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HYPERBOLIC 4-MANIFOLDS AND TESSELATIONS
by NICOLAAS H. KUIPER (1)

Dedicated to Rent Thorn.

1. Introduction and survey

The remarkable discovery of complete hyperbolic manifold structures on non
trivial plane bundles over oriented closed surfaces and of Moebius structures (that is
conformally flat structures) on the corresponding non-trivial circle bundles by M. Gromov,
B. Lawson and W. Thurston in the preceding paper [GLT], can be generalized by
putting emphasis on tesselations and discrete actions of groups I\^. This makes the cons-
tructions more transparent and yields moduli, in particular rigidity a) for certain
tesselated hyperbolic d-manifolds, b) for certain tesselated Moebius d — 1-manifolds
(called tesselated CP^structures for d — 1 = 2) (see [Go]), and therefore moduli and
rigidity for discrete actions of groups I\ ̂  on the hyperbolic space W and certain
hyperbolic rf-manifolds S^ as well as on Sd~l and certain Moebius d — 1-manifolds
M^"1. The groups I\ „ are generated by involutions g : g ^ = e .

Our main interest is in dimension 4. Higher dimensions are simpler. To set the
stage we describe in § 2 the classical tesselations of H2 [Gox] by v-gons congruent to
one of them, call it P, and n ̂  v meeting at each vertex. The group I\ „ is generated
by the v involutions (half turns) about the middles of the sides of P as fixed points. We
will see that necessarily the sum of the angles of P is A == 2'^fn. Sufficient conditions
are obtained by adding symmetry conditions on P in case the greatest common
divisor gcd(v, n) ofv and n is < v. Tesselation and action are rigid if 3ind only ifgcd(v, n) == 1.
Then the tiles (v-gons) must be regular. Then also the " orbifold " H2/^ „ is rigid.

If r C I\ „ is of finite index and <c acts " freely on H2, then S2 = HP/r is a Riemann
surface tesselated by, say, Vv-gons, with I\ ̂  acting as group of symmetries which are
all orientation preserving (!). A very simple example is for n = 2v, with v odd (resp.

(1) The author acknowledges hospitality at the institute de Matematica Pura e Applicada, Rio de Janeiro,
in August-September 1987, where part of this research was done. He thanks the authors of [GLT] for their inspiration.
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n == v even). The tiling then has a map colouring with two colours and we can choose
for r C I\ „ the freely acting subgroup of index 2 of the colour preserving elements
ofr,^.

In § 3 we carry all of this over to higher dimensions, to tesselations by " v-Gons " P, n at
each <c Vertex ", of the hyperbolic space H'' (resp. S^ == H^/F) for d == 4 and 3 with
the same abstract groups I\ „ acting. There is one more necessary and sufficient condition
for tiling expressed in terms of a global invariant for P called torsion. There also are
included Moebius tesselations in

S^1 = ̂  IT and M^-1 == ̂  S4.

For d == 3 we get special CP^tesselated surfaces with injective development maps
into CP1 and Julia-curve limit sets. For dimension d == 4 we reproduce in particular
the examples of [GLT],

By comparing deformation space dimensions in table 1 we conclude ([GLT])
that limit sets ̂ C Sd~ l^ self similar embedded circles called Julia knots, are in general
not round circles and may be everywhere knotted hence nowhere tame. Any mani-
fold S4 we construct is homotopy equivalent to its polyhedral core-surface S, and if ^ is
unknotted, then S4 is a smooth 2-plane bundle over a smooth surface S2. The tesse-
lations and the actions of I\ „ are rigid if and only ifgcd(v, n) === 1. Also the Julia knot^
is then rigid with respect to the group of symmetries I\ ^ and the tiles then must be
"regular" (homogeneous).

Our main observations are summarized in Theorems 1 to 6.
With their " template method " the authors of [GLT] discover the construction

of polyhedral surfaces in H4 which in our approach appear as core-surfaces 2p. They
study in detail the case where the template is a " regular " (homogeneous) standard
v-gonal {p, ^-torus-knot in a metric unit 3-sphere S3. They calculate the non zero
normal Euler number ^1 of the plane bundle S4 when the regular torus-knot is unknotted
q = 1. In § 4 we explain this relation of our paper with [GLT], in particular in Theorem 4.
The formulas (4.2), (4.4) and (4.7) for the normal Euler number /1 survive as for-
mulas for the self intersection number of the polyhedral surface S in S4, in case S is locally
knotted.

