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INTRODUCTION

The problem of constructing an étale cohomology theory for non-Archimedean
analytic spaces has arisen from Drinfeld’s work on elliptic modules [Drl]. In his work,
Drinfeld defined (among other things) the first cohomology group H*(X, p,) as the set
of pairs (L, ¢), where L is an invertible sheaf on X, and ¢ is an isomorphism 0y = L®*,
He showed that for the one-dimensional p-adic upper half-plane Q2 this group gives
rise to a certain infinite dimensional representation of GL,(k), where % is the ground
local field. Afterwards, in [Dr2], Drinfeld constructed a certain family of equivariant
coverings of the d-dimensional p-adic upper half-plane Q3+!, and suggested that all
cuspidal representations of the group GL,_ (%) are realized in high dimensional étale
cohomology groups of this family of coverings.

Since then, as far as I know, the only attempt to construct an étale cohomology
theory for non-Archimedean analytic spaces was undertaken by O. Gabber. We under-
stand that O. Gabber has made progress in the subject, but, unfortunately, he has
written nothing on it. Besides that, in [FrPu] and [ScSt], definitions of an étale topology
on a non-Archimedean analytic space were given, and in [ScSt] the cohomology
of Q3+ is calculated for arbitrary d under the hypotheses that this cohomology satisfies
certain reasonable properties. Finally, in [Car], a conjecture, which is an explicit form
of Drinfeld’s suggestion, is proposed. The conjecture predicts the decomposition of
the representations of GL;, (%) and the Galois group of % (% is a p-adic field) on the
d-dimensional cohomology group of the equivariant system of coverings of Q?*! in
terms of the Langlands correspondence.

The purpose of this work is to develop many basic results of étale cohomology
for non-Archimedean analytic spaces. We define the étale cohomology and the étale
cohomology with compact support and calculate the cohomological dimension of an
analytic space. We prove a Comparison Theorem for Cohomology with Compact Sup-
port which states that, for a compactifiable morphism ¢ : % — % between schemes
of locally finite type over the spectrum of a k-affinoid algebra and a torsion sheaf &
on %, there is a canonical isomorphism (R%¢, #)™ 5 R?oi* F#™, ¢> 0. We also
prove a Poincaré Duality Theorem, the acyclicity of the canonical projection X X D — X,
where D is an open polydisc in the affine space, a Cohomological Purity Theorem,
the invariance of the cohomology under algebraically closed extensions of the ground
field, a Base Change Theorem for Cohomology with Compact Support and a Smooth
Base Change Theorem (all the results are proved for torsion sheaves with torsion orders
prime to the characteristics of the residue field of %). In particular, all the properties
of the ¢ abstract > cohomology theory from [ScSt] hold. Our main result is a Compa-
rison Theorem which states that, for a morphism of finite type ¢ : % — Z between
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schemes of locally finite type over £ and a constructible sheaf & on # with torsion
orders prime to the characteristics of the residue field of %, there is a canonical isomor-
phism (R%¢, &)™ 5 R?¢™ %* ¢> 0. We note that the only previous proof of the
Comparison Theorem in the classical situation over G uses Hironaka’s Theorem on
resolution of singularities. Our proof of the Comparison Theorem works over C as well
and does not use Hironaka’s Theorem. '

- OQur approach to étale cohomology is completely based on the previous work
[Ber]. In that work we introduced analytic spaces which are natural generalizations of
the complex analytic spaces and have the advantage that they allow direct application
of the geometrical intuition. One should say that although the analytic spaces from [Ber]
were considered in a more general setting than that for rigid analytic geometry (for
example, the valuation of the ground field is not assumed to be nontrivial), they don’t
give rise to all reasonable rigid spaces. And so our first purpose in this work is to extend
the category of analytic spaces from [Ber] so that the new category gives rise to all
reasonable rigid spaces, for example, to those that are associated with formal schemes
of locally finite type over the ring of integers of k.

We now give a summary of the material which follows. Let £ be a non-Archimedean
field, and let % denote its residue field. As in [Ber], we don’t assume that the valuation
of %k is nontrivial.

In § 1 we introduce a category of k-analytic spaces more general than those from
[Ber]. These analytic spaces possess nice topological properties. For example, a basis
of topology is formed by open locally compact paracompact arcwise connected sets.
One does not need to use Grothendieck topology in the definition of the spaces, but
they are naturally endowed with such a topology called the G-topology (§ 1.3). The
latter is formed by analytic domains of an analytic space. The spaces from [Ber] (they
are said to be ‘“ good *’) are exactly those in which every point has an affinoid neigh-
‘borhood. The. G-topology on an analytic space is a natural framework for working
with coherent sheaves. (If the space is good, then it is enough to work with the usual
topology as in [Ber].) In § 1.4 we show that the category of analytic spaces introduced
admits fibre products and the ground field extension functor, and we associate with
every point x of an analytic space a non-Archimedean field s#(x) so that any mor-
phism ¢:Y — X induces, for a point y €Y, a canonical isometric embedding
H(p() —>H#(y). In § 1.5 we define for a morphism ¢ : Y — X the relative interior
Int(Y/X) (thisis an open subset of Y), and we call the morphism closed if Int(Y/X) = Y.
In § 1.6 we construct a fully faithful functor from the category of Hausdorff (strictly)
analytic spaces to the category of quasiseparated rigid spaces and show that it induces
an equivalence between the category of paracompact analytic spaces and the category
of quasiseparated rigid spaces that have an admissible affinoid covering of finite type.

