserves a positive complex structure. As noted
in [GM2], this result implies Theorem 1 when M has complex dimension one. In [GM3]
the result of Arms-Marsden-Moncrief is proved by applying the techniques of this paper.
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In particular we associate to an affine Hamiltonian action a differential graded Lie
algebra which under the assumptions of [AMM] we prove is formal. In another direction
one can apply the Equivalence Theorem to deformations of pairs (V, V) where V is a
holomorphic vector bundle over a Kahler manifold and V is a compatible flat connection.
One obtains then a quadratic cone of local deformations of (V, V) expressed as a family
of quadratic cones over the quadratic cone which parametrizes local deformations of
holomorphic structures on V.

This paper is organized as follows. The first section contains algebraic preliminaries
concerning graded Lie algebras. In § 2 we describe the groupoid associated to a diffe-
rential graded Lie algebra and an Artin local k-algebra A. The equivalence theorem
of Deligne-Schlessinger-Stasheff is stated. An obstruction theory is developed for
extending objects and morphisms in the groupoids ¥(L; A) as the parameter ring A is
enlarged. This obstruction theory relates the structure of the groupoid to cohomology
classes in L. and is used to prove the Equivalence Theorem. The third section of the
paper discusses pro-representability of functors of Artin local k-algebras by analytic
germs. The definition of the quadratic cone ‘‘ tangent ” to an analytic germ is given.
The fourth section discusses the algebraic structure of the variety R(I', G). In parti-
cular the tangent space and the tangent quadratic cone to R(I', G) at a representation
p: I' > G are computed in terms of the cohomology of I'. The relation between repre-
sentations and principal bundles is developed. In § 5, necessary background from
differential geometry is summarized; in particular connections on principal bundles
and the action of the group of gauge transformations on connections is discussed here.
In § 6, the parallel deformation theories of flat connections parametrized by spectra
of Artin local rings and representations of the fundamental group parametrized by
spectra of Artin local rings, are discussed. This provides the bridge between infinitesimal
deformations of representations and differential graded Lie algebras. By regarding
(generalized) infinitesimal deformations of flat connections on a principal G-bundle
as flat connections on principal G,-bundles (where G, is the Lie group consisting
of A-points of G) we may apply the standard theory of connections to study connections
parametrized by Spec A, for an Artin local k-algebra A. The final result of this sec-
tion, Theorem 6.9, is the basic result relating the local analytic structure of the variety
of representations to a differential graded Lie algebra. Theorem 1 is proved in § 7.
We have tried to present the proof in such a way that the modifications necessary for
its generalizations are easily apparent. In § 8, Theorems 2 and 3 are proved by modifying
the proof of Theorem 1. A basic point in the proof is the fundamental observation of
Deligne that the complex of differential forms on a compact Kihler manifold with
coefficients in a real variation of Hodge structure is formal; the formality follows in
the usual way once the covariant differential is decomposed by total (base plus fiber)
bidegree. This idea is expounded and exploited in Zucker [Z1] (see also Simpson [Si]
and Corlette [C2]). Finally in § 9 various examples are given to illustrate the ideas and
demonstrate further applications of these techniques. In 9.1 it is shown that if ' is a
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lattice in the Heisenberg group then R(I', G) generally does not have quadratic singu-
larities; indeed the techniques developed here show that in many cases the germ
of R(T', G) at the trivial representation is analytically equivalent to a cubic cone. In 9.2
it is shown that the quadratic singularity theorems apply to a larger class of groups than
fundamental groups of compact Kéahler manifolds; in particular our techniques apply
to Bieberbach groups and finite extensions of fundamental groups of compact Kahler
manifolds arising from finite group actions on compact Kéhler manifolds (fundamental
groups of compact ¢ Kihler orbifolds ’). In particular we describe the example of
Lubotzky-Magid [LM] where R(I', G) is not reduced from our point of view. In 9.4
we briefly describe how these techniques apply to the deformation theory of holo-
morphic structures on vector bundles over Kihler manifolds. In 9.5 Theorem 3 is
applied to discuss the existence of deformations of discrete groups acting on complex
hyperbolic space.
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NOTATIONAL CONVENTIONS

Throughout this paper k will denote the field of real or complex numbers. By
an Artin local k-algebra we shall mean an Artinian local k-algebra with unity such
that the residue field A/m is isomorphic to k. All manifolds will be assumed to be C*®,
connected and paracompact and all tensor fields will also be assumed to be C*. By a
k-variety will be meant an affine scheme of finite type over k (not necessarily irre-
ducible or reduced). If «, B are objects in a category (e.g. groups, algebras over k),
then Hom(«, ) will denote the collection of morphisms « —  and we denote the identity
morphism « — « by I,. If € is a small category, Obj € will denote its set of objects and
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Iso € will denote its set of isomorphism classes of objects. All the tensor products we
consider here are tensor products of k-vector spaces over k. We use the notation ® for
such tensor products.

1. Differential graded Lie algebras

1.1. In this section we review basic algebraic notions concerning graded Lie
algebras and their derivations, referring to Nijenhuis-Richardson [NR2] for futher
details. A graded Lie algebra over k will mean a k-vector space

L=DL
i=0

graded by the nonnegative integers, and a family of bilinear maps
[,]:Lf x LI L
satisfying (graded) skew-commutativity:
[, 8] + (— D[, a] =0
and the (graded) Jacobi identity:
(— 1% [o, [B, 1] + (— DY [B, [v» ]l + (= D™ [y, [, B]] =0
where a e LY, B e L/, y e L%,
For each « € L¥, we shall denote the adjoint transformation by
ada:Li > Lit¢
B [o, B].

Then L° is a Lie algebra and the adjoint representation of L° on L' is a linear repre-
sentation of the Lie algebra L9,

A basic example of a graded Lie algebra arises as follows. Let g denote a Lie
algebra and & a graded commutative algebra, i.e. a graded vector space with associa-
tive multiplication & X &/ — o't/ satisfying (graded) commutativity:

B = (— 1) B
where « € o and B € /. Examples include exterior algebras, cohomology algebras

and the de Rham algebra of exterior differential forms on a manifold. Then &/ ® g
is a graded Lie algebra under the operation

[x®u,B®v] = af ® [, v].

1.2. A derivation (of degree ¢) consists of a family of linear maps d: L' — Li+?
satisfying
d[e, B] = [dx, B] + (— 1)¥ [, dB]
where « € L, B € L. The Jacobi identity is equivalent to the assertion that for every
« € L}, ad « is a derivation of degree i. It is easy to see that there is a graded Lie algebra
7
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Der(L) (where Der(L) consists of derivations of degree ¢) with operation the (graded)
commutator

[dy, dy] = dyody — (— 1)"[’ dy o d;

where d; is a derivation of degree ¢, for i = 1, 2.

A differential graded Lie algebra is a pair (L,d) where L is a graded Lie
algebra and d:L — L is a derivation of degree 1 such that the composition
dod = 0. It follows that the space Z(L) = Kerd:L’ - Li*! of cocycles contains
the space B'(L) = Imaged:L'"! - L' of coboundaries. Thus the cokomology
HY(L) = Z'(L)/B'(L) is defined and has the structure of a graded Lie algebra. Every
graded Lie algebra becomes a differential graded Lie algebra by defining the diffe-
rential d to be identically zero.

An ideal in a differential graded Lie algebra L is a graded subspace L’C L such
that [L, L']C L’ and d(L’) CL’. One checks easily that if L'’CL is an ideal, then the
quotient L/L’ is naturally a differential graded Lie algebra. If ¢ : L —L is a homo-
morphism of differential graded Lie algebras, then the kernel Ker ¢ is an ideal. Simi-
larly, if D : L — L is a derivation then its kernel Ker D is a differential graded subalgebra.

1.3. Let L denote a differential graded Lie algebra. We shall next define an action
of the ordinary Lie algebra L° on the vector space L! by affine transformations and
a corresponding quadratic mapping Q : L! — L? which is equivariant respecting this
affine action. Clearly the Lie algebra ad L°C Der(L)? acts linearly on the space of all
derivations. We shall be particularly interested in the affine subspace A C Der(L)!
comprising derivations of degree 1 having the form d + ad « where « € L. We claim
that the subalgebra ad L° preserves this affine subspace, i.e. the linear vector field
on Der (L)! determined by bracket with ad A € ad LOC Der(L)® for A € L? is tangent
to A. Let « € ! and B € L. Then

[ad 2, d + ad «] (B) = [ad A, ad «] (B) + [ad A, d] (B)
=ad[:, «] (B) + [A, dB] — d[A, ]
= ad[), o (B) — ad(dh) (B)
=ad([» «] —d2) (B)

so that the linear vector field on Der(L)! has value ad([A, «] — dA\) ead L' at d + ad «.
Since the tangent space to A equals ad L1, the claim is proved.

Moreover the correspondence which assigns to each A €L the affine map
p(A) : Lt — L! defined by

p(A) tab> [A, a] — dA
defines a homomorphism p of L? into the Lie algebra of affine vector fields on L1.

(This follows from the fact that the linear part of p is a Lie algebra homomorphism
ad : L% — End(L!) and the translational part of p is the derivation — d: L% — L! with
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respect to the action given by the linear part.) If % is a simply-connected Lie group
with Lie algebra L9, then the corresponding affine action of the group % on L1 is defined
by the usual formula for one-parameter subgroups:

— exp(tad d)

(1-1) exp(fA) : a > exp(fad A) («) + I Y (dn)

in terms of power series, where ¢ ek.

