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THE DEFORMATION THEORY OF REPRESENTATIONS
OF FUNDAMENTAL GROUPS

OF COMPACT KAHLER MANIFOLDS
by WILLIAM M. GOLDMAN and JOHN J. MILLSON*

Abstract. — Let F be the fundamental group of a compact Kahler manifold M and let G be a real algebraic
Lie group. Let 9l(r, G) denote the variety of representations V -> G. Under various conditions on p e 9?(r, G)
it is shown that there exists a neighborhood of p in 9l(r, G) which is analytically equivalent to a cone defined by
homogeneous quadratic equations. Furthermore this cone may be identified with the quadratic cone in the
space Z^r, g^dp) of Lie algebra-valued 1-cocycles on T comprising cocycles u such that the cohomology class
of the cup/Lie product square [u, u] is zero in H^F, Q^ p). We prove that 9l(r, G) is quadratic at p if either (i) G is
compact, (ii) p is the monodromy of a variation of Hodge structure over M, or (iii) G is the group of automorphisms
of a Hermitian symmetric space X and the associated flat X-bundle over M possesses a holomorphic section.
Examples are given where singularities of 9?(r, G) are not quadratic, and are quadratic but not reduced. These
results can be applied to construct deformations of discrete subgroups of Lie groups.

The purpose of this paper is to investigate the local structure of the space o
representations of a discrete group into a Lie group. If F is a finitely generated group
and G is a linear algebraic Lie group the set Hom(r, G) of homomorphisms F -> G
has the natural structure of an affine algebraic variety SR(r, G), whose algebraic and
geometric properties reflect the structure of F. In this paper we study one large class
of groups—fundamental groups of compact Kahler manifolds—and deduce a general
local property of their varieties of representations near representations satisfying fairly
general conditions.

Let V be an algebraic variety and x e V be a point. We say that V is quadratic at x
if there exists a neighborhood U of A: in V and an analytic embedding of U into
an affine space such that the image of U is a cone defined by a system of finitely many
homogeneous quadratic equations. In particular the tangent cone to V at x will be defined
by a system of homogeneous quadratic equations in the Zariski tangent space of V
at x and V will be locally analytically equivalent to this quadratic cone.

Theorem 1. — Let F be the fundamental group of a compact Kahler manifold and G a real
algebraic Lie group. Let p e Hom(F, G) be a representation such that its image p(F) lies in a
compact subgroup of G. Then 91 (F, G) is quadratic at p.

C") The first author was supported in part by National Science Foundation grant DMS-86-13576 and an
Alfred P. Sloan Foundation Fellowship; the second by National Science Foundation grant DMS-85-01742.
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Suppose that { H^0, Q,, a } is a polarized Hodge structure of weight n (see §8.1)5
that G is the group of real points of the isometry group of Q^ and X = G/V is the
classifying space for polarized Hodge structures of the above type (see Griffiths [Gr, p. 15]).
Suppose further M is a complex manifold with fundamental group F. A representation
p : r -> G determines a flat principal G-bundle Pp over M and an associated X-bundle
Pp XQ X. A horizontal holomorphic V'-reduction of Pp is a holomorphic section of Pp XQ X
whose differential carries the holomorphic tangent bundle of M into the horizontal
subbundle T\(X) defined in [Gr, p. 20].

Theorem 2. — Let M be a compact Kahler manifold with fundamental group F and X = G/V
a classifying space for polarized real Hodge structures. Suppose that p : F -> G is a representation
such that the associated principal bundle over M admits a horizontal holomorphic ^-reduction.
Then 9i(F, G) is quadratic at p.

Let TT : E -» M be a holomorphic family of smooth polarized projective varieties
parametrized by M; then the period mapping which attaches to x e M the polarized
Hodge structure on H^TT"^)) is a horizontal holomorphic V-reduction of the principal
bundle associated to the monodromy representation. Thus we obtain the following:

Corollary. — Suppose p : F -> G is the monodromy of a variation of Hodge structure over M.
Then 91 (F, G) is quadratic at p.

The idea behind the proof ot Theorem 2 can be applied to a number of other
closely related situations. The next result appears to be one of the most useful of them.

Theorem 3. — Let M. be a compact Kahler manifold with fundamental group F and
X = G/K a Hermitian symmetric space with automorphism group G. Suppose p : F -> G is
a representation such that the associated principal G-bundle over M admits a holomorphic 1^-reduction.
Then SR(r, G) is quadratic at p.