In § 2 we establish properties of the local ring Oy , and its residue field x(x),
where x is a point of a k-affinoid space X. (The completion of x(x) is the field #(x).)
First, we establish those properties which are mentioned without proof in [Ber], § 2.3.
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Furthermore, we prove that the ring O , is Henselian, and the canonical valuation
on k(x) extends uniquely to any algebraic extension (fields with this property are said
to be quasicomplete). The latter two facts are of crucial importance for the whole story.
The quasicompleteness of k(x) implies, for example, an equivalence between the cate-
gories of finite separable extensions of k(x) and of 5 (x) and, in particular, an isomor-
phism of their Galois groups G, > G,,,. In § 2.4 we establish properties of quasi-
complete fields (whose proofs are borrowed from [BGR] and [ZaSa]), and in § 2.5 ‘we
show that the ¢-cohomological dimension cd,(x(x)) of the field k(x) (or, equivalently,
of the field £ (x)) is a most cd,(k) + dim(X), where ¢ is a prime integer. In § 2.6 to
every scheme # of locally finite type over Z = Spec(%/), where & is an affinoid algebra,
we associate an analytic space #*® over X = .#(2/). These objects are very important,
in particular, for the proof of the Poincaré Duality Theorem. We establish some basic
facts on the correspondence % +— %**, which are necessary for this work.

In § 3 we introduce and study the classes of étale and smooth morphisms. The
first basic notion is that of a quasifinite morphism. A morphism ¢:Y — X is said to
be quasifinite if for any point y € Y there exist open neighborhoods ¥~ of y and % of ¢( y)
such that ¢ induces a finite morphism ¥~ — #. It turns out that a morphism is quasi-
finite if and only if it has discrete fibres and is closed (in the sense of § 1.5). Furthermore,
we define étale morphisms. (By definition, they belong to the class of quasifinite mor-
phisms.) For example, the canonical immersion of the closed unit disc in the affine
line is not étale because it is not a closed morphism. In § 3.4 we introduce the notion
of a germ of an analytic space and prove the very important fact that the category of
germs finite and étale over the germ (X, x) of an analytic space X at a point ¥ is equi-
valent to the category of schemes finite and étale over the field #(x). Furthermore,
in § 3.5 we study smooth morphisms. A mosphism ¢ :Y — X is said to be smooth if
locally it is a composition of an étale morphism to the affine space A% = A% X X and
the canonical projection A% — X. In particular, any smooth morphism is closed. The
latter property of smooth morphisms is natural if we want to have for them Poincaré
Duality. In § 3.6 and § 3.7 we describe the local structure of a smooth morphism. This
description is very important for the sequel and is actually an analog of the trivial
fact that locally any smooth morphism of complex analytic spaces is isomorphic to the
projection X X D — X, where D is an open polydisc in the affine space.

In § 4 we define the étale topology on a k-analytic space X (the étale site X))
and establish first basic properties of étale cohomology. In § 4.1 we verify that certain
reasonable presheaves are actually sheaves and give an interpretation of the first coho-
mology group with coefficients in a finite group. In § 4.2 we define the stalk F, of a
sheaf F at a point x € X. It is a discrete G, ,-set. It turns out that if = is the canonical
morphism of sites X, — | X |, where | X | is the site generated by the usual topology of X,
then for any abelian sheaf F on X, there is an isomorphism (R?x, F), 5 HYGy,,, F.,).
It follows that the sheaf F is flabby if and only if, for any point x € X, the fibre F, is
a flabby G,,,-module and, for any étale morphism U — X, the restriction of F to the

2
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psual topology of U is flabby. This fact reduces the verification of many properties of
the étale cohomology established in § 4 and § 5 to the verification of certain properties
of the cohomology of profinite groups and the usual cohomology with coefficients in
sheaves. As first applications of these considerations we prove that if X is good then
the étale cohomology of the sheaf induced by a coherent @g-module coincides with its
usual cohomology and that the /-cohomological dimension cd,(X) of a paracompact
k-analytic space X is at most cd,(k) + 2 dim(X). The latter fact is easily obtained
from the spectral sequence of the morphism of sites n:X, —|X|, using the
facts that the topological dimension of such a space is at most dim(X) and that
cd,(5#(x)) < cd,(k) + dim(X).

In § 4.3 we study quasi-immersions of analytic spaces. A morphism ¢:Y — X
of analytic spaces over % is said to be a quasi-immersion if it induces a homeomorphism
of Y with its image ¢(Y) in X and, for any point y € Y, the field 5#(y) is a purely
inseparable extension of 5 (¢(»)). For example, the canonical embeddings of analytic
domains in an analytic space and closed immersions are quasi-immersions. We prove
that if ¢ : Y — X is a quasi-immersion such that the set ¢(Y) has a basis of paracompact
neighborhoods, then for any abelian sheaf F on X one has HY(Y, F|y) = lim HY(%, F),
where % runs through open neighborhoods of the set ¢(Y). Furthermore we construct
a spectral sequence which relates the cohomology of a paracompact k-analytic space X
to the cohomology of closed analytic domains from a locally finite coverings by such
domains. We use it to show that the group H(X, u,) has the interpretation given to
it by Drinfeld in [Drl]. In § 4.4 we introduce and study quasiconstructible sheaves
which play the role of constructible sheaves on schemes in the sense that any abelian
torsion sheaf is a filtered inductive limit of quasiconstructible sheaves (the word ¢ cons-
tructible ”’ is reserved for a future development).

In § 5 we introduce and study the étale cohomology with compact support. All
definitions and constructions are straightforward generalizations of the corresponding
topological notions. In particular, the cohomology groups with compact support are
defined as the right derived functors of the functor of sections with compact support.
Theorem 5.3.1 gives, for an abelian sheaf F, a description of the stalks of the sheaves
R? ¢, F, where ¢ is a Hausdorff morphism of k-analytic spaces, in terms of the coho-
mology of the fibres of ¢. As an application we show that if F is a torsion sheaf, then
R?¢, F = 0 for all ¢> 2d, where d is the dimension of ¢. In § 5.4 we construct for
every separated flat quasifinite morphism ¢ : Y — X and for every abelian sheaf F on
X a trace mapping Tr,: ¢, ¢*(F) - F.