Let « € L1 Then the square of the derivation d + ad « is easily seen to be the
derivation

(d+ada)o (d+ ad ) =%[d+ ad «, d + ad «] = ad Q () € Der(L)?

where
(1-2) Qo) = da + % [, o]

defines an (inhomogeneous) quadratic map Q:L! — L2 Clearly the action of L° by
affine vector fields respects this quadratic map in the sense that the directional derivative
of Q with respect to the tangent vector p(A) (where A € L% at « € L! equals

(p() Q) («) = (ad ) (Q(«))-
For the directional derivative (p(A) Q) («) equals
dQ,(p(A) («)) = (4 + ad a) ([A, «] — dN)
=d[\ o] + [« [, a]] — ddX — [o, di]
= ([, =] + Dy de) + 5 Dy [y o] — [, o]
= D de + 5 [, ] = D Q)]

as claimed. In particular the affine action of .Z on L preserves the subspace Q~1(0) C L.

2. The groupoid associated to a differential graded Lie algebra
and an Artin local ring

In this section we state the basic algebraic result on differential graded Lie alge-
bras, and deformation theory. This result (Theorem 2.4) was first stated by Deligne,
although it appeared earlier in a somewhat different formulation in Schlessinger-
Stasheff [SS, Theorem 5.4]. It will be a basic tool for showing that two deformation
theories are equivalent.

2.1. We begin by reviewing the relevant language from category theory (see
Jacobson [J]) which will be needed to state the basic result.
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Recall that a groupoid is a small category in which all morphisms are isomorphisms.
Most of the groupoids we consider here arise from iransformation groupoids as follows.
Let G be a group which acts on a set X. The resulting groupoid (X, G) has for its set
of objects Obj(X, G) = X and for #, y € X the morphisms x —» correspond to g € G
such that g(x) = . If G’ is a group acting on a set X', then we say that a mapping
Sf: X > X' is equivariant with respect to a homomorphism ¢ : G — G’ if for each geG
the diagram

X L x

I

X L, x

commutes. We shall also say that (f, ¢) is a transformation groupoid homomorphism
(X, G) - (X', G’). A homomorphism of transformation groupoids determines a functor
between the corresponding groupoids, although not every functor arises in this way.
A central notion is that of an equivalence of categories. (See Jacobson []J, 1.4] for
the definition and discussion.) If &/ and # are categories, then a functor F: o/ — %
is an equivalence if its satisfies three basic properties:
(i) F is surjective on tisomorphism classes, i.e. the induced map F,:Iso & —Iso & is
surjective;
(i1) Fis full, i.e. for any two objects x, y € Obj &, the map
F(x, y) : Hom(x, y) - Hom(F (), F())
is surjective;
(iii) F is faithful, i.e. for any two objects x, y € Obj &/, the map
F(x, ») : Hom(x, ») - Hom(F(x), F())
is injective.
An equivalence of categories F: .o/ — % induces an bijection of sets
F,:Iso o/ —Iso 4.

2.2. If A is a k-algebra and (L, d) is a differential graded Lie algebra, then the
tensor product L ® A is differential graded Lie algebra in the obvious way: for «, 8 € L
and u, v € A, then

[x®u, BO®v] = [a, B] ®uv
dx®u) =de®u

defines a bracket operation and a derivation giving L ® A the structure of a differential
graded Lie algebra.

Suppose that A is an Artin local k-algebra with maximal ideal mC A and residue
field k and consider the differential graded Lie algebra L®m. Since m® = 0 for



THE DEFORMATION THEORY OF REPRESENTATIONS OF FUNDAMENTAL GROUPS 53

N > 0, the Lie algebra L ® m is nilpotent and so is (L ® m)® = L°® m. The corres-
ponding nilpotent Lie group exp(L?® m) has underlying space L°® m and is equipped
with Campbell-Hausdorff multiplication

(X, Y) > log(exp(X) exp(Y)).
As in 1.3 the group exp(L°® m) acts affinely on L!® m by formula (1-1).
Let Q, =Q:L1®m - L?®@m be the quadratic map Q(«) = du + % [, ]

defined in (1-1). The action of exp(L®® m) preserves the subspace Q;'(0)C L'® m.
We define a groupoid #(L; A) as follows. The set of objects Obj €(L; A) will be
QLY (0)CL'®m, and given «, B € Obj ¥(L; A), morphisms « —f correspond to
elements A of L°® m such that exp(A) («) = p.

2.8. Let ¢:L —L be a homomorphism of differential graded Lie algebras.
There is an induced functor

e,: €(L; A) - €(L; A)

which arises from the corresponding homomorphism of transformation groupoids.
Suppose further that ¢ : A - A’ is a homomorphism of Artin local k-algebras. (Such
a homomorphism will map the maximal ideal of A to the maximal ideal of A’.) There
are corresponding functors ¢, : €(L; A) — €(L; A’) such that the diagram

€(L;A) 2> €(L;A)

| Jo

C(L; A") —> ¥(@;A)

commutes, i.e. the functor o, : €(L; A) - €(L; A) is natural with respect to A. All of
our constructions will preserve this naturality.

We may now state the main algebraic result concerning differential graded Lie
algebras.

2.4. Theorem. — Suppose that @ : L — L is a differential graded Lie algebra homomor-
phism inducing isomorphisms H'(L) — H'(L) fori = 0, 1 and a monomorphism H2(L) — H2(L),
then for every Artin local k-algebra A, the induced functor o,: € (L; A) — €(L; A) is an
equivalence of groupoids.

2.56. The proof of Theorem 2.4 proceeds by ¢ Artinian induction” on
the coefficient ring A. For every Artin local k-algebra A, there exists a sequence
Ay=AA,, ..., A,_;, A, =k of Artin local k-algebras and epimorphisms 7, : A; - A, ,
such that (Ker »;,).m; = 0 where m;C A, is the maximal ideal. For example we might
take for A; ., the quotient ring A;/K; where K,C A, is a minimal nonzero ideal and

7t A, > A, ., the quotient map. We shall prove 2.4 by induction on the length 7.
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The initial case r = 0, i.e. A =k, is completely trivial: for every L the category €(L; A)
has but one object and one morphism. Thus to prove Theorem 2.4, it suffices to prove
that if A is an Artin local k-algebra with maximal ideal m C A and ICA s an ideal such that
J.m =0, then 2.4 holds for A provided that it holds for AJJ.

2.6. To prove this induction we consider the relationship between the groupoids
%(L; A) and € (L; A/3) where JCA is an ideal such that 3. m = 0. Let n: A > A/J3
denote the ring epimorphism with kernel 3 and consider the corresponding functor
w,: €(L; A) > €(L; A[J). Theorem 2.4 will be proved by a detailed analysis of
this functor. We state our results in terms of three ¢ obstructions
H(L®J) for i =0,1,2.

o; taking values in

Proposition. — (1) There exists a map
0,: Obj €(L; A/3) - HYL® J)
such that « € Obj €(L; A[J) lies in the image of
n, : Obj €(L; A) — Obj €(L; A/3)
if and only if o05(a) = 0.
(2) Let & € Obj €(L; A/J). Let ] (E) denote the category having for its set of objects
the inverse image of £ under =, : Obj €(L; A) — Obj €(L; A[JI) and morphisms v in €(L; A)
such that w,(y) = L. There exists a simply transitive action of the group ZY(L®J) on the
set Obj(w; 1(E)). Moreover the composition of the difference map

Obj(m;*(£)) x Obj(n*(€)) >~ Z(L®YJ)
with the projection

Z2(L®3J) ~HY(L®J),
which we denote by

0y : Obj(m,)™* (€) X Obj(m,)™* (§) »~ZY(L®3J),
has the following property: for o, B € Obj(wn,)"*(§), there exists a morphism vy :a — B with
m(Y) = Lg ¢ and only if oy(a, B) = 0.

(3) Let%, B € Obj €(L; A) be isomorphic objects and f : « — B a morphism in € (L; A[3)

Sroma = w (&) to p = ,(B). Then there exists a simply transitive action of the group HO(L ® 3J)
on the set w;*(f) of morphisms f to—> E such that . ( f ) = f. In particular the difference map

09: 7, (f) X w7 (f) = H(L®Y)
has the following property: if f, ' € n=Y(f), then f =f if and only if oo(f, f') = O.

(If a group G acts simply transitively on a set X, the difference map
XxX->G

sends (x, 9) to the unique g € G such that g(¥) = _».) We shall denote the simply transitive
actions of (2) and (3) by addition.



THE DEFORMATION THEORY OF REPRESENTATIONS OF FUNDAMENTAL GROUPS 55

2.7. Proof of 2.6 (1). — Let w € Obj €(L; A/3) C L1® m/3. Then there exists
& € L' ® m such that =,(@) = w. Since o is an object in ¥(L; A/3),

Q&) = a3 + % [3, 3] e L2® S,
~ 1 o~ ~ ~ |
Now dQ (&) = d(§ 3, w]) = [45,8] = — 5 [[3,31, 5] (mod 9)

since Q(&) eL?®J and [L2@J, L'®m]CL3®JIm = 0. But [[¥,d],3] =0 by
the Jacobi identity, whence Q (&) is a cocycle in Z3}(L® J).