Recently C. Simpson has shown ([Si2, 5.3]) that for every reductive represen-
tation p the corresponding differential graded Lie algebra is formal, and by the tech-
niques developed here, 9t(r, G) is quadratic at p.

Perhaps the most important feature of such " quadratic singularity " theorems is
that the quadratic functions are computable algebraic topological invariants. Thus
we obtain a criterion for nonsingularity of 91 (F, G) near a representation p. The Zariski
tangent space to 9l(F, G) near p equals the space Z^F; g^dp) °^ Eilenberg-MacLane
1-cocycles of F with coefficients in the r-module g^p (given the action defined by the
composition of p : F -> G with Ad : G-> Aut(g)). The quadratic cone is defined
by the cup-product where the Lie bracket [ J ^ g x g - ^ g is used as a coefficient
pairing.
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Corollary. — Suppose that M is a compact Kdhler manifold with fundamental group F,
that G is a real algebraic group, and that p : F — G is a representation satisfying the hypotheses
of Theorems Jf, 2 or 3. Suppose that the cup-product

HW gAdp) x Hi(r, 9^) -^ IP(r, 9^)

^ identically zero. Then 9?(r, G) is nonsingular at p.

When G is compact, that the tangent cones to Hom(r, G) are quadratic was
proved in Goldman-Millson [GM2]. When p is a reductive representation of the funda-
mental group of a closed surface into a reductive group, it was shown in Goldman [Gl]
that the tangent cone to Hom(r, G) is quadratic. It seems quite likely that there are
further cases under which the above conclusion is true.

The proof given here uses a categorical language suggested to us by Deligne. We
follow the philosophy that a deformation problem consists of a groupoid ^ whose objects
are the items to be classified and whose morphisms are the allowable equivalences
between them. As such the c( moduli space " is the associated set Iso %7 of isomorphism
classes of objects. Two deformation problems are regarded as equivalent if there is an
equivalence of categories between the corresponding groupoids.

Although our principal aim is the space of representations, its deformation theory
can be replaced by the equivalent deformation theory of flat connections on an associated
principal bundle P. The groupoid here consists of gauge transformations acting on flat
connections on P; the equivalence of flat connections with representations associates
to a flat connection its holonomy homomorphism. In turn, this groupoid can be replaced
by an isomorphic groupoid associated with a purely algebraic object: the differential
graded Lie algebra of ad P-valued exterior differential forms on M associated with
the flat connection on P. (Here ad P denotes the vector bundle associated with P by
the adjoint representation of G on its Lie algebra.) Thus the deformation theory of
representations of fundamental groups is equivalent to a deformation theory associated
with differential graded Lie algebras.

The importance of differential graded Lie algebras in deformation theory was
recognized early on in numerous contexts. In [NR2] Nijenhuis and Richardson detail
an abstract approach to the Gerstenhaber deformation theory of algebras, the Kodaira-
Spencer-Kuranishi deformation theory of complex manifolds, etc. If L denotes a diffe-
rential graded Lie algebra, then the objects of the associated groupoid are those elements
of L having degree 1 satisfying the deformation equation

Ac + ̂  [a, a] == 0.

If oSf is a simply connected Lie group with Lie algebra L° then there is a natural action
of oSf by affine transformations on L1 given by

exp(^) : a h> exp(t ad ̂ ) (a) + ~~ expl —)- (̂ )
ad A
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for the one-parameter subgroup of 3? corresponding to \ e L°. This affine action pre-
serves the solutions of the deformation equation in L1. A morphism from a to p in this
groupoid is an element T] e JSf with 7](a) = p.

For the local questions with which we are concerned we introduce formal infini-
tesimal parameters, given by elements of an Artin local k-algebra A. For each such ring A
we consider the set ofmorphisms from Spec (A) into the solution space of the deformation
equation. In other words we are led to consider solutions of the deformation equation
" parametrized " by Spec (A). This leads to a groupoid ^(L; A) which depends both on
the differential graded Lie algebra L and the Artin local ring A. The functor which
associates to A the groupoid ^(L; A) captures the local deformation theory associated
with L.