In § 6 we establish various facts on the cohomology of analytic curves. These facts
are a basis for the induction used in the proof of the main theorems from § 7. In § 6.1
we prove the Comparison Theorem for Cohomology with Compact Support for curves.
The proof of this theorem in the general case (§ 7.1) may be read immediately after
§ 6.1. In the rest of § 6 we assume that the ground field % is algebraically
closed. In § 6.2 we construct, for every smooth separated analytic curve X, a trace



ETALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 11

mapping Try : H3(X, u,) - Z/nZ, where n is prime to char(k), and we show that it
is an isomorphism if X is connected and 7 is prime to char(~). The central fact of § 6.3
(Theorem 6.3.2) states that any tame finite étale Galois covering of the one-dimensional

closed disc is trivial (an étale morphism ¢ :Y — X is said to be tame if for any point

y €Y the degree [5£(y) : #(¢(y))] is not divisible by char(z)). We deduce from this,
in particular, a Riemann Existence Theorem which states that, for an algebraic curve &
of locally finite type over %, the functor & + #** defines an equivalence between the

~

category of finite étale Galois coverings of & whose degree is prime to char(k) and the
category of similar coverings of Z**. We deduce also the Comparison Theorem for
curves (the proof of this theorem in the general case (§ 7.5) does not use the particular
case). In § 6.4 we prove that, for a one-dimensional %-affinoid space X and a positive

~

integer n which is prime to char(k), the group H%X, Z/rZ) is finite for ¢ = 0, 1 and equal
to zero for ¢ > 2. Furthermore, this group is preserved under algebraically closed
extensions of the ground field.

In § 7 we obtain our main results. In § 7.1 we prove the Comparison Theorem for
Cohomology with Compact Support. This result implies that the cohomology groups
with compact support of a scheme of locally finite type over % (recall that 2 may have
trivial valuation) can be defined as the right derived functors of the functor of sections
with compact support over the associated k-analytic space. In § 7.2 we construct a
trace mapping Tr,: R* ¢,(ps x) — (Z/nZ)x for an arbitrary separated smooth mor-
phism ¢ : Y — X of pure dimension 4 and for » prime to char(k), and we show that it
is an isomorphism if the geometric fibres of ¢ are nonempty and connected and = is

~

prime to char(k).

In the rest of § 7 all sheaves considered are torsion with torsion orders prime to

~

char(k). In § 7.3 we prove the Poincaré Duality Theorem, which is actually a central
result of this work. The main ingredients of the proof are our Theorem 3.7.2 and the
Fundamental Lemma ([SGA4], Exp. XVIII, 2.14.2) from the proof of the Poincaré
Duality Theorem for schemes. In § 7.4 we give first applications of Poincaré Duality.
In particular, we prove the acyclicity of the canonical projections X X A? -~ X and
X x D — X and the Cohomological Purity Theorem. In § 7.5 we prove the Comparison
Theorem. The proof follows closely the proof of Deligne’s  generic’ theorem 1.9
from [SGA4}], Th. finitude, and uses it. (I am indebted to D. Kazhdan for suggesting
that Deligne’s ¢ Th. finitude > could be useful for the proof of the Comparison Theorem.)
The proof is actually a formal reasoning which works over the field of complex numbers G
as well. In § 7.6 we prove that the cohomology groups HYX, F) and HYX, F) are
preserved under algebraically closed extensions of the ground field. In § 7.7 we deduce
from this and from Theorem 5.3.1 the Base Change Theorem for Cohomology with
Compact Support. It implies, in particular, a Kiinneth Formula. In § 7.8 we prove
the Smooth Base Change Theorem. The proof uses Poincaré Duality and the Base Change
Theorem for Cohomology with Compact Support.
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§ 1. Analytic spaces

1.1. Underlying topological spaces

In this subsection we introduce some structures on topological spaces that will
be used in the sequel. We also fix general topology terminology.

All compact, locally compact and paracompact spaces are assumed to be Haus-
dorff. (A Hausdorff topological space is called paracompact if any open covering of
it has a locally finite refinement.) Recall that a locally compact space is paracompact
if and only if it is a disjoint union of open and closed subspaces countable at infinity
([Bou], Ch. I, § 10, n° 12, [En], 5.1.27). Recall also that if a Hausdorff topological
space has a locally finite covering by paracompact closed subsets, then the space is para-
compact ([En], 5.1.34). A topological space is said to be locally Hausdorff if each point
of it has an open Hausdorfl neighborhood. ‘

Let X be a topological space, and let © be a collection of subsets of X. (All subsets
of X are provided with the induced topology.) For a subset YCX we set
r[Y ={Vex|V CY}. We say that 7 is dense if, for any V e 7, each point of V has a
fundamental system of neighborhoods in V consisting of sets from r[v. Furthermore,
we say that © is a quasinet on X if, for each point x € X, there exist V,, ..., V, et such
that xeV, N ... NV, and the set V, U ... UV, is a neighborhood of x.

1.1.1. Lemma. — Let ~ be a quasinet on a topological space X.

‘ (i) 4 subset U C X is open if and only if for each V € the intersection % NV is open
in V.
" (i) Suppose that t consists of compact sets. Then X is Hausdorff if and only if for any
pair U, V €< the intersection U NV is compact.

Progof. — The direct implication in both statements is trivial.

(i) Suppose that % N V is open in V for all V ex. For a point x € % we take
Vi, ..., V,et such that xeV;n... NV, and V,U ... UV, is a neighborhood
of x in X. By hypothesis, there exist open sets ¥;CX with  nV, =%, nV,.
Then the set ¥ :=%; N ... N¥, is an open neighborhood of x in X. It follows
that the set N (V, U ... UV,) is a neighborhood of x because it contains the inter-
section ¥ N (V, U ... UV, ) which is a neighborhood of x. Therefore # is open in X.