Furthermore suppose that &’ € L' ® m is another lift of w,i.e. &' = & (mod L' ® J).
Then

Q@) — Qo) =d(a&" — @) + [8,8" — @]
o8 — 8,8 — 8] = d&" —3)
is exact since
[@,0" — 3] e[L'®@m, L1®J]CL2@mM.I =0
and [0 —a,6" —a] e[L'®J,L1®J]CL2@®JI.J =0.
Thus the cohomology class of the cocycle Q (&) is independent of the lift &. We define
05(w) to equal the cohomology class of Q (&) in H(L® J).

Let @ € Obj ¥(L; A) be an object which reduces (mod J) to & € Obj €(L; A/J).
Then Q (&) =0 and

0y(@) = [Q(®)] = 0.

Conversely suppose that o € Obj ¥(L; A/J) satisfies 0,(w) = 0. Let & be as before.
Then there exists ¢ € L1 ® J such that

Q@) = 43 + 5[5, 3] = db.

Let &' = & — . Then
Q&) =Q(ad) —dy — [3,¢] = Q(a) —dy =0

(since [@, ¢] € L2® m.J = 0) so there exists an object in ©] *(©) if and only if 0,(w) = O.
Hence (1).
One can succinctly formulate 2.6 (1) as an ‘“ exact sequence **:

Obj €(L; A) 3 Obj (L; A/J) 3 H}(L® 3J).

The proofs of (2) and (3) will be based on the following lemma.

2.8. Lemma. — Let « e L2 ®m, n e LO®m, u e LO® J. Then
exp(u + 1) (#) = exp(n) (o) — d.
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Proof of Lemma 2.8. — If n> 0, then (ad #)* (L®m)CL® J.m = 0. It follows
easily that

(ad(x) + ad 9)" () = ad(n)" (a),
(ad() + ad n)" (dn) = ad(n)" (dn),
(ad(u) + ad )" (du) = 0.
(u + I — exp(ad(z + 7))
ad(x + 7)

Thus exp(x + ) («) = exp(ad(x + 7)) («) + (d(x + 7))

@

=z % (ad(x) + ad(x))" («)

= Z oy () ad(n)* G + )

©

= 2 ()" (@) — = F o (ad(n)” ()

n=0 n! n=0 (n

— exp(n) (o) — du
as desired.

2.9. Proof of (2). — Let & € Obj ¥(L; A/J). We begin by defining a simply
transitive action of Z'(L ® J) on objects in =, *(£). Suppose that « € Obj =, *(§) CL'® m
and let € ZY(L ® J). Then

Qe +m) = Q) +dy+ [a,m] + 3 [n, 7] =

since Q(a) =dn =0, [a,m] e [L1®m, L1®J]CL2®m.J = 0 and
[7,n] e[l1®J, L1®I]CL2®I.J =0.

Thus « 4+ n € Obj €(L; A) satisfies =, (« + n) = &. This defines an action of Z(L ® J)
on Obj = 1(§).

Conversely let «, B € Obj #(L; A) satisfy =,(x) = =,(8) = &. Then «, 8 e L1& m
and « — B e L1® 3. Now

[B,a—ﬁ]=[a—ﬂ,a—ﬂ]=0
since [L1®m,L1®J] =[L1®J, L1®J] =0, so

(e — B) = d(ox— B) -+ [6, 6 — B] + g [« — B, — 8] = Qo) — Q(B) =0.

Thus « — B € Z{(L® J) as desired. Since « — f = 0 if and only if « = 8, it follows
that Z1(L ® J) acts simply transitively on Obj =, *(£).

We define the obstruction for the existence of an isomorphism covering I, between
two objects «, B € Obj =, *(§). Let o, («, B) be the cohomology class of « — 8 in H}(L ® J).
There exists a morphism y:a — 8 with = (y) =1, if and only if this obstruction
vanishes.
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Suppose that y:a —8 is a morphism in #(L; A) such that = (y) =1I,. Let
u € L°® m be the corresponding element such that exp(z) € exp(L°® m) sends « to B.
Then u € L°® J since =,(y) = I; and by Lemma 2.8
B = exp(u) (a) = a0 — du.

Thus « — B is exact and o,(a, B) = 0.

Conversely suppose that o;(« — B) = 0. Then there exists « € LO® J such that
o — B = du. As above, we see that

B = exp(u) ()
as claimed. This completes the proof of (2).

2.10. Proof of (3). — Suppose & B € Obj €(L; A), and « = =,(&), B = =,(B)
and consider a morphism y: « — § in ¥(L; A/J). We define a simply transitive action
of HY(L ® 3J) on the set =] (y) of morphisms ¥ : & — B such that = (¥) = y. We identify
HY(L®3J) with the subset Z°(L®J) consisting of u e LO®J with du = 0. There
exists 2 e LO® m such that ¥ is defined by exp(v):& —B. Now if u e L9®J, then
it follows from Lemma 2.8 that

exp(v + u) (%) = exp(v) (&) — du =P — du

so that if ue HY(L®3J), then ¥+ u = exp(v +4) is a morphism & —»F with
7,(Y 4+ u) = y. This defines the action of H'(L® J) on =] *(y).
To show this action is simply transitive, consider another morphism ¥':& — B

in 7 (y). Then¥,Y’ € LO® msatisfy Y = ¥’ (mod J). We define the obstruction oy(Y,¥’)
to equal u =% —5’ e L® 3. Then

du=¥@) —¥@) =F-F=0
i.e. e HY(L ®3). Furthermore u is the unique element of HO(L® J) sending ¥ to¥y’. Thus
the action is simply transitive. This concludes the proof of (3), and also the proof of 2.6.

2.11. We now prove the Equivalence Theorem 2.4. Assuming that ¢:L —L
induces homology isomorphisms in degrees 0 and 1 and a monomorphism in
degree 2, we show that for any Artin local k-algebra the corresponding functor
¢,: 4(L; A) > %(L; A) is an equivalence. By induction we assume that S C A is an
ideal with m.J = 0 and that ¢ induces an equivalence #(L; A/S) — #(L; A[J). We
prove that ¢ induces an equivalence ¢, : €(L; A) — €(L; A) by checking that g, satisfies
the three basic properties 2.1 (i)-(iii).

Surjective on isomorphism classes. Let @ € Obj €(L; A). Then

n, » € Obj €(L; A/J)

and by the induction hypothesis there exists o’ € Obj ¥(L; A/J) and an isomorphism
g: 9,0 =, 0. Now

H?(p) 05(w") = 05(p, &) = 05(g7" 7, ©) = 0y(m, @) = 0
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since ® is an object in ¥(L; A) covering =,(w). Since H2(g) is injective, 0y(w’) = 0
and by 2.6 (1) there exists & € Obj ¥(L; A) such that w, @ = w’. The obstruc-
tion to the existence of an isomorphism ¢, — @ covering I, is an element
01(p, @, w) e HY(L ® J). Since HY(¢) is surjective it follows that there exists a cocycle
ueZ(L®3J) such that H(g) [u] = 0,(p, 3, @). Now let © =& —u Then
® € Obj ¥(L; A) and
01(9, ©, ®) = 0y(, ®, 9, @) + 05(p, @, ®)
= H(9) 04(w, @) + 04(9, &, )
= — Hi(g) [u] + 0,(¢. 5,5) =0

proving that ¢, : Iso #(L; A) - €(L; A) is surjective.

Full. — Let Y¥: 9, ®; = @, ®, be a morphism in €(L; A). Then
nt?:cp:ntml =7, P 0 >T, QP W=, T, Wy
is a morphism in #(L; A/S). By the induction hypothesis
9, : Hom(n, o,, 7, 0,) - Hom(gp, ®, ©,, ¢, 7, wy)

is surjective, so there exists y; : &, ®; —> T, wy such that ¢, y; = m,(y). The obstruction to
the existence of a morphism ®; - @, is an element o0,(®,, w,) € HY(L® J). Now

H(@) 04(wy, @p) = 04(¢, @1, @, ) =0

since ¥ is a morphism ¢, »; — ¢, w,. Since H(¢) is injective it follows that there exists
a morphism y':®; > w,. Now y, and w, ¥ are both morphisms =, ©;, -, @, SO
there exists an automorphism g: &, w; - 7, @, such thaty, = «, ¥’ o g. Now g is given
by an element of exp(L°® m/J) and there exists a lift geexp(L°® m). Now
0,(gw,, @) € HY(L ® J) is represented by a cocycle # € Z (L ® J) and §’ =exp(—4) o §
defines an automorphism ®, — w; covering g. Then

Y' =Y 0 10, >,
covers w, Yy o g = (9,) ' m, Y. Now o, ¥"" and ¥ are both morphisms covering =, ¥ so
their difference oy(p, v, ¥) € HY(L ® J) is defined. Since H%(¢) is surjective, there exists
2el°®3J such that ¢,(2) = oo(e, v, Y) e H(L®J). It follows that y =+v" —v
defines a morphism w,; — w, satisfying ¢, y = ¥.