In § 5 we use the formulas of [GLT] and obtain simple explicit examples for all
plane-bundles for which | / | > 3 | •y11, where % is the even Euler number of a closed
surface and •y1 the Euler number of a 2-plane bundle over S. See Theorem 6.

In § 6 we elaborate the case of a complete hyperbolic 4-manifold tesselated by
two regular 13-Gons, that has a locally knotted core surface S with ' y 1 = — 7, / == — 10.

2. Tesselations of H2 and of Riemann surfaces S2 ; actions of I\,»

There are two models of the hyperbolic d-space W onto the interior D^ of the
unit d — 1-sphere

qd-l _ J y c t t 4 - II y l l 2 _ Vv2 _ 1 \C H^^(l) - - t A ? e K • | | ^ | | — 2^ — 1 }^. .K
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in the euclidean space R^: H^ and H^. For d == 2 they are related by stereographic
and orthogonal projection of a lower half-sphere into the horizontal plane containing
its boundary as illustrated in fig. 1 a). In H^ (fig. 1 b)) the convex sets and the straight
lines are the same as in R^. In H^ (fig. 1 c}) the straight lines are the intersections
with those circles in R^ that meet 8^71 orthogonally. Angles (between curves) are
the same as in R^.

® ©
FIG. 1. - a) Stereographic and orthogonal projection

b) c) Orthogonal lines pq and rs

The groups of motions of W are the projective transformations of D C R^ C RP^
for H^p and they are the conformal transformations of D C R ^ C S ^ for H^. In
this case we can compactify J^ by one point to get a Moebius sphere 3d, and we can
consider the group of isometrics of H^ as a subgroup of the Moebius group of 3d.
These groups induce Moebius groups in the boundary, the d — 1-sphere and Moebius
space 3d-1 = Sffi = ̂  HP, also denoted RP1 for d - 1 = 1 and CP1 for d - 1 == 2.
The groups are then the rational transformations of RP1 and CP1. A common notation
for the group is S0(rf, 1).

By a tesselation of a locally homogeneous space in the sense of Ehresmann [Ehr]^
like a hyperbolic space or a Moebius space, we mean a covering by mutually equivalent
(isometric resp. Moebius equivalent) connected pieces with boundary, called tiles, whose
non-void interiors are disjoint. By way of introduction recall that the Euclidean plane
has a tesselation obtained from any triangle or any quadrangle by the group of isometrics
generated by half turns around the middles of the edges as fixed points!

A general tesselation T ,̂ „ of the hyperbolic plane by mutually congruent convex
v-gons with n ̂  v meeting at each vertex is obtained as follows: Start from one convex
v-gon P with vertices ^, edges [y,, z^J and angles 0^3 i mod v. Then fit a congruent
v-gon by an orientation preserving involution g?, (^°)2 = e = identity, that is a rotation
over TT, around the centre of the side [^, z^J as fixed point. If P has sides of mutually
different length then this is the only way to start a tesselation. We can fit more copies

7
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around the vertex v = v^ by analogous involutions denoted^, ̂ 3, etc. (See fig. 2 a), b}, c)).
Note that the involutions around the centres of the sides of P are respectively
(2.1)

Sl =gl, g2 =glg2gl, '• gi gs gs gs, gn • • • ?

g^ == gigs • • • gv • • • g^gr

SigSgl

= Si g3 gi

FIG. 2. — a) (v,n) = (5. 5); b) (v,n) = (4,5), x, = g, . ..,g^g^ rigid
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FIG. 2. — c) (v,n) == (4,6); d) A non-convex tile (v,n) = (5,5); gi : Short for [giY^
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Note that g^ ^ == g^. If our tesselation succeeds, then this set of involutions, or equi-
valently the set ^i, ... ,^, generate a group I\ „ of isometrics of H2, which contains
all involutions about all side centers of the tesselation.