© (ii) Suppose that U N'V are compact for all pairs U, V e . Since
X 1:={UXxV]|U,Ver}
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is a quasinet on X X X, then, by (1), it suffices to verify that the intersection of the
diagonal with any U X V for U,V e is closed in U x V. But this intersection is
homeomorphic to the compact set U N V, and therefore it is closed in U X V. m

We remark that if X is Hausdorff, then to establish that a collection of compact
subsets T is a quasinet, it suffices to verify that each point of X has a neighborhood of
the form V; U ... UV, with V, e . We remark also that a Hausdorff space admitting
a quasinet of compact subsets is locally compact.

Furthermore, we say that a collection = of subsets of X is a net on X if it is a quasinet
and, for any pair U,V e, |,y is a quasinet on UN V.

1.1.2. Lemma. — Let © be a net of compact sets on a topological space X. Then

(i) for any pair U, V e, the intersection U NV is locally closed in U and V;
(i) f VCVyU ... UV, forsomeV,V,, ..., V, e, then there exist Uy, ..., U e~
such that V= U, U ... U U,, and each U, is contained in some V,.

Proof. — (i) It suffices to verify that U N V islocally compact in the induced topology.
But this is clear because t|;,y is a quasinet on U NV,

(ii) For each point x € V and for each i with x € V,, we take a neighborhood
of xin VNV, of the form V, u ... UV, ., where V;; er. Then the union of such
neighborhoods over all i with x eV, is a neighborhood of x in V of the form
U, v ... uU, such that each U, belongs to v and is contained in some V;. Since V
is compact, we get the required fact. m

The underlying topological spaces of analytic spaces will be, by Definition 1.2.3
below, locally Hausdorff and provided with a net of compact subsets. It will follow from
the definition (Remark 1.2.4 (iii)) that they admit a basis of open locally compact
paracompact arcwise connected subsets (see also Proposition 1.2.18),

A continuous map of topological spaces ¢ : Y — X is said to be Hausdorff if for
any pair of different points y,, 9, € Y with ¢( »;) = ¢(»,) there exist open neighborhoods
¥, of y; and ¥, of y, with ¥, N ¥, = @ (i.e., the image of Y in Y X Y is closed).
We remark that if ¢ : Y — X is Hausdorff and X is Hausdorff, then Y is also Hausdorff.
Furthermore, let X and Y be topological spaces and suppose that each point of X has
a compact neighborhood. A continuous map ¢ : Y = X is said to be compact if the prei-
mage of a compact subset of X is a compact subset of Y. It is clear that such a map is
Hausdorff, it takes closed subsets of Y to closed subsets of X, and each point of Y has
a compact neighborhood.

1.2. The category of analytic spaces

Throughout the paper we fix a non-Archimedean field 2. (We don’t assume that
the valuation on % is nontrivial.) The category of k-affinoid spaces is, by definition, the
category dual to the category of k-affinoid algebras (see [Ber], § 2.1). The k-affinoid
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space associated with a k-affinoid algebra &/ is denoted by X, where X = ().
(For properties of k-affinoid spaces and their affinoid domains, see loc, cit., § 2.) The
notion of a k-analytic space we are going to introduce is based essentially on the following
two fundamental facts. Let { V; },c; be a finite affinoid covering of a k-affinoid space
X=u(A).

Tate’s Acyclicity Theorem. — For any finite Banach <f-module M, the Cech complex
0->M _)IIM@.MMV,' »HM@MMVian - ...
i L)

is exact and admissible. m

Kiehl’s Theorem. — Suppose we are given, for each i €1, a finite oy -module M; and, for
each pair 1, j € 1, an isomorphism of Ay, v;-modules o;;: M; ®,, i ZLvinv; 3 M, ®dv A v;nv;
such that oyly = oylw o o Iw, W=V, nV nV,, for all t,], I'e. Then there exists a
Sfinite of-module M that gives rise to the o/ '-modules M; and to the isomorphisms o;.

Both results are originally proved in the case when the valuation on £ is nontrivial
and all the spaces considered are strictly %-affinoid (see [BGR], 8.2.1/5 and 9.4.3/3).
But the general case is reduced to this one by the standard argument from [Ber], § 2.1
(2.2.5 and 2.1.11). Tate’s Acyclicity Theorem is sufficient to define the category of
k-analytic spaces, and Kiehl’s Theorem is used to establish their basic properties.

1.2.1. Remarks. — (i) Let V be a subset of a k-affinoid space X = (&) which
is a finite union of affinoid domains { V, }; ;. From Tate’s Acyclicity Theorem it follows
that the commutative Banach k-algebra &y = Ker(Il &y, - I1#y,.y,) does not

1 (%]

depend (up to a canonical isomorphism) on the covering. Furthermore, V is an affinoid
domain if and only if the Banach algebra &y is k-affinoid and the canonical map
V - # () is bijective. (In [Ber], 2.2.6 (iii), the latter condition was missed.)

(ii) From Tate’s Acyclicity Theorem it follows that in the situation of Kiehl’s
Theorem the &/-module M is isomorphic to Ker(HM —->HM By, @v;av;). (Recall

that, by [Ber], 2.1.9, the category of finite Banach M—modules is equivalent to the
category of finite &/-modules.)

Our purpose is to introduce a category of ®-analytic spaces associated with a
system @ of the following form. Suppose we are given for each non-Archimedean field K
over k a class of K-affinoid spaces @ so that the system ® = { @ } satisfies the following
conditions:

(1) #(K) € Pg;

(2) @ is stable under isomorphisms and direct products;

(3) if ¢: Y — X is a finite morphism of K-affinoid spaces and X € @y, then
Y e ®;
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(4) if { V,}igq is a finite affinoid covering of a K-affinoid space X such that
V, e® for all 7 €I, then X e ®;

(5) if K< L is an isometric embedding of non-Archimedean fields over %, then
for any X e @y one has X &z L €D,

The class @y is said to be dense if each point of each X € @y has a fundamental
system of affinoid neighborhoods V € ®g. The system @ is said to be dense if all @ are
dense.