Faithful. — Let v,, v, : ®; = 0, be morphisms in €(L; A) with

?.(12) = @.(¥a)-

Then =, v;, 7, Y5 : ©, ®; = 7, 0, are morphisms in F(L; A/J) satisfying

Pe T Y1 = T Pu Y1 = T, P Y2 = P, T, Y2-
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By the induction hypothesis =, yv; = =, v, so the obstruction
%9(Y1, Y2) e HY(L® J)

is defined. Now HO(¢) 04(y1, Ya) = 0o(P, Y1> @. Y2s) = 0. Since HO(p) is injective it
follows that vy, = vy, as desired.
This completes the proof of Theorem 2.4.

2.12. Let (L, d) and (L, d) be differential graded Lie algebras. We say that (L, d)
and (L, d) are quasi-isomorphic if there exists a sequence of differential graded Lie algebra
homomorphisms

L=L,-L;«<L,—»...«<L, ,»L, =L

such that each homomorphism induces a cohomology isomorphism. A differential graded
Lie algebra is formal if it is quasi-isomorphic to one with zero differential—thus a dif-
ferential graded Lie algebra (L, d) is formal if and only if it is quasi-isomorphic to its
cohomology algebra (H(L), 0). A repeated application of 2.4 yields the following.

Corollary. — Suppose (L, d) and (L, d) are quasi-isomorphic as above. Then for each Artin
local k-algebra A the groupoids €(L; A) and €(L; A) are equivalent. Furthermore the induced
sequence of equivalences

E(L; A) - €(Ly; A) < €(Ly; A) > ... < €L, _1;A) - EL; A)
depends naturally on A.

3. Pro-representability of functors by analytic germs

Our ultimate goal is to prove that two analytic spaces are locally equivalent.
To this end we shall replace germs of analytic spaces by more algebraic objects—analytic
local rings, complete local rings, and functors from Artin local rings into sets. There-
fore it will be crucial for us to know that two analytic germs are equivalent if the corres-
ponding functors they represent are naturally isomorphic. This is the primary goal of
the present section. In particular we desire criteria for an analytic germ to be equi-
valent to a quadratic cone (see below). (For a description of tangent cones, the reader
is referred to Kunz [Kz] and Mumford [M].)

3.1. If X is a k-variety and x € X then we denote the germ of X at x by (X, x)
(for a complete discussion of analytic germs and analytic equivalence thereof, the reader
is referred to Gunning [Gu, pp. 62-68]). We denote by Oy ,, the corresponding analytic
local ring consisting of germs of functions on X which are analytic at x. If A is a local
ring then the completion of A with respect to its maximal ideal will be denoted by A;
if (X, x) represents an analytic germ, the corresponding complete local ring is @A(x, 2"
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If R is a k-algebra, there is a corresponding functor from the category of Artin local
k-algebras to the category of sets defined by

A Hom(R, A)

(where Hom denotes the set of local k-algebra homomorphisms) which we denote

by Fg. Let F be a functor from Artin local k-algebras to sets. We shall say that the

analytic germ (X, x) pro-represents F if the functors F and Fg(x,x are naturally isomorphic.
The basic results we need in the sequel are summarized in the following.

Theorem. — Let (X, x) and (Y,y) represent germs of k-varieties. Then the following
conditions are equivalent:
(1) The analytic germs of (X, x) and (Y, ) are analytically equivalent;
(2) The analytic local rings O ,, and Oy ,, are isomorphic;
(3) The complete local rings @x, o and 5(1{, ,) are isomorphic;
(4) The functors Fa(x,,) and Fg(y’y) are naturally isomorphic.

Proof. — For the equivalence (1) < (2), the reader is referred to Gunning [Gu,
pp- 67-68]. The equivalence (2) <> (3) is proved in Artin [A, p. 282]. The equivalence
(3) < (4) follows from the next lemma. (Compare Schlessinger [Sc, 2.9].)

3.2. Lemma. — Let R and S be complete local k-algebras and let v : Fy = Fg be a natural
transformation. Then there exists a unique f € Hom(S, R) such that n = f*.

Progf. — Let m denote the maximal ideal in R and let =, : R - R/m" denote
projection. Let f, = »(=w,) : S - R/m". We claim that the f, form a compatible family,
defining a homomorphism f: S — R such that fo wr, = f,. Indeed let p : R/m"** -~ R/m"

be the projection. Since 7 is natural, there is a commutative diagram
Hom(R, R/m**!) > Hom(S, R/m"*?)

. I

Hom(R, R/m") — Hom(S, R/m")

Thus Ptfn+1 =p# ")(T‘n+1) = “’)P:(’Tnﬂ) = "l(“n) =fn

establishing the claim.

Let fe Hom(S, R) be the corresponding homomorphism. We now prove that
7 = f*. Let A be an Artin local k-algebra and let y € Hom(R, A). Since A is Artinian,
there exists n > 0 and a homomorphism % : R/m" — A such that y = ko =,. It follows
from the commutative diagram

Hom(R, R/m") —> Hom(S, R/m")

N I

Hom(R, A) —0 Hom(S, A)
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that kof, = k, n(x,) = n(k, ,) = 3(x). Since f, = =, of, it follows that
NX) =hom,of =xof=S"x

as desired.

We have established the existence of f with n = f*. It remains to prove that f is
unique. Suppose that f € Hom(S, R) satisfies f* = ». Then f is the limit of the induced
maps f, = m, of. But since v = f* we have &, o f = f* =, = n(x,). Hence the maps f,
are determined by v and therefore f is determined by . This concludes the proof of
the lemma.

Quadratic cones and analytic germs

3.83. Let E be a finite-dimensional vector space over k. A quadratic cone in E is an
algebraic variety 2 C E which can be defined by a (finite, possibly empty) family of
equations

B(u,u) =0

where 2 e E and B: E X E — F is a k-bilinear mapping to a k-vector space F. Clearly
any affine space is a quadratic cone and the Cartesian product of two quadratic
cones is a quadratic cone. A variety 2 C E is a quadratic cone if and only if its complexi-
fication 2(C) is a quadratic cone in E; = E® C. (Suppose that 2(C) is defined by
equations f;(z,, ..., z,) = 0 where the f; are homogeneous quadratic functions with
complex coefficients; writing z; = x; + iy;, we see that 2 is defined by the homo-
geneous quadratic equations with real coefficients Ref(x, + &y, ..., %, +,) =0,
Im fi(%, + &,, ..., x, + ©,) = 0 inside the vector space defined by y, = ... =y, = 0.)

Let X be a k-variety and let x € X. We say that X is quadratic at x if there exists
a quadratic cone 2C E and neighborhoods U, of x in X and U, of 0 in 2 which are
analytically isomorphic. Equivalently, X is quadratic at x if the complete local k-algebra
@ of x in X admits a presentation of the form k[[x,, ..., x,]],/3 where Kk[[x,, ..., %,]],
is the ring of formal power series in m variables, i.e. the complete local ring of k™ at 0
and J is an ideal generated by homogeneous quadratic polynomials in (x,, ..., %,).
In particular if X is quadratic at x then the tangent cone to X at x is a quadratic cone
and X is locally analytically isomorphic to its tangent cone.

Consider an arbitrary analytic germ (X, x) and let 0 = @x.m) be its complete local
k-algebra. The Zariski tangent space T, X is naturally identified with the dual of the vector
space m/m? where mC @ is the maximal ideal. Every analytic germ admits a canonical
embedding in its Zariski tangent space ([GR], p. 153, Corollary 14). Fixing an isomor-
phism m/m? = k™, we consider such an embedding X Ck™. The tangent cone % to X
at x is then the algebraic cone corresponding to the associated graded k-algebra

@ m»/mn+1'
n=0
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The defining ideal J,Ck[[x,, ..., x,]] is then a homogeneous ideal which contains
no homogeneous polynomials of degree 0 or 1. Then the ideal 32 C J, generated by
the elements of J, of degree 2 defines a quadratic cone C*® canonically associated to
the germ (X, x). We call C® the fangent quadratic cone to X at x. Let

0® — 5§2m =k[[xy, ..., %,]]/32

denote the complete local k-algebra corresponding to C*®. The following assertion is
then immediate.

Proposition. — X is quadratic at x if and only if O =~ O®.

In terms of Artin rings, the tangent quadratic cone can be described as follows.
Let A, denote the truncated polynomial ring k[¢]/(¢"*?), i.e. A, = k and A, is the ring
of dual numbers. Then the Zariski tangent space T, X can be identified with the set
Hom(@, A,). The tangent cone of X at x is the image

Image(Hom (0, k[[£]]) — Hom(d, A,))

(since it consists of elements of the Zariski tangent space T, X which are tangent to
analytic paths in X, see [Wh]) and the tangent quadratic cone C X equals the image

Image(Hom(d, A,) - Hom(@, A,))C T, X.

In practice one proceeds as follows to compute the quadratic cone associated to
an analytic germ. Consider an ideal JCk[x,, ..., x,] of functions which vanish at
the origin 0 ek” and consider the variety X defined by J. Choose a finite set of gene-
rators fi, ..., f; for J. The Zariski tangent space is defined by the differentials df;(0);
in particular, for each f; which has nonzero differential at 0 one obtains a linear func-
tional vanishing on the tangent space. The tangent quadratic cone C?® is similarly
defined (inside the Zariski tangent space) by the quadratic terms d2f(0) of functions
f € 3 such that df;(0) = 0 (although in general one may need more f than those in the

original generating set { f;, ..., /7 })-

The quadratic cone associated to a differential graded Lie algebra

3.4. Let g be a Lie algebra. A g-augmented differential graded Lie algebra is a triple
(L, d, €) where (L, d) is a differential graded Lie algebra and ¢:L% — g is a homo-
morphism of Lie algebras. A homomorphism of g-augmented differential graded Lie algebras
(L, d, ¢) — (L, d, €) is a differential graded Lie algebra homomorphism ¢ : (L, d) — (L, d)
such that eo 9 =&, If (L, d, €) is a g-augmented differential graded Lie algebra, then
the augmentation extends trivially to a differential graded Lie algebra homomorphism
e: L — g where g is given the differential graded Lie algebra structure with no nonzero
elements of positive degree. The augmentation ideal L' = Ker(e: L — @) is then an ideal
in (L, d) and thus also a differential graded Lie algebra.