As the Euler characteristic of a tile is /(tile) = 1, and the Gauss-curvature is
K = — 1, the theorem of Gauss-Bonnet yields:

(2.2) 27r/(tile) = jKd area + S^TT - 8,),
hence (v — 2) TT — S^ 8, = area(tile) > 0.

Therefore the angle sum A == S^ 8, is bounded between 0 and (v — 2) TC. It is obvious
(push in at one vertex) that A is an analytic function with no critical points on the
2v-dimensional manifold of convex v-gons in H2.

After v steps around the vertex v == »i, this point v has the same position with
respect to the new polygon as with respect to P. Therefore g^ ... g^ g^ is a rotation
around v, and we have more generally:

Lemma 1. — The product

(2.3) g i . ' " g 2 g i - { g . ' " g 2 g i ) \ ^0,

is a rotation in H2 around u == v^.

After n steps we must have the first selfoverlap of interiors of tiles with complete
incidence with the original tile {g^ ... g^ g-^) (P) == P, and more generally for any integer
J ^ 0:

Lemma 2. — We have

(2.4) (̂  ... g,g,) (P) == (^ ... g,g,Y (P) == P forj^ 0,

uni also

(2.5) 81 + 82 + . • • + §n = 27T, 8, = 8^ for j = i mod v.

From the geometry expressed in (2.2, 3, 4, 5) follows
(2.6) 7 z ^ v ^ 5 , or 7z>o4, or 7^7>3==v .

Let A = gcd(v, n) be the greatest common divisor of v and w and put
(2.7) v = tk, n == mk, gcd^, w) = 1.

Then, for i = TTZ> 1, j ==/ '^ 1, Lemmas 1 and 2 yield the identity

(2.8) . == (^ . . . ̂ l)" = {gn . . . 5l/ == ^

as this isometry leaves fixed v === v-^ as well as P. We conclude:

Lemma 3. — The rotation & • • • <?2 5i has order m, the rotation gn • - ' gzgi has order t.
The polygon P has rotation symmetry of order t. In particular^ it has no imposed symmetry for
f = 1, i.e. gcd(v, n) = v.
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We now distinguish various cases mainly by the value of gcd(v, n) = k.
I. The case n = v = k ̂  5, / = 1. — See fig. 2 a) for v = n = 5. Then A == 2n,

8v ' ' ' 8281 = e (2 • 4, 5 I) and there is no obstruction to continue tiling at each new
vertex and filling in the plane. The tesselations so obtained are isotopic and can be
parametrised modulo isometrics of H2, by the initial tiles modulo isometry, that is by
a family which is an open subset of a real algebraic variety of dimension 2 (v — 2). To
get this dimension, fix one vertex 0 of a tile P C H^ C R2 and a half-line with origin 0
containing a side of P, move the other vertices preserving convexity, then multiply R2

by the unique scalar which restores the condition A = 2n. The dimension of
the family ^(I\ ̂ , H2) of all discrete representations of the group I\ ^ in H2

found in this way, is obtained by substracting 2, as only the centres of the sides
count (^ ...^i ==^!):

(2.9) dim.^(I\,, H2) == 2v - 6.

Note that I\ ^ acts simply transitively on the tiles of the tesselation.
Observe also that c^(I\ ̂ , H2) has a stratification so that any two points in any

open top-dimensional stratum represent non isometric I\ ^-representations.
Next, let in general F C I\ „ be a subgroup of finite index acting freely on H2.

Then S2 = HP/F is a Riemann surface (K = — 1) tesselated by V congruent tiles P. The
family of such tesselated structures on the smooth surface S2 has dimension 2v — 4
for a given FC I\ ^, and the family of actions of I\ ^ on S2 has dimension (as for H2)

(2.9) dim (̂I\,, S) = 2v - 6.