The affinoid spaces from @y (resp. ®) and their algebras will be called ®-(resp. ®-)
affinoid. From (2) and (3) it follows that @ is stable under fibre products. In particular,
if :Y — X is a morphism of ®g-affinoid spaces, then for any affinoid domain VC X
with V e @ one has ¢~ (V) € Og.

1.2.2. Remark. — In fact we shall consider in this paper only analytic spaces for
the system of all affinoid spaces. The more general setting is necessary for establishing
connection with rigid analytic geometry in § 1.6 (see also Remark 1.2.16). For this
one takes for @y the class of strictly K-affinoid spaces. That this @ satisfies (4) is shown as
follows. Let X = .#(2/). By Tate’s Acyclicity Theorem, the algebra & is a closed
subalgebra of the direct product [1&/y . It follows that for the spectral radius p(f)

of an element f € &, one has p(f) = max ev;(f). Since py(f) e V|| U{0}, then

o(f) eV|k | u{0}, and therefore & is strictly K-affinoid, by [Ber], 2.1.6. (Of
course, in § 1.6 one assumes also that the valuation on % is nontrivial. In this case the
system @ is dense.) Here is one more example of ®. Assume that the valuation on £ is
trivial. If the valuation on K is also trivial, then we take for @ the class of K-affinoid
spaces X = (/) such that p(f) < 1 for all fe /. Otherwise we take for @ the
class of all K-affinoid spaces. The system ® = { @ } satisfies the conditions (1)-(5) and
it is dense.

Let X be a locally Hausdorff topological space, and let * be a net of compact
subsets on X.

1.2.3. Definition. — A ®,-affinoid atlas &/ on X with the net ~ is a map which assigns,
to each V er, a ®.-affinoid algebra &/, and a homeomorphism V 5 .# (&) and, to
each pair U,V et with UCV, a bounded homomorphism of k-affinoid algebras
ayy : Ly — Ly that identifies (U, &) with an affinoid domain in (V, /).

1.2.4. Remarks. — (i) It follows from the definition that, for any triple U, V, W e ¢
with UCV CW, one has ay,y = dygo dyy-

(ii) The family of @ -affinoid atlases with the same net forms a category.

(iii) By [Ber], 2.2.8 and 3.2.1, each point of a k-affinoid space has a fundamental
system of open arcwise connected subsets that are countable at infinity. It follows that
a basis of topology of a ®,-analytic space is formed by open locally compact paracompact
arcwise connected subsets.
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A triple (X, o/, 1) of the above form is said to be a ®,-analytic space. To define
morphisms between them, we need a preparatory work. First, we’ll define a category

(Dk-d'\n’ whose objects are the ®,-analytic spaces and whose morphisms will be called
strong morphisms. After that the category of ®,-analytic spaces @,-&/n will be constructed
as the category of fractions of (Dk-&f'; with respect to a certain system of strong morphisms
that admits calculus of right fractions.

Let (X, o7, ) be a @ -analytic space.

1.2.5. Lemma. — If W is a ®-affinoid domain in some U €, then it is a ®-affinoid
domain in any V € < that contains W.

Progf. — Since t|y v is a net and W is compact, we can find U, ..., U, € rlUb‘n v

with WC U, U ... U U,. Furthermore, since W and U, are ®-affinoid domains in U,

then W;:= W N U, is a ®-affinoid domain in U,. It follows also that W, and W; n W,

are ®-affinoid domains in V. By Tate’s Acyclicity Theorem, applied to the affinoid

covering { W, } of W the Banach algebra o/ = Ker(Il oy, — [y, y;) is k-affinoid
i %)

and W5 /# (/). By Remark 1.2.1 (i), W is a ®-affinoid domain in V. m
Let = denote the family of all W such that W is a ®-affinoid domain in some
V enr. If @, is dense, then 7 is dense.

1.2.6. Proposition. — The family = is a net on X, and there exists a unique (up to a
canonical isomorphism) @ -affinoid atlas of with the net % that extends of.

Proof. — Let U,V exand x e U NV. Take U’, V' er with UCU’ and VC V",
We can find a neighborhood W, U ... UW_ of # in U' nV’' with W, er and
xeW;n... nW,. Since U (resp. V) and W, are ®-affinoid domains in U’ (resp. V'),
then U;:=U N W, (resp. V,:=V Nn'W,) is a ®-affinoid domain in W;, and therefore
U, NV, is a ®-affinoid domain in W, i.e., U, NV, € ‘?lUnv- Since

U(U;n V) = (UnV) n (U W),

then U,(U, n V,) is a neighborhood of x in U NV with x e N, (U, n V,). It follows
that 7 is a net.