The basic result concerning the groupoids ^(L; A) is the following <( equivalence
theorem ", first observed and stated by Deligne, although an equivalent version can
be found in the earlier work [SS] of Schlessinger-Stasheff:

Equivalence theorem. — Let k be a field of characteristic zero and <p : L -> L be a homo-
morphism of differential graded Lie^'algebras such that the induced maps H'(<p) : H^L) -> H'(L)
are isomorphisms/or i == 0, 1 and infective for i == 2. Let A be an Artin local ^-algebra. Then
the induced functor

9,:^(L;A)->^(L;A)

is an equivalence of groupoids.

A differential graded algebra is formal if it is quasi-isomorphic to its cohomology
algebra. In that case the deformation equation simplifies considerably, since the dif-
ferential is identically zero. In particular the deformation equation is now a homo-
geneous quadratic equation whose set of solutions is a quadratic cone. The analogue of the
fundamental observation of Deligne-Griffiths-Morgan-Sullivan [DGMS] that the de Rham
algebra of a compact Kahler manifold is formal can then be applied (in various cases)
to differential graded Lie algebras of exterior differential forms taking values in certain
flat vector bundles. The key in all of these cases is the existence of a real variation of
Hodge structure on ad P ;̂ and the corresponding Hodge theory taking coefficients there.
What seems to be crucial is that the covariant exterior differential and the covariant
holomorphic (and anti-holomorphic) differential both give rise to the same harmonic
spaces and satisfy the c( principle of two types ".It follows from the Equivalence Theorem
above that the deformation space is locally equivalent to the corresponding quadratic
cone.

In [AMM], Arms, Marsden, and Moncrief prove that the inverse image of zero
under the momentum map of an affine Hamiltonian action on a symplectic affine space
is quadratic whenever the action preserves a positive complex structure. As noted
in [GM2], this result implies Theorem 1 when M has complex dimension one. In [GM3]
the result of Arms-Marsden-Moncrief is proved by applying the techniques of this paper.
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In particular we associate to an affine Hamiltonian action a differential graded Lie
algebra which under the assumptions of [AMM] we prove is formal. In another direction
one can apply the Equivalence Theorem to deformations of pairs (V, V) where V is a
holomorphic vector bundle over a Kahler manifold and V is a compatible flat connection.
One obtains then a quadratic cone of local deformations of (V, V) expressed as a family
of quadratic cones over the quadratic cone which parametrizes local deformations of
holomorphic structures on V.

This paper is organized as follows. The first section contains algebraic preliminaries
concerning graded Lie algebras. In § 2 we describe the groupoid associated to a diffe-
rential graded Lie algebra and an Artin local k-algebra A. The equivalence theorem
of Deligne-Schlessinger-Stasheff is stated. An obstruction theory is developed for
extending objects and morphisms in the groupoids ^(L; A) as the parameter ring A is
enlarged. This obstruction theory relates the structure of the groupoid to cohomology
classes in L and is used to prove the Equivalence Theorem. The third section of the
paper discusses pro-representability of functors of Artin local k-algebras by analytic
germs. The definition of the quadratic cone " tangent" to an analytic germ is given.
The fourth section discusses the algebraic structure of the variety SR(r, G). In parti-
cular the tangent space and the tangent quadratic cone to SR(r, G) at a representation
P '' r -> G are computed in terms of the cohomology of F. The relation between repre-
sentations and principal bundles is developed. In § 5, necessary background from
differential geometry is summarized; in particular connections on principal bundles
and the action of the group of gauge transformations on connections is discussed here.
In § 6, the parallel deformation theories of flat connections parametrized by spectra
of Artin local rings and representations of the fundamental group parametrized by
spectra of Artin local rings, are discussed. This provides the bridge between infinitesimal
deformations of representations and differential graded Lie algebras. By regarding
(generalized) infinitesimal deformations of flat connections on a principal G-bundle
as flat connections on principal G^-bundles (where G^ is the Lie group consisting
ofA-points ofG) we may apply the standard theory of connections to study connections
parametrized by Spec A, for an Artin local k-algebra A. The final result of this sec-
tion, Theorem 6.9, is the basic result relating the local analytic structure of the variety
of representations to a differential graded Lie algebra. Theorem 1 is proved in § 7.
We have tried to present the proof in such a way that the modifications necessary for
its generalizations are easily apparent. In § 8, Theorems 2 and 3 are proved by modifying
the proof of Theorem 1. A basic point in the proof is the fundamental observation of
Deligne that the complex of differential forms on a compact Kahler manifold with
coefficients in a real variation of Hodge structure is formal; the formality follows in
the usual way once the covariant differential is decomposed by total (base plus fiber)
bidegree. This idea is expounded and exploited in Zucker [Zl] (see also Simpson [Si]
and Corlette [G2]). Finally in § 9 various examples are given to illustrate the ideas and
demonstrate further applications of these techniques. In 9.1 it is shown that if F is a
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lattice in the Heisenberg group then 9i(r, G) generally does not have quadratic singu-
larities; indeed the techniques developed here show that in many cases the germ
of 91 (F, G) at the trivial representation is analytically equivalent to a cubic cone. In 9.2
it is shown that the quadratic singularity theorems apply to a larger class of groups than
fundamental groups of compact Kahler manifolds; in particular our techniques apply
to Bieberbach groups and finite extensions of fundamental groups of compact Kahler
manifolds arising from finite group actions on compact Kahler manifolds (fundamental
groups of compact "Kahler orbifolds 5?). In particular we describe the example of
Lubotzky-Magid [LM] where 9i(r, G) is not reduced from our point of view. In 9.4
we briefly describe how these techniques apply to the deformation theory of holo-
morphic structures on vector bundles over Kahler manifolds. In 9.5 Theorem 3 is
applied to discuss the existence of deformations of discrete groups acting on complex
hyperbolic space.
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NOTATIONAL CONVENTIONS