We now define two g-augmented differential graded Lie algebras (L, d, ¢)
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and (L, d, &) to be quasi-isomorphic if there exists a sequence of g-augmented differential
graded Lie algebra homomorphisms

L=L,»L;«<L,»>...«<L, ,—»L,=L

such that each homomorphism induces a cohomology isomorphism. A g-augmented
differential graded Lie algebra is formal if it is quasi-isomorphic to its cohomology.

For any differential graded Lie algebra L let 2; denote the quadratic cone consisting
of all u € L1 such that [#, 4] = 0. The main abstract result relating formal differential
graded Lie algebras to quadratic cones is the following.

3.5. Theorem. — Suppose (L, d,€) is a formal g-augmented differential graded Lie
algebra. Suppose that the augmentation € : L — g is surjective and its restriction to HO(L) C Lo
ts injective. Let L' = Ker ¢ be the augmentation ideal. Then the analytic germ of the quadratic
cone g, X o/e(HO(L)) pro-represents the functor

A Iso €(L'; A).

3.6. Corollary. — Suppose that (L, d) is a formal differential graded Lie algebra with
HO(L) = 0. Then the analytic germ of 2y, pro-represents the functor

A Iso €(L; A).
Proof of 3.6. — Apply 3.5 with g = 0.

3.7. The proof of 3.5 involves a simple general construction with transformation
groupoids. Let (X, G) be a transformation groupoid and let Y be a set upon which G acts.
Then the transformation groupoid (X X Y, G), where G acts on X X Y by the diagonal
action is a new groupoid which we denote by (X,G)><Y. If ¢: (X', G') > (X, G)
is 2 morphism of transformation groupoids and Y is a G-set, then there is a corresponding
morphism of transformation groupoids

pY:(X,G)<Y - (X,G) <Y
where the G’-action on Y is induced from the G-action on Y by the homomorphism

9:G —>G.

3.8. Lemma. — If ¢: (X', G') > (X,G) s an equivalence of groupoids, then
> Y: (X, G)Y —» (X,G) ><Y s also an equivalence of groupoids.

Progf. — We show that ¢ > Y satisfies the three basic properties of an equivalence
of categories.

Surjective on isomorphism classes. — Let (x,7) e X X Y = Obj(X, G) b1 Y.
Since o, : Iso(X’, G’) - Iso(X, G) is surjective, there exists x' € X', g € G such that
g9(*’) = x. Thus g.(e><Y) (#',g7'y) = (x,») as desired.
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Full. — Suppose that g: (e(x;),9) = (p(%3),,). We show that there exists
& (%,01) — (%5,2,) with 9(g') = g. As go(x]) = ¢(x;) and
¢, : Hom(x;, #;) — Hom(o(x;), ¢(#7))
is surjective, it follows that there exists g’ € G’ with ¢(g’) = g. Since gy, = y,, it follows
that g': (x;,9) — (x3,0,) as claimed.

Faithful. — If g, g : (<, 2,) > (,7) and o(¢) = o(g)), then g = g since
¢ : Hom(x;, ;) - Hom(o(x;), ¢(#3)) is injective. This completes the proof of Lemma 3.8.

3.9. We apply this construction to the groupoid €(L; A) as follows. The augmen-
tation €: L% — g determines a group homomorphism ¢: exp(L°® m) — exp(g® m) = G%
and hence an action of exp(L°® m) on GY by left-multiplication. The construction
of 3.7 defines a new transformation groupoid %(L; A) > G%, depending naturally
on A. There is a transformation groupoid homomorphism

o:€(L'; A) - C(L; A) < G
defined by the inclusion
Obj ¢(L’'; A) - Obj ¥(L; A) x G5

o —> (0, 1)

on objects and the inclusion exp(L'®® m) < exp(L°® m) on morphisms.

Lemma. — Suppose that €:L® — g is surjective. Then
9:€(L';A) - €(L; A) < GY

is an equivalence of groupoids.

Proof. — We check that ¢ satisfies the three basic properties of an equivalence.
Surjective on isomorphism classes. — Let (o, exp X) € Obj €(L; A) < GS.
Since ¢ is surjective, there exists X € L'® m with ¢(X) = X. Then
exp(X) : o(exp(— X).0) - (o, exp X)

as desired.

Full. — Let «,, 0, € Obj ¥(L’; A). Suppose that A e L°® m defines a mor-
phism exp(}) : ¢(w;) = @(w,). Since exp(A).(w;, 1) = (w,, 1) it follows that ¢(A) = 0,
i.e. A € (L") Thus exp(2) defines a morphism w; — w, in €(L’; A) which maps under ¢
to exp(A) : ¢(w,) — @(w,) as claimed.

Faithful. — That ¢ maps morphisms injectively is immediate from the definition.
The proof of 3.9 is complete.
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3.10. Lemma. — Suppose that (L, d, €) is a g-augmented differential graded Lie algebra
with d =0 and that €: L% — g is injective. Then the analytic germ of 2 X g/e(L%) pro-
represents the functor

A Iso(#(L; A) > G2).

Proof. — The analytic germ of the vector space g/e(L° at O pro-represents the
functor
exp(g ® m)
exp(e(Lo) ® m)
Since exp(L°® m) acts freely on G by left-multiplication it follows that there is a
natural isomorphism between the sets

Obj €(L; A) X exp(g® m)
. 0) —
Iso(€(L; A) =2 GY) exp(L°® m)

exp(g ® m)
exp(e(L) ® m)’
Now Obj €(L; A) ={uecl'®m|[u,u] =0} is the set of A-points of 2, over the
origin 0 € L' ® m and therefore the analytic germ of 2, at 0 pro-represents the functor
A Obj €(L; A).

and Obj (L; A) x

Thus the analytic germ of 2; X g/e(L° pro-represents

. exp(g ® m)
A bj €(L; A . 0 L A
~ Obj €(L; A) x exp(e(L9) ® m)
and hence also
A Iso(€(L; A) > GY)

as desired.

Proof of 3.5. — Let (L, d, ) be a g-augmented differential graded Lie algebra
satisfying the hypotheses of 3.5. Since (L, d, €) is formal, there exists a quasi-isomorphism
of g-augmented differential graded Lie algebras from L to its cohomology H(L)

(3-1) L=L,->L;<~L;—>...«<L,_;—>L,=H(L)
and a corresponding sequence of groupoid homomorphisms
E(L;A) >€(L; A) <« E(Lg; A) > ... < E(L,_1;A) > €H(L); A).

By 2.4 each of these groupoid homomorphisms is an equivalence and depends naturally
on A. Since (3-1) consists of homomorphisms of g-augmented differential graded Lie
algebra homomorphisms, one can form a new sequence of groupoid homomorphisms
#(L; A) > G > €(Ly; A) 29 Gy < €(Ly; A) < Gy
- ...« E(L,_q;A) <G
- @(H(L); A) < G
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which according to Lemma 3.8 consists of equivalences. Combining this sequence with
the groupoid homomorphism ¢ we obtain by Lemma 3.9 a sequence of equivalences

BL;A) S G(L; A) <GS > ... - F(H(L); A) > G,

which induces a natural isomorphism of sets
Iso €(L'; A) <> Iso(¥(H(L); A) 0< GY).

Applying Lemma 3.10 the functor
A TIso €(L'; A)

is pro-represented by the analytic germ of the quadratic cone 2g,;, X g/e(H°(L)) at 0,
as claimed. The proof of Theorem 3.5 is complete.

4. Representations of the fundamental group

4.1. In this section we focus on the primary object of interest in this paper: the
variety of representations of a finitely generated group in an algebraic Lie group.
Let G be an algebraic group defined over k and let G = G(k) denote its group of k-points,
with its natural structure as a Lie group. Then the set Hom(I', G) of homomorphisms
I’ - G has the natural structure of the set of k-points of an algebraic variety R(T, G)
defined over k. Composition of a homomorphism I' — G with an inner automorphism
G — G defines an algebraic action of G on R(I', G). We shall denote the corresponding
transformation groupoid (Hom(T, G), G) by #(I', G). For more details concerning
the varicty R(I', G) the reader is referred to [G], [JM], [LM], [MS].

4.2. We shall be interested in the local structure of R(I', G) near a represen-
tation p,. To this end we consider ‘“ infinitesimal deformations > of p,, i.e. representations
¢ parametrized > by Spec(A) where A is a fixed Artin local k-algebra A. As always we
assume that A has unity and its residue field is isomorphic to k. Let
(4-1) k>ASk
denote the corresponding k-algebra homomorphisms. For a k-algebraic group G, there
is an associated group G(A) of A-points, for any k-algebra A. When A is a finite dimen-
sional k-algebra, then G(A) itself has the structure of the group of k-points of another
k-algebraic group G,; in particular the group G(A) = G, (k) is a Lie group which we
denote by G,.