II. The case n = m\ = mk, t == 1, m ̂  2, n > 8. Then

A = 27r/w = 27rv/%, 8 n ' " 8281=^ and g, ... g^g^

is a rotation of angle 2nlm. Given the value of A and no other condition, there is again
no obstruction to continue tiling at each new vertex and filling in the plane. The family
of tesselations so obtained has dimension 2v — 4. As the vertices such as v are defined
in terms of the generators for i = 1 (see 2.3)), the family of tesselations has the same
dimension as the family of representations, in H2 as well as in S, namely

(2.9) dim^(I\^, H2) = dim^(I\^, S) = 2v - 4.

III. The case gcd(v, n) = k = 1, I == v. See fig. 2 b) for (v, n) — (4, 5). Here
8n • • • 82 8i + e ls a rotation sending P to P, and v is the smallest for which

c?n. -••^ir^-
The fixed point of this rotation, denoted x, is the centre of P which is (up to isometry)
the unique regular v-gon with angles §1 = ... = 8^ = 8 = 27T/7Z,

A = S^i 8^ = 27r/w = 2^/Tz.
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The action is rigid:

(2.9) dim^(r^, H2) =-- dim^(I\^ S2) = 0.

The convex polygon P* with vertices x, x^==g^x, x^=g^x^ x^ = ^3 x^ ..., ̂  = A:,
see fig. 2 ^), is also regular, has centre v and can be used for a dual tesselation with
vTZ-gons at every vertex. The angles are 27r/v.

IV. The case 1 < gcd(v, n) = k < v < n. — See fig. 2 ̂  for (v, %) = (4, 6), k == 2.
Here ̂  .. . ^2 g^ 4= ^ is a rotation around x carrying P to P, and t is the smallest integer
for which (^ .. . g^g^ = e. P has rotational symmetry of order ^ A == 2^/72 = 2nl'/w.
One easily finds

(2.9) dim^(r,^, H2) = dim^(I\^ S2) = 2yfe - 2.

We summarize and complete in

Theorem 1. — Let T^ „ ̂  a tesselation of H2, or of a closed orientable surface S = H2/?,
by congruent v-gons called tiles, with angles §1, ..., 8y, ^ files meeting at each vertex^ invariant
under the group I\ „ 3 F ̂  ̂ ^rf <z^o^, ^^^ ij generated by involutions about the side centres
of one tile P. Let k == (v, 72) 6^ the gcd (?/' v a f̂ n, v == £k, n == mk. Then:

a) The total angle of a tile is

(2.5) A==8i+ ... +8,=27rv/^

v
the area of a tile is (y — 2) n —- - 27r.

72

^ V g^^? 72) = v == ^ ^TZ P ^ arbitrary except for (2.5). If gcd(v, n) == A < v
^7i P has a center of symmetry for rotations of order t == v/^. If gcd(v, n) == k == 1 ^TZ P is
unique and regular.

c ) dim^(I\^H2) dime^(I\^S)
= 2k — 6 /or 72 = v = k ̂  5,
== 2^ — 4 y^r 72 = 77ZV, 771 ^ 2, 7Z ̂  83

= 2 ^ — 2 for 1 ̂  k == gcd(v, 72) < v.

/7Z particular.
d) The action of I\̂  ^ rigid for k == gcd(v, 72) = 1.
e) Each family or isotopy class of tesselations T^ „ is connected and contains one tesselation

by regular v-gons with angles 8 = 27T/7Z.

Non-convex tiles. — We have not really used the convexity of the polygon P in our
arguments. The condition A = 27cv/7Z, together with the rotation symmetry of order /
for k == gcd(v, n) < v = M, permits one and at most one reentrant angle §1: n < 81 < 27r,
and this only if n = v ^ 5. The families JK(Y^^ H2) and ^(I\^, S2) should be enlarged
correspondingly. See fig. 2 d) for an example.
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Deformation and I\ ̂ -module dimension. — Let I\ „ denote a specific action for a
specific tesselation T^, obtained from a specific polygon P. If gcd(v, n) == v then
F^ „ = P is a fundamental domain in H2 for the action of I\ ̂ . That means it covers the
quotient space H2/^ „ completely and every interior point of F^ is met exactly
once. If gcd(v, n) == k < v = M, then P has a centre x, and ^fundamental domain we can
take the polygon F,̂  with successive vertices x.g^v^g^ ...,^. See fig. 2 b ) .
Let F^n, T^, F^, P7 be a second set of data for a tesselation in the same family.
Consider a diffeomorphism h: F^ ̂  -> F^ of fundamental domains which respects
the correspondance of vertices and sides and the identification of the isomorphic abstract
groups I\ „ and F^. Then h can be extended in a unique way to a homeomorphism
h: H2 -> H2 for which

rL=M\,A-1.
Note that h is quasi-conformal.