Furthermore, for each Ve7 we fix V' et with VCV’ and assign to V the
algebra &, and the homeomorphism V 5 /(&) arising from (V’, &/y.). We have
to construct, for each pair U, V et with UCV, a canonical bounded homomorphism
oy — o that identifies (U, &) with an affinoid domain in (V, &). Consider first
the case when V e 7. Since gy is a quasinet, we can find sets Uy, ..., U, that are
®-affinoid domains in U’ and V and such that U =U,; u ... uU,. By Tate’s Acy-

clicity Theorem, &/ = Ker(Il &y, — Il &/y,~y), and therefore the homomorphisms
i (%)

Ay — Ay, and &y~ Ly, induce a bounded homomorphism &7, — & that iden-
tifies (U, /) with an affinoid domain in (V, &/y). In particular, the homomorphism

3
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constructed does not depend on the choice of U,, ..., U,. Assume now that V is arbi-
trary. Then U C V' and, by the first case, there is a canonical bounded homomorphism
Ay, — Ay that identifies (U, /) with an affinoid domain in (V’, &y.). It follows
that (U, &/y) is a ®-affinoid domain in (V, o). m

1.2.7. Definition. — A strong morphism of ®,-analytic spaces
9: (X, 1) > (X, A7)

is a pair which consists of a continuous map ¢ : X — X', such that for each V et there
exists V' e’ with ¢(V)CV’, and of a system of compatible morphisms of k-affinoid
spaces @y, - (V, &) = (V', &%) for all pairs Ver and V' ex’ with ¢(V)C V',

1.2.8. Proposition. — Any strong morphism ¢ : (X, &, 1) — (X', &', v') extends in a
unique way to a strong morphism ¢ : (X, o, 7) > (X, oL, 7).

Proof. — Let U and U’ be ®-affinoid domains in V et and V' € 7', respectively,
and suppose that (U) C U’. Take W’ € 7’ with ¢(V) CW’'. Thenp(U)CW, U ... UW,
for some Wy, ..., W, €7'|;,nw. The morphism of k-affinoid spaces gy induces
a morphism V;:= ¢34 (W,) > W, that induces, in its turn, a morphism
U:=UnV,»> U :=U" NnW, (the latter is a ®-affinoid domain in V’). Thus,
we have a system of morphisms of k-affinoid spaces U; — U; — U’ that are compatible
on intersections. It gives rise to a morphism @y : (U, &) - (U’, o). It clear that
the morphisms @y are compatible. m

We now define the composition y of two strong morphisms

o: (X, o, %) - (X, &' 7) and §: (X, 1) - (X", L, ).

The map y that is the composition of the maps ¢ and ¢ satisfies the necessary condition
of the Definition 1.2.7. Furthermore, by Proposition 1.2.8, we may assume that ¢
and ¢ are extended to the morphisms ¢ and §. Suppose now that we are given a pair
V et and V" e1” with (V) CV"”. We have to define a morphism of k-affinoid spaces
xvv s (V, y) = (V”, oy.). For this we take V' €1’ and U” e<” with o(V)CV’
and (V') CU". Since (V) CU"” nV” and V is compact, it follows that there exist
VYoo, Vi €1 [ginys with x(V)CVY U ... UVy. Then V;:={5/p(V{’) and
V, := ¢y (V;) are ®-affinoid domains in V' and V, respectively,and V=V, u ... UV,.
The morphisms ¢ and ¢ induce morphisms of %-affinoid spaces V; — V,’, and since V;’

are ®-affinoid domains in V", they induce a system of morphisms V, - V"’ that are
compatible on intersections. It gives rise to the required morphism of %-affinoid spaces
Xvrve s (V, y) = (V", ). It is easy to see that the morphisms .,y are compatible.

Hence we get a morphism y that is the composition of ¢ and ¢ and is denoted by ¢ o ¢
(or simply by {¢). Thus, we get a category ®,-o/n.
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1.2.9. Definition. — A strong morphism ¢ : (X, &, 7) - (X', &’, 1) is said to
be a quasi-isomorphism if o induces a homeomorphism between X and X’ and, for any pair
Verand V' ex’ with ¢(V)CV’, ¢y, identifies V with an affinoid domain in V’,

It is easy to see that if ¢ is a quasi-isomorphism, then so is ¢.

1.2.10. Proposition. — The system of quasi-isomorphisms in (Dk-.szi'; admits calculus
of right fractions.

Proof. — We have to verify (see [GaZi], Ch. I, § 2, 2.2) that the system satisfies
the following properties:

a) all identity morphisms are quasi-isomorphisms;

b) the composition of two quasi-isomorphisms is a quasi-isomorphism;

¢) any diagram of the form (X, &, ) > (X', &', ¢') < (}A(", o, %'), where g
is a quasi-isomorphism, can be complemented to a commutative square

(X, o, 7) —> (X, o, %)
I I
&, %) 2> (&, %)
where f is a quasi-isomorphism;

d) if for two strong morphisms ¢, ¢ : (X, &, 1) > (X', &’, v') and for a quasi-
isomorphism g: (X', &', ') — (f(", ~’, %') one has go = g{, then there exists a quasi-
isomorphism f: X, .27,'?) - (X, &, 1) with ¢f = {f. (We’ll show, in fact, that in this
situation ¢ = {¢.)

The property a) is obviously valid. To verify ), it suffices to apply the construction
of the composition and Remark 1.2.1 (i). To verify ¢), we need the following fact.

1.2.11. Lemma. — Let ¢: (X, &, ) - (X', &', ") be a strong morphism. Then
Jor any pair V €7 and V' €7 the intersection V N ¢~ (V') is a finite union of ®-affinoid
domains in V.

Proof. — Take U’ €7’ with ¢(V) CU’. Then we can find U, ..., U, e’ IU,_,\V,
with o(V)C U, U ... U, and V ne (V') = U, 955.(U;). m

Suppose that we have a diagram as in ¢). We may assume that X’ = X'. Then
%' C 7', Let ¥ denote the family of all V & 7 for which there exists V' €%’ with (V) C V.