The structure of the group G, can be understood as follows. The Lie algebra g,
of G, in easily seen to be the tensor product g ® A, where the Lie bracket is defined
by the formula

X®a, YOI =[X,Y]®ab

and tensor product with g gives a sequence of homomorphisms of Lie algebras

g g4 > g
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The kernel of the homomorphism ¢: g, — g equals g® m and one sees that g, is the
semidirect product of g with the ideal g ® m. Since A is Artinian, m¥ = o for N » 0
and g®m is a nilpotent Lie algebra.

There is a corresponding sequence of Lie groups

(4-2) G5>G,5G

whose composition is the identity map G — G. The kernel of ¢ : G, — G is the unipotent
group G = exp(g ® m). Moreover G, is the semidirect product of G with the nil-
potent normal subgroup G4 < G,.

Let R(T', G) be as above. Then its set of A-points

R(T, G) (A)

equals the set Hom(I', G,) of all homomorphisms I' - G, . (Compare [LM], § 1.) Compo-
sition with the homomorphism ¢ : G, — G defines a map ¢, : Hom(T', G,) - Hom(T, G)
which is equivariant with respect to the actions by inner automorphisms via the homo-
morphism ¢ : G, — G. The pair (g,, ¢) thus defines a functor between the corresponding
groupoids

2T, G,) - Z(T, G).

Let p, € Hom(I', G) and A an Artin local k-algebra. We define a transformation
groupoid #%,(p,) which captures the infinitesimal deformations of p,. The objects
of Z,(p,) will be p € Hom(I', G,) such that ¢, p = p,; clearly the group G = exp(g® m)
preserves Obj %, (p,). We define #,(p,) to be the corresponding groupoid.

Applying 3.1 to the analytic local k-algebra of R(I', G) at p, we obtain the fol-
lowing:

4.3. Theorem. — Let (X, x) be a germ of an analytic variety. Then (X, x) pro-represents
the functor
A Obj Z,(pe) ={p € Hom(T, G,) | 9.(p) = po }

if and only if the analytic germ of R(T, G) at p, is analytically equivalent to (X, x).

4.4. We shall describe the Zariski tangent space and the tangent quadratic cone
to R(I, G). Let A, denote the truncated polynomial ring k[¢]/(¢"*?) so that A, =k
and A, equals the ring of dual numbers. For ¢ > j, let ¢} : A, > A, denote the quotient
projection. If V is an k-variety we denote the corresponding map of A-points by
¢;: V(A,) > V(A)). Let p: I' > G be a homomorphism. Then the Zariski tangent
space at p, equals the set of Aj-points of R(T', G), which map under g} to p,, i.e. the
fiber over p, € Hom(T, G) of the map ¢;: Hom(T, G,) - Hom(T, G,). For any
Artin local k-algebra A, let mC A denote its maximal ideal; then we have a semidirect
product decomposition of the group G, = G(A) of A-points of G as

G, = exp(g®m).G.
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Let A = A, with maximal ideal m. If p e Hom(T', G,) satisfies go p = p,, then
we shall write (uniquely)

p(y) = exp(X(¥)) - po(¥)
where X : I' > g® m is given by
X(y) = uly) ®¢

where u € ZY(T, g,,,,) is a l-cocycle. (The condition that p is a homomorphism o
groups translates into the cocycle condition on #:I' — g

du(a, B) = u(«x) — u(af) + Ad po(a) 4(B) =0

for any «,f €I'.) In this way the Zariski tangent space T, R(T, G) C R(T, G) (A4,)
is identified as the vector space Z(T', g,4,,). (Compare Lubotzky-Magid [LM, Pro-
position 2.2].)

In a similar way we determine the tangent quadratic cone to R(T', G) at p,. Let
A = A, with maximal ideal m. If X eg®m, we write X =X,®¢ 4 X,®2. We
have the Campbell-Hausdorff formula for the group exp(g® m):

log(exp XexpY) =X +Y + -;— X, Y]
1
— (X, 4+ Y)®t+ (x2 + Y.+ [XI,YI])®t2

valid for X, Y € g® m. Suppose that p is an A-point of R(I', G) which maps to p,.
Writing

p(y) = exp(us(y) ® £ + uy(y) ® #%) . po(Y)
the condition that p is a homomorphism translates into two conditions:
(4-3) du, =0

1

(4-4) Oty = — 9 (21, u]

where the bracket pairing

[ 1:2ZXT, gaap) X ZHT, 8aap,) > Z3(T Gaas)
is defined by

[4, 9] (@, B) = [u(x), Ad po() 0(B)]-

Condition (4-3) asserts that ¢;(X) = u,®¢ corresponds to a cocycle u, € Z(T', g,4,,)
and condition (4-4) asserts that the cohomology class of the bracket square [u;, u;]
is zero in H%(T', g,4,.). Thus we obtain the following:

Proposition. — The tangent quadratic cone to R(T, G) at o, equals the set 2 of all
u € ZY(T, g,uq,,) Such that [u, u] is zero in H*T, g,q,). In particular R(T, G) is quadratic
at p, if and only if the analytic germ of R(T', G) at p, is equivalent to the analytic germ of 2 at 0.
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4.5. We shall recast the deformation theory of homomorphisms in the context of
differential graded Lie algebras by interpreting a representation I' - G geometrically
as the holonomy of a flat connection on a principal G-bundle over a manifold M with
fundamental group I'. We realize I' explicitly as the group of covering transformations
of a fixed universal covering space M — M. Let p: ' G be a representation. Then
one may form a (right) principal G-bundle over M as follows. Consider the trivial
principal G-bundle M X G over M with G acting by right multiplications on the fibers
of M X G - M. Then

(4-5) Y: (%8 P (Y% e(y) &)

defines an action of I' on M x G over M by principal bundle automorphisms. Since I
acts properly discontinuously and freely on M the action defined by (4-5) is also properly
discontinuous and free; we denote the quotient (M x G)/T' by P,. Then P, is the total
space of a principal G-bundle over M associated to p.

Proposition. — Let P(M; G) denote the set of isomorphism classes of principal G-bundles
over M and let Hom(TI', G) be the set of homomorphisms I' — G given the classical topology as
a k-algebraic set. Then the map

& : Hom(T, G) - P(M; G)

which associates to p € Hom(T', G) the isomorphism class of P, is continuous, where P(M; G)
1s given the discrete topology.

Remark. — This map is not continuous in the Zariski topology, however. In [G2]
itis shown that if M is a closed surface with x(M) < 0 and G = SL(2, R), then Hom(T', G)
is connected in the Zariski topology although many different isomorphism classes of
principal G-bundles may arise.

Proof. — Let p, € Hom(T', G). Since Hom(T', G) is a real algebraic set, it is
locally contractible. Choose a contractible neighborhood U of p, in Hom(I', G) and form
a principal G-bundle Py over U X M as follows. Let Py be the quotientof U X M X G
by the action of I' defined by

Y (e % &) = (o, Y%, p(¥) &)-

The projection U X M x G - U x M defines a principal bundle =: Py —-U x M
such that the pullback t; Py equals P, where 1,: M — U X M denotes the inclusion
x> (p, x). Since U is contractible the covering homotopy property ([St, p. 53]) implies
that P, ~ P, for any p € U. It follows that & is locally constant, i.e. continuous, hence
the Proposition.

4.6. In § 5.9 homomorphisms I' - G will be related to flat connections on P via
the holonomy correspondence, which is inverse to the construction in 4.5. Proposition 4.4
implies that the local structure of R(I', G) near p, can be understood in terms of flat
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connections on a fixed principal bundle P. Strictly speaking, however, we do not need 4.5
at all (since we never explicitly use the classical topology on Hom(T', G)). In its place
we may use the ¢ infinitesimal analogue >> which is based on the following elementary
fact:

Lemma. — For every Artin local k-algebra A, the maps i, : P(M; G) - P(M; G,) and
q.: P(M; G,) - P(M; G) induced by the group homomorphisms i: G —~ G, and ¢: G, -G
are isomorphisms of sets.

Proof. — Since Coker ¢ = Ker ¢ = GY is nilpotent and hence contractible, the

homomorphisms G 5 G,>G are homotopy equivalences; the result follows by a
standard argument [St, § 12.6-7].

5. Connections on principal bundles

5.1. In this section we summarize the basic facts we need concerning connections,
bundle automorphisms, curvature and holonomy. We shall mainly follow Kobayashi-
Nomizu [KN] for notational conventions, etc. The reader is also referred to Atiyah-
Bott [AB], Greub-Halperin-Vanstone [GHV] and Chern [Ch] although the reader is
warned that there are several different conventions which are commonly used. If M is a
smooth manifold, then the graded algebra of all exterior differential forms on M will
be denoted Q*(M). If f: M — V is a smooth map where V is a vector space, we shall
identify the derivative of f as a V-valued 1-form on M, i.e. a linear map TM — V using
the translations in V to identify each tangent space T,V with V itself.