Vice versa, let A : H2 -> H2 be a homeomorphism. Given I\ „ we obtain an action
by homeomorphisms T\ „ = AI\ „ A~1, generated by involutory homeomorphisms hg^ h~1,
i == 1, ..., v, and with all the consequences we had for I\ „. Suppose 1̂  „ is an action
by isometrics of H2. Then F^ is called module equivalent to I\ „. Clearly A sends the
points (defined by involutions) ^, ...,^ to analogous points for F^. The "conse-
quences " are now in terms of isometrics, e.g. involutions and periodic rotations like (2.3).

Now suppose the point hg^ A~1 is very near g? for i = 1, ..., v. Then these points
form a configuration in H2 belonging to some tesselation in the family, say T^. But
by continuation by reflections in side centres we then see that all vertices of suitable
fundamental domains F^ „ and F^ „ coincide, and so do all their images under F4 „
and r^. So the actions of F^ „ and F^ coincide and the family which we denoted
by ^(I\ ,n,H2) contains with any F^ all nearby actions F^.

Let us now consider a one-parameter family of actions I\ ̂ (t) beginning with
a tesselation action for t = 0 and such that, for some value oft, the action does not belong
to a tesselation. Then there is a smallest such value ^. The tesselations and the v-gon
for 0 ̂  t < tQ would converge to a situation where at least one of the angles of the v-gon
is 8, == 0, and the action I\ ̂ {t) degenerates for t-^to. Therefore

Theorem 1 A. — Deformation components of our tesselations give full deformation components
of discrete actions of I\ „ on H2.

Example 1 (see Figure 3). For odd v = 2g + 1 ̂  5, n = 2v, there is a tesselated
surface S2 === H2/!", where FC I\ ̂  is of index 2 and consists of the colour preserving
elements of the map colouring with two colours of the tesselation in H2. The surface 22

is the double covering of S2 = H/I\ „ branched at (< the middles of the sides of P 5?

and at one more point, represented by each of the vertices of P. A fundamental domain
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is P u g^ P and the corresponding tiling is seen for v = 5 in Figure 3. The involution g^
acts on S2, it interchanges the two tiles and has v + 1 fixed points. We use this example
generalized to dimension 4 in § 5 and § 6.

FIG. 3. — Fundamental domain P U ̂ i(P) for S2, a convex 4 -̂gon for g ^ 2

3. Tesselations and actions of I\^ in H^

3.1. v-Gons as tiles. — In this section we formulate the case d == 4 in detail, but
cover the case d === 3 as well by side remarks. A convex v-Gon P C H4^ ̂  R4 is by definition
the intersection of v successive half-spaces bounded by hyperbolic 3-planes, such that
the boundary ^P is the union of v successive slices called Sides and denoted by
[^5 ^i+iL ^ mod v. The Side [y,, ^4.1] is bounded by two complete 2-planes y, and v^-^y
called Vertices. The closures of these Vertices in R4 are assumed disjoint. The interior
angle of P along ^ is 8^, and the total angle of the v-Gon is
(3.1) A = & i + ... +a,.
We want to tesselate H4 with v-Gons as tiles. For a special example we can start from
a tesselation v-gon in H2 C H4, as in § 2, figure 2, and define the v-Gon in H4 by 3-planes
orthogonal to H2 through the sides of the given v-gon. Figure 2 illustrates the relations
(the same as before) between the generators g^, g^ 5 of F^ „ which we will define now
in the higher dimensional context. Given a v-Gon P, the intersection H = ̂  P of its
closure P in R4 with S3 = ̂  H4 is called a Moebius v-Gon in S3. Its complement in S'̂
is a collar N of successive round balls (^ beads " } in S3, whose successive boundaries meet