From Lemma 1.2.11 it follows that ¥ is a net. The ®,-affinoid atlas ./ defines a
@, -affinoid atlas o with the net %, and the strong morphism ¢ induces a strong morphism
?: (X, .sz;, %) - (X, o %’). Then § and the canonical quasi-isomorphism

fi (X, o,%) > (X, o, 7)

satisfy the required property c).
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Finally, we claim that in the situation d) the morphisms ¢ and ¢ coincide. First
of all, it is clear that they coincide as maps. Furthermore, let V €t and V’ € ¢’ be such
that (V) C V'. Take V' €%’ with g(Vh C ¥'. Then we have two morphisms of k-affinoid
space ¢y, Yyy i V>V’ such that their compositions with gy. 5. coincide. Since V’
is an affinoid domain in ¥, it follows that ¢y, = $yy.. W

The category of ®,-analytic spaces ®,-/n is, by definition, the category of fractions

of (I)k-.,e:(: with respect to the system of quasi-isomorphisms. By Proposition 1.2.10
morphisms in the category ®,-o/n can be described as follows. Let (X, &/, ) be a
®, -analytic space. If ¢ is a net on X, we write ¢ <7 if 6C7. Then the @, -affinoid
atlas o defines a ®,-affinoid atlas &, with the net o, and there is a canonical quasi-
isomorphism (X, &7, 6) - (X, &, 7). The system of nets { o} with ¢ < tis filtered
and, for any @,-analytic space (X', &', '), one has

Hom((X, &, 1), (X, &', ")) = lﬂ} Hom  ((X, #,, o), (X', &', 7).
We remark that all the maps in the inductive system are injective.

We now want to construct a maximal ®,-affinoid atlas on a ®,-analytic space
and to describe the set of morphisms between two @, -analytic spaces in terms of their
maximal atlases. (Kiehl’s Theorem will be used here for the first time.)

Let (X, &, 1) be a ®,-analytic space. We say that a subset WC X is 1-special
if it is compact and there exists a covering W= W, U ... UW, such that W,,
W, "W, er and Mwi®dwj — y;~w; 15 an admissible epimorphism. A covering
of W of the above type will be said to be a <t-special covering of W.

1.2.12. Lemma. — Let W be a t-special subset of X. If U,V € "'lw’ then UNVex
and A5 ® oy — Ay is an admissible epimorphism.

Proof. — Since the sets U N W, and V N W, are compact, we can find finite
coverings { U, }, of UNW, and {V,;}, of VW, by sets from 1. Furthermore,
since W; " W, - W, X W, are closed immersions, is follows that U, NV, e% and
U,NnV,—>U, x V,is a closed immersion. Consider now the finite affinoid covering
{Ux X Vi 50, of the k-affinoid space U X V. For each quadruplet i,j,%, |,
A g, nv; is a finite Ay, v, -algebra, and the system { &y, v, } satisfies the condi-
tion of Kiehl’s Theorem. It follows that this system is defined by a finite &7, y-algebra
isomorphic to Hyny = Ker(ll oy, (v, = Il 4, (v,nv\avy,)s and  therefore
the latter algebra is ®@,-affinoid, U NV 3 # (&), and UNV - U x V is a closed
immersion. By Remark 1.2.1 (i), UNV is a ®-affinoid domain in U and V,
ie, UnVei n R .

Let W be a <-special subset of X. From Lemma 1.2.12 it follows that any finite
covering of W by sets from = is a t-special covering. Furthermore, if { W, } is a 7-special
covering, then from Tate’s Acyclicity Theorem it follows that the commutative Banach
k-algebra oy := Ker (Il oy, — [l oy, nWj) does not depend (up to a canonical iso-

k3 1) .
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morphism) on the covering, and a continuous map W — .# (/) is well defined. Let 7
denote the collection of all z-special subsets W such that the algebra &7y, is £-affinoid,
W S #(y) and, for some 7-special covering {W;} of W, (W,, &/y) are affinoid
domains in (W, &/y). We remark that from the condition (4) for the class @, it follows

that W belongs to ®@,. Furthermore, the last property of W does not depend on the
choice of the covering.

1.2.13. Proposition. — (i) The collection T is a net, and for any net o < one has 6 = 7;

(ii) there exists a unique (up to a canonical isomorphism) ®,-analytic atlas o with the
net T that extends the atlas o ;

(i) T = %.

Proof. — (i) Let U, V € 7. We take 7-special coverings { U; } of U and { V, } of V.
Since UnV =U, ,(U;nV,) and 7|y, are quasinets, it follows that T|;y is a
quasinet. Furthermore, let ¢ is a net with ¢ < 7. By Lemma 1.2.12, to verify the equality
8 = 7, it suffices to show that for any V ez there exist Uy, ..., U, ec with

V=U,vu...uU,. Since ¢ is a net on X, we can find W,, ..., W, ec with
VCW,uU... UW,. Since V, W, €7 and 7 is a net, then, by Lemma 1.1.2 (ii), we
can find U;, ..., U, e such that V=U, v ... UU, and each U, is contained in

some W,. Finally, since W, €, it follows that U, €.

(ii) For each V € T we fix a 7-special covering { V, } and assign to V the algebra &/
and the homeomorphism V = #(</) arising from the covering. We have to construct
for each pair U, Ve 7 with UCV a canonical bounded homomorphism &y — &y
that identifies (U, &) with an affinoid domain in (V, &/). Consider first the case
when U er. By Lemma 1.2.12, U NV, is an affinoid domain in V; and therefore
in V. It follows that U is an affinoid domain in V. If U is arbitrary, then by the first
case each U, from some 7-special covering of U is an affinoid domain in V. It follows
that U is an affinoid domain in V.

(iii) From Lemma 1.2.12 it follows that T = %. Let { V, } be a 7-special covering
of some V e 7. For each i we take a 7-special covering { V;;}; of V,. Then {V,;}; ;
is a 7-special covering of V, and therefore Ve7. m

The sets from 7 are said to be ®-affinoid domains in X. The 7-special sets are said
to be ®-special domains in X. They have a canonical ®,-analytic space structure. The
following statément follows from Lemma 1.2.11 and Proposition 1.2.13 (i).