Throughout this paper k will denote the field of real or complex numbers. By
an Artin local k-algebra we shall mean an Artinian local k-algebra with unity such
that the residue field A/m is isomorphic to k. All manifolds will be assumed to be G°°,
connected and paracompact and all tensor fields will also be assumed to be G°°. By a
k-variety will be meant an affine scheme of finite type over k (not necessarily irre-
ducible or reduced). If a, (3 are objects in a category (e.g. groups, algebras over k),
then Horn (a, (3) will denote the collection of morphisms a -> (3 and we denote the identity
morphism a -> a by 1 .̂ If ^ is a small category, Obj ̂  will denote its set of objects and
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Iso %7 will denote its set of isomorphism classes of objects. All the tensor products we
consider here are tensor products of k-vector spaces over k. We use the notation ® for
such tensor products.

1. Differential graded Lie algebras

1.1. In this section we review basic algebraic notions concerning graded Lie
algebras and their derivations, referring to Nijenhuis-Richardson [NR2] for father
details. A graded Lie algebra over k will mean a k-vector space

-L=@V
i^Q

graded by the nonnegative integers, and a family of bilinear maps
[ , ]:V x L^L^3

satisfying (graded) skew-commutativity:
[a, P] + (~ 1)- [(3, a] = 0

and the (graded) Jacobi identity:

(- 1̂  [̂  [P, Y]] + (- 1)^ [(B, [Y, a]] + (- 1)^ [Y, [a, (3]] = 0

where a e L\ (B e L3, y e L\
For each a e L\ we shall denote the adjoint transformation by

adarL^L^
(3^[a,(B].

Then L° is a Lie algebra and the adjoint representation of L° on L1 is a linear repre-
sentation of the Lie algebra L°.

A basic example of a graded Lie algebra arises as follows. Let Q denote a Lie
algebra and ^ a graded commutative algebra, i.e. a graded vector space with associa-
tive multiplication ^ X ̂  -^^/i+J satisfying (graded) commutativity:

a(B == (- 1)" pa

where a e ̂  and (3 e s^\ Examples include exterior algebras, cohomology algebras
and the de Rham algebra of exterior differential forms on a manifold. Then ^ ® Q
is a graded Lie algebra under the operation

[a ® M, (3 ® v] = a(3 ® [̂ , y],

1.2. A derivation (of degree ^) consists of a family of linear maps d : L1 -^L44^
satisfying

rf[a,P]=[rfa,p]+(-l)^/[a,^]

where a eL1, P eL. The Jacobi identity is equivalent to the assertion that for every
a e L1, ad a is a derivation of degree i. It is easy to see that there is a graded Lie algebra
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Der(L) (where Der(L/ consists of derivations of degree I ) with operation the (graded)
commutator

[^41 =rfl0^-(- l/^O^l

where d^ is a derivation of degree i^ for z == 1, 2.
A differential graded Lie algebra is a pair (L, </) where L is a graded Lie

algebra and d: L -> L is a derivation of degree 1 such that the composition
d o d = 0. It follows that the space Z*(L) = Ker d: L1 -> L^1 of cocycles contains
the space B^(L) = Image d : L1"1 -> L/ of coboundaries. Thus the cohomology
H^(L) = Z^L^/B^L) is defined and has the structure of a graded Lie algebra. Every
graded Lie algebra becomes a differential graded Lie algebra by defining the diffe-
rential d to be identically zero.