Now let G be a (nonabelian) Lie group. The Lie algebra g of G consists of the
left-invariant vector fields on G. If M is a smooth manifold and f: M — G is a smooth
map, we shall use the following (nonstandard) notation to denote its derivative. For each
x € M and £ € T,(M) the derivative df(§) € T,,, G extends to a unique left-invariant
vector field, which we denote Zf(x) (£). As such 2f is a linear map TM — g which we
regard as a g-valued l-form on M, i.e. an element of Q}(M) ® g.

Suppose that G = GL(n; k) and let f: M — G be a smooth function. We may
conveniently confuse f with its composition with the inclusion of GL(n; k) in the vector
space M, (k) of all » X » matrices with entries from k. For each x € M, the derivative
df(x) € Q}(M) ® M, (k) and Zf is given by matrix multiplication

Df (%) = f(x)7" df(x).

Thus the notation 9f = f~!df is commonly in use for matrix groups, but our present
notation is chosen to avoid reference to a specific linear embedding.

Let M denote a connected smooth manifold and =:P —-M a fixed principal
G-bundle over M. We shall let G act on P on the right; the action of g € G will be denoted
R,:p p.g. The infinitesimal generators of this right action are the fundamental vector
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Jfields on P. If p € P, then we denote by o, : g - T,(P) the map which associates to an
element X € g the value of the corresponding fundamental vector field o(X) at p, i.e.

d
6,(X) = 7 p.exp(tX).
=0

1
If p e P there is an exact sequence of vector spaces

0—> g2 T, (P) = T,,, M—> 0

(p)
which defines a trivialization of the vertical subbundle

Kerdrn: TP - =* TM

as a G-invariant subbundle of TP with fiber g.

5.2. We shall let ad P denote the vector bundle over M with fiber g associated
to the principal bundle P, i.e. ad P = P X4 g where G acts on g by the adjoint repre-
sentation. That is, the fiber of ad P over x € M equals the space of all {: 7 (x) > g
satisfying the identity

EoR,=Ad(g™!) o0&

It is easy to see that if p € n~'(x) then the correspondence (£, p) - £(p) defines a trivia-
lization =n* ad P — g of the pullback =* ad P over P. Thus the vertical subbundle of TP
is the pullback of the g-bundle associated to P.

There is a natural graded Lie algebra of exterior differential forms on M which
take values in the vector bundle ad P. We shall describe this algebra in terms of the
principal bundle P thereby avoiding all reference to local coordinates. As in § 1.1 the
space Q*(P) ® g of g-valued exterior differential forms on P is a graded Lie algebra.
Let © € QYP) ® g be a g-valued exterior differential form on P. We shall say that o
is horizontal is and only if for each X e g, the interior product

box) @ = 0

ie. (&, ...,&) =0 whenever one of &,, ..., &, is vertical. We shall say that  is
equivariant if and only if

(5-1) R o = Ad(g™) o 0.

We shall thus define an ad P-valued exterior ¢g-form on M to be a g-valued exterior ¢g-form
on P which is both horizontal and equivariant. (Compare [KN, p. 75].) We denote the
space of such exterior forms by Q%(M; ad P); clearly both equivariance and horizontality
are preserved under the bracket operation, whence Q*(M; ad P) is a graded Lie sub-
algebra of Q*(P)®g. (Although the exterior differential d: QYP)®g - Q! (P)® g
preserves the equivariant forms, it will not preserve horizontality. Thus one will need
a flat connection in P to make Q'(M; Ad P) into a differential graded Lie algebra.)
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5.3. A gauge transformation of P will be a bundle automorphism F:P — P which
covers the identity I, : M — M. That is, for each g €G, p € P,

(5-2) F(p.8) =F(p).&

and mwo F = = Thus there exists a map f: P — G such that
(5-3) F(p) = p.f(0)-

Condition (5-2) implies that f satisfies

(5-4) Sflb-8) =g Sh) &

from which it follows that the derivative 2f € Q!'(P) ® g satisfies
R; 2f = Ad(g™") o 2f

i.e. is an equivariant g-valued l-form on P. In general, however, Zf is not horizontal:
its interior product on a fundamental vector field is given by the formula

Df 0 0,(X) = X — Ad(f($)77) (X)
which is easily established by taking the derivative of (5-4) with g = exp(¢X).

5.4. We wish to compute the derivative of the gauge transformation F: P — P
in terms of the equivariant map f: P — G. To this end we let R: P X G — P denote
the action of G on P and rewrite (5-2) as F = Ro (I, X f). Then the differential
of F:P —»P at p € P is the composition of the linear maps

194f aRy(p)
T, P —— T,(P) ® Ty(P) — Ty (P)-
Now the differential of R: P X G — P at (p, f(p)) equals the sum of the differential
dR,,, : T (P) - Tg,,(P) and the linear map T,,(G) - Tg,,(P) which associates to
a tangent vector § € T, (G) the vector oy, (X) where the left-invariant vector field X
equals & at f(p). It follows that the differential of F : P — P is given by

(dF)p = dR.f(p) + Opp © 9f.

5.5. A connection on P is a g-valued l-form o € Q(P) ® g on P satisfying the ver-
tical condition

(5-5) o(6(X)) =X

for each X € g and the equivariance condition (5-1). It is easy to show that this notion
of a connection is equivalent to any of the other standard definitions of a connection,
see e.g. Atiyah-Bott [AB, p. 547]. We denote the space of all connections on P by A(P).

It is easy to see from the above definition that the space of connections A(P) is
an affine space with underlying vector space of translations Q!(M; ad P): the difference
between two connections is a horizontal equivariant g-valued 1-form on P, and hence
an element of Q!(M; ad P); adding to a connection a horizontal equivariant g-valued
1-form on P gives an equivariant g-valued 1-form on P which satisfies the vertical condi-
tion and hence is a connection.
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We shall need the covariant differential operator d,, associated with a connection o,
which is a derivation of Q*(M; ad P) having degree 1. As observed above, the exterior
derivative is a derivation of Q*(P) ® g which does not preserve horizontal forms: indeed
it is easy to see that if n € Q*(P) ® g is an equivariant horizontal form and X € g then

oy B = Lox)(n) = — ad(X) o .
Similarly the vertical condition (5-5) implies that the derivation ad o of Q*(P)®g
satisfies

to [0, 1] = ad(X) o7

whence the derivation d + ad o of Q'(P) ® g preserves the subspace of horizontal
forms. Since both d and ad @ preserve equivariant forms, d + ad  preserves equiva-
riant forms and therefore defines a derivation d,: Q%M; ad P) - Q?**(M; ad P) and

hence a connection on the vector bundle ad P. (Compare Greub-Halperin-Vanstone
[GHV, Vol. II, 6.13].)

5.6. Now we shall compute the action of gauge transformations on connections.
Clearly the pullback of a connection by a gauge transformation is a connection. To this
end, fix a connection » € A(P); then an arbitrary connection on P can be uniquely
written as o -+ 1 where n € Q1(M; ad P). We shall show that the action of a gauge
transformation F: P —P on A(P) is given by the formula

(5-6) Fo +7) =0+ Ad(f7") on + ((Ad(f7)) — 1) 0 0 + Zf).
Let p € P. Denoting the value of a tensor field » at p by w, we have the following:
(F" @), = wp, o (dF),
= (Adf($) 7" o @, 0 (dR;))7Y) o ((dRy,) + opy 0 Df)
— AdS(p) o { 0, + 0, 00,0 Adf(p) o D)
(since dR, 06 = oo Ad(g™?))
= Adf(p)™ o w, + Adf(p)™ 0 @, 0 0 0 AdS(p) 0 Bf
= Adf(p)™ 0 0, + (2F),-
Applying this calculation to the connection @ -+ % and subtracting off ® we obtain
the following:
(F(@ + 1), = @, + Adf(9) " o, + (AdF(2) ™" — D) 0, + ).

Thus the group of gauge transformations acts affinely on the space of connections; the
linear part of the action is given by

N, P> AdS(H) " o,

and the translational part is equal to
(Adf(A)™ —T) o, + 2.

10
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5.7. An infinitesimal gauge transformation is a vector field on P which infinitesimally
generates a one-parameter group of gauge transformations. Such a one-parameter
group F,: P — P is given by maps f, : P — G of the form f,(p) = exp — #A(p) where
A: P — g is equivariant. Thus we identify infinitesimal gauge transformations with the
Lie algebra Q°M; ad P) of sections of ad P.

We now apply (5-6) to such a one-parameter group of gauge transformations and
differentiate in order to see the action of a infinitesimal gauge transformation on A(P):

F:("‘) + y))p = [)\s 7]] —d\ — [&), )‘]
= —[7,2] —4d,(3)
= — (d, +adn) ().

Thus an infinitesimal gauge transformation A € Q°(M; ad P) determines an affine vector
field p(A) on A(P) whose value at the connection o + m € A(P) equals

— (d, +adn) (A) e Q(M;ad P) = T, , ,(A(P)).

Zt t=0

It follows that the action of the one-parameter group F, corresponding to exp(— ¢A)
on the space of connections is given by

— exp(tad )

I
(5-7) Fi(o + 1) = o + Ad exp(fA) o m + N (d, ).

5.8. Let v € A(P) be a connection. The g-valued exterior 2-form on P defined by
K(w) = do + —;— [, @]

is clearly equivariant and because of the vertical condition (5-5) the Maurer-Cartan
equations imply that K(w) is horizontal. Thus K(w), the curvature of , is an ad P-valued
exterior 2-form on M. One checks that the derivation d + ad o of Q*(P) ® g satisfies
(d + ad @) o (d + ad @) = 0 if and only if ad K(w) = 0. The connection  is said to
be flat if and only if K(w) = 0; in that case (Q*(M; ad P), d,) is a differential graded
Lie algebra.