1.2.14. Corollary. — If ¢: (X, &, 1) - (X', &', v") is a morphism of @ -analytic
spaces, then for any pair of ®-affinoid domains V CX and V' CX' the intersection V. N o~ 1 (V' )
is a D-special domain in X. B

1. 2 15. Proposztzon — Let (X, &, 1) and (X' ', 7') be O-analytic spaces.

(1) leere is a one-to-one correspondence between the set Hom((X, .sz( 7), (X', &', 7)) and
the set of all pairs consisting of a continuous map @ : X — X', such that for each point x € X
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there exist neighborhoods V, U ... UV, of x and ViU ... UV, of o(x) with
xeVin...nV, and o(V,)CV;, where V,CX and V;C X’ are ®-affinoid domains, and
of a system of compatible morphisms of k-affinoid spaces @y : (V, y) — (V', oAy for all
pairs of O-affinoid domains VC X and V' C X' with (V) C V', ‘

(i) 4 morphism ¢ : (X, o, v) - (X', &', v") is an isomorphism if and only if ¢ induces
a homeomorphism between X and X', (%) = 7' and, for any Ve =, (V, &) 3 (V', &%),
where V' = ¢(V).

Progf. — (i) Let o be a net on X with ¢ < 7, and let ¢ : (X, &, o) - (X', &, 7')
be a strong morphism. Itis easy to extend the system of compatible morphisms of k-affinoid
spaces ¢y : (V, y) - (V', &) for all pairs V €8 and V' € T with ¢(V) C V. Since
8 = 7, we get a map (evidently injective) from the first set to the second one. Conversely,
suppose that we have a pair of the above form. To verify that it comes from a morphism
of ®@,-analytic spaces, it suffices to show that the collection ¢ of all V € 7 such that
(V) C V' for some V' € 7’ is a net. For this we take a point x € X and neighborhoods
Viu...uV,ofxand ViU ...V, of (x) withx eV, n... "V, and ¢(V,)C V],
where V; €7 and V] € 7’. Then V, €5, and we get the required fact.

(ii) follows from (i). m

In practice we don’t make a difference between (X, &, 7) and the ®,-analytic
spaces isomorphic to it. In particular, we shall denote it simply by X and assume that
it is endowed with the maximal ®,-affinoid atlas. If it is necessary, we denote the under-
lying topological space by | X |. We remark that the functor that assigns to a @ -affinoid
space X = (/) the ®,-analytic space (X, o/,{X}) is fully faithful. A @ analytic
space isomorphic to such a space is called a @ -affinoid space.

Furthermore, if ® is the system of all affinoid spaces, then the category ®,-&/n
is denoted by k-/n, and the corresponding spaces are called k-analytic spaces. In this case
we withdraw the reference to @ in the above and future definitions and notations. If ®
is the system of strictly affinoid spaces, then the category ®,-o/n is denoted by si-k-o/n,
and the corresponding spaces are called strictly k-analytic spaces. Similarly, instead of
referring to @, we use the word ¢ strictly »* (strictly affinoid domains and so on).

1.2.16. Remark. — For an arbitrary @ there is an evident functor ®,-/n — k-o/n.
From Proposition 1.2.15 it follows that this functor is faithful. But we don’t know
whether it is fully faithful. (This was another reason for introducing the category of
®,-analytic spaces.) The only fact in this connection is Proposition 1.2.17.

We say that a ®,-analytic space is good if each point of it has a ®-affinoid neigh-
borhood. '

1.2.17. Proposition. — Let X and Y be @ -analytic spaces, and assume that the class @,
is dense and X is good. Then any morphism of k-analytic spaces @ : Y — X is a morphism of
®,-analytic spaces.
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Proof. — Tt suffices to show that the family = of all ®-affinoid domains VCY,.
for which there exists a ®-affinoid domain U C X with (V) CU, is a net. For an arbi-
trary point y € Y we take a ®-affinoid neighborhood U of ¢(y). Since @, is dense, we
can find a neighborhood of » in ¢7*(U) of the form V, U ... UV,, where V, are
®-affinoid domainsin Yandy e V; n ... NV, . WegetV, €1, and therefore tisanet. m

The dimension dim(X) of a @, -analytic space X is the supremum of the dimensions
of its ®-affinoid domains. (The dimension of a k-affinoid space is defined in [Ber],
p- 34.) We remark that the supremum can be taken over ®-affinoid domains from some
net, and, in particular, the dimension of X is the same whether the space is considered
as an object of ®,-a/n or of k-o/n.

1.2.18. Proposition. — The topological dimension of a paracompact ®,-analytic space is at most
the dimension of the space. If the space is strictly k-analytic, both numbers are equal.

Progf. — Suppose first that the space X = (&) is k-affinoid. If X is strictly
k-affinoid, the statement is proved in [Ber], 3.2.6. If X is arbitrary, we take a non-
Archimedean field K of the form K,  , (see [Ber], § 2.1) such that the algebra
' = o4 ®K is strictly k-affinoid, and consider the map ¢: X — X' = (/') which
takes a point x € X to the point ' € X’ that corresponds to the multiplicative seminorm
2,0, T - max | a,(x) | . The map ¢ induces a homeomorphism of X with a closed

subset of X'. Therefore the topological dimension of X is at most dim(X') = dim(X).

If X is an arbitrary paracompact k-analytic (resp. strictly k-analytic) space, then
it has a locally finite covering by affinoid (resp. strictly affinoid) domains, and there-
fore the statement follows from [En], 7.2.3. m

1.3. Analytic domains and G-topology on an analytic space

1.3.1. Definition. — A subset Y of a @, -analytic space X is said to be a ®-analytic
domain if, for any point y €Y, there exist ®-affinoid domains V,, ..., V, that are
contained in Y and such that y eV, n ... NV, and the set V, U ... UV, is a neigh-
borhood of yin Y (i.e., the restriction of the net of ®-affinoid domainsonY