An ideal in a differential graded Lie algebra L is a graded subspace L' C L such
that [L, L'] C L' and rf(L') C L'. One checks easily that if L' C L is an ideal, then the
quotient L/L' is naturally a differential graded Lie algebra. If 9 : L -> L is a homo-
morphism of differential graded Lie algebras, then the kernel Ker 9 is an ideal. Simi-
larly, i f D : L - > L i s a derivation then its kernel Ker D is a differential graded subalgebra.

1.3. Let L denote a differential graded Lie algebra. We shall next define an action
of the ordinary Lie algebra L° on the vector space L1 by affine transformations and
a corresponding quadratic mapping Q^: L1 -> L2 which is equivariant respecting this
affine action. Clearly the Lie algebra ad L°C Der(L)° acts linearly on the space of all
derivations. We shall be particularly interested in the affine subspace ACDer(L)1

comprising derivations of degree 1 having the form d + ad a where a e L1. We claim
that the subalgebra ad L° preserves this affine subspace, i.e. the linear vector field
on Der (L)1 determined by bracket with adX e ad L°C Der(L)° for X eL° is tangent
to A. Let a e L1 and (3 e L. Then

[ad X, d + ad a] ((B) = [ad X, ad a] (|B) + [ad X, d] ((3)
= ad[X, a] (p) + [X, ̂ ] - d[\ [3]
= ad[X, a] ((3) - ad(rfX) ((B)
= ad([X, a] - d->} (?)

so that the linear vector field on Der(L)1 has value ad([X, a] —• d\) e ad L1 at d + ad a.
Since the tangent space to A equals ad L1, the claim is proved.

Moreover the correspondence which assigns to each X e L°, the affine map
p(X) : L1 -^ L1 defined by

p(X) : a }-> [X, a] — d\

defines a homomorphism p of L° into the Lie algebra of affine vector fields on L1.
(This follows from the fact that the linear part of p is a Lie algebra homomorphism
ad : L° -> End(L1) and the translational part of p is the derivation — d: L° -> L1 with
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respect to the action given by the linear part.) If oS^ is a simply-connected Lie group
with Lie algebra L°, then the corresponding affine action of the group «S? on L1 is defined
by the usual formula for one-parameter subgroups:

I — expf^ ad X)
(1-1) exp(^X) : a 1-> exp{t ad X) (a) + ————f?———- (rfX)

ad A

in terms of power series, where t e k.
Let a e L1. Then the square of the derivation d + ad a is easily seen to be the

derivation

{d + ad a) o {d + ad a) === . [d + ad a, d + ad a] = ad Q,(a) eDer(L)2

where

(1-2) Q,(a) = rfa + 1 [a, a]

defines an (inhomogeneous) quadratic map Q,: L1 ->L2. Clearly the action of L° by
affine vector fields respects this quadratic map in the sense that the directional derivative
of Q, with respect to the tangent vector p(X) (where X e L°) at a e L1 equals

(p(X)QJ(a)=(adX)(Q/a)).

For the directional derivative (p(X) QJ (a) equals

dQ^W W) == (^ + ad a) ([X, a] - d\)

= d[\ a] + [a, [X, a]] - dd\ - [a, d\\

== {[d\ a] + [X, rfa]) + j [X, [a, a]] - [rfX, a]

= [̂  rfa + ^ [a, a]] == [X, Q(a)]

as claimed. In particular the affine action ofoS? on L1 preserves the subspace QT^O) C L1.

2. The groupoid associated to a differential graded Lie algebra
and an Ardn local ring

In this section we state the basic algebraic result on differential graded Lie alge-
bras, and deformation theory. This result (Theorem 2.4) was first stated by Deligne,
although it appeared earlier in a somewhat different formulation in Schlessinger-
Stasheff [SS, Theorem 5.4]. It will be a basic tool for showing that two deformation
theories are equivalent.

2.1. We begin by reviewing the relevant language from category theory (see
Jacobson [J]) which will be needed to state the basic result.