We denote the space of all flat connections on P by F(P). If P is a principal G-bundle
and o € F(P), we refer to the pair (P, w) as a flat principal G-bundle. If o is a fixed flat
connection, then an arbitrary connection w + v € A(P) is flat precisely when

Q) = dyn) + 5 [1, ] = K(o +7) =0.

As in § 1.3, the space F(P) is invariant under the affine action of the group G(P) of
gauge transformations of P.

5.9. Choose a base-point x € M. Suppose that @ is a connection in P. For any
smooth path o : [0, 1] - M starting at ¢(0) = x and ending at o(1) =y e M, there is
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a parallel transport mapping T,:n"!(x) ->=~?(y) defined as follows. (Compare
[KN, § II.3].) If p en~'(x), there exists a unique path 5,:[0, 1] - P such that
%06, =0, 6,(0) =p and G, @ = 0. Define T,(p) =5,(1). If w is a flat connection,
then T, depends only on the relative homotopy class of 6. Parallel transport has the
following basic properties:

T, =1 when o is the constant path x,

Ta(p-8) = To(0) -8
T.,.c =T.oT, where v is a path from y to z

and 7 * ¢ denotes the composite path from x to 2.

Suppose that w € F(P) is a flat connection on P. Let y:[0,1] - M be a loop
in M based at x. Then the parallel transport operator T, :n~(x) - n~(x) depends
only on the homotopy class of y in the fundamental group I' = =;(M, %). Thus there
exists p(y) € G such that T (p) = p.p(y); it is easily verified that p: ' > G is a homo-
morphism of groups, the holonomy representation of the flat connection « at p. We shall
write p = hol (w), whereby there results a map

hol, : F(P) - Hom(T, G).

This map is equivariant with respect to certain natural group actions. Namely,
the group G(P) of gauge transformations of P has a homomorphism ¢,: G(P) - G
defined by

F(p) = p-(=,(F))

and G acts on Hom(I', G) by composition with inner automorphisms of G. One can
easily see that the holonomy map hol, is equivariant respecting ¢,, i.e. for each F € G(P)
the diagram

F(P) =% Hom(T, G)
(5-8) Fl le,(m
F(P) —% Hom(T, G)

commutes.

5.10. We define a groupoid % (M, G) as follows. For each isomorphism class of
principal G-bundle over M choose a representative principal G-bundle n:P - M
over M and a base-point p € n~!(x). We shall let #(M, G) be the disjoint union, over
the set P(M; G) of isomorphism classes of principal G-bundles, of the groupoids & (P)
arising from the action of the group G(P) of gauge transformations on the set
of flat connections F(P) = Obj #(P). It follows from (5-8) that the disjoint union
over the set P(M;G) of the (hol,¢):F(P) > Z(I',G) defines a functor
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hol : #(M; G) - Z(I', G) depending on the choices (P, p). The basic results concer-
ning this functor are the following:

Theorem. — The functor hol : F(M; G) — %(T', G) is an equivalence of groupoids.
In particular for any principal G-bundle P over M the holonomy correspondence hol, defines a
bijection between gauge equivalence classes of flat connections on P and conjugacy classes of repre-
sentations of the fundamental group which induce P.

Proof. — 1t suffices to show that every representation p € Hom(I', G) arises as
the holonomy of a flat connection on some principal bundle P, and for two flat principal
bundles (P, ,) and (P,, w,) the set of bundle isomorphisms F: (P, w;) — (P,, w,)
is mapped bijectively under ¢, to the set of elements g € G conjugating hol (w,) to
hol (w,).

Surjective on isomorphism classes. — Let p € Hom(T', G); we shall construct
a flat connection ®, on the principal bundle P, constructed in 4.5. Let M, denote
the set of relative homotopy classes of paths o: [0, 1] -~ M with ¢(0) = x; the map
1'\7100 — M defined by o - o(1) is a universal covering space of M. If y is a loop in M
based at x, then the corresponding covering transformation v : M > M is given by
the composition of paths 6> o * y~'. Let II: M x G - G denote projection. Then
& = (1) defines a flat connection on the trivial principal G-bundle M x G over M,
which is invariant under the action of G on M x G by left multiplication. It follows
that the '-action defined by (4-5) preserves the connection & and thus there is an induced
flat connection w, on the principal G-bundle P, defined in 4.5. Since parallel transport
of p = (x,g) e M x G with respect to & along a path ¢ in M with 6(0) = x is the
path ¢ (o(t), g) it follows that hol (w,) = p as desired.

Full. — For ¢ = 1, 2 let (P;, ;) be flat principal G-bundles over M. Let p; € P,
be base-points covering the base-point x € M. Let p; = hol, (»;) € Hom(T, G). We
must show that if p, = g,.p, then there exists an isomorphism F : P, — P, of principal
bundles such that F* 0, = o, and F(p,).g, = p,.

To construct such a bundle isomorphism we proceed as follows. For any path ¢
from x to y let T : #=(x) — =~ (») be the parallel transport operator associated with ;.
The map y,: M, X G — P, defined by

w(o, &) = Ta(p) ¢
expresses P, as a quotient of M, X G by the action of I' defined by
Y:(o*v,8) b (o 0(y) 8-
Indeed, p,(o, g) = (o', g') if and only if there exists a loop y based at x such that

¢’ =cx*y and g = p;(y) & We define a map F:P; — P, covering the identity map
M - M by the formula

(5-9) F(ui(o, 8)) = 1a(o, £ 8)-



THE DEFORMATION THEORY OF REPRESENTATIONS OF FUNDAMENTAL GROUPS 77

To show that F is well-defined, it suffices to show that if p,(o, g) = p,(o’, g') then
te(0, & &) = (0, & &) So suppose that ¢’ ~ o *y and g = py(y) &'- Then

t2(0; g0 &) = To(pa) 8o e2(Y) &' = T5(b2) - paly) &0 &'
=T5.4(t2) 808 = talo * ¥, 20 &)
= a(c’, £ &')
and we see that F is a well-defined map P, —P,.
We now check that F is a bundle isomorphism, i.e. that it satisfies (5-2). Let

g €G and let p € P be arbitrary; there exists a path ¢ from x to m,(p,) and & € G such
that p = p,(o, £). Now
F(p.8) = F(pa(o, hg)) = pa(o, &0 hg)
= ta(0, & h).2 = F(p).&
and F is an isomorphism of principal bundles. Clearly F(p;) = p,.g,-.

It remains to check that F* v, = ;. Since the field Ker &, C TP of horizontal
subspaces defining the connection , is determined by the parallel transport operators T*,
it suffices to show that F maps T* to T? i.e. for any path = starting at an arbitrary point
9 €M that

FoT:=T:.F.
Let p en!(y) and write p = p,(0y, g) as above. Then
FoTi(p) =FoT(T5(p1).8) = Fop(r*o,g)

= wa(r* 0,808) = Tz pa(0, 8o &) = Tio F(p)
and the result follows.

Faithful. — Suppose that g;, g, € Hom(w,, »,) are gauge transformations satisfying
€,(81) = €,(&)-

Then g ! o g, is an automorphism ©, — «, and €,(g; ! o g,) = 1. By a standard argument
(e.g. [GM1, Lemma 1.2]) this implies that g;! o g, is parallel with respect to ®, and
since M is connected g, = g,.

This concludes the proof of Theorem 5. 10.

5.11. Since our main results concern the space of homomorphisms Hom(T', G)
and not equivalence classes, we do not consider the groupoid &#(M; G) but rather a
small modification of it. Namely let #'(M; G) denote the groupoid with the same set
of objects as #(M; G) but whose morphisms are gauge transformations in the kernel
of e,: G(P) - G. Let Z'(T", G) be the transformation groupoid (Hom(T, G), 1) (only
the identity morphisms). Proposition 5.10 immediately implies the following:

Corollary. — The functor
hol : #(M; G) - #%(T, G)
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induces an equivalence of groupoids
hol : #'(M; G) - %'(T, G).

In other words, hol induces an isomorphism of sets
Iso #'(M; G) - Hom(T, G).

5.12. For later use we record the following simple fact:
Lemma. — The map <, : Q°(M; ad P) — g is surjective.

Proof. — Let X e€g. Choose a smooth function ¢ : M — R such that ¢(x) =1
and ¢ = 0 outside a coordinate neighborhood of x € M.. Let ¢’ € P be an arbitrary point;
there exists a path ¢ from x to (') in M and g € G such that p’ = Ty (p).g. Then

Ap') = d(n(p")) Ad g7(X)
defines an element A € Q°(M; ad P) such that ¢,(A) = X. Hence the claim.

6. Infinitesimal deformations of flat connections

In this section we shall develop the theory of flat connections and their holonomy
representations ¢ parametrized ”’ by the spectrum of a fixed Artin local k-algebra A.

6.1. Let M be a smooth manifold and = : P - M a principal G-bundle over M.
Leti: G -G, be asin § 4 and P, = P X4 G, be the associated fiber product, i.e. the
fiber of P, over x € M equals the set of all maps £ : n~!(x) - G, such that

E(p.g) =i(g™") E(p)
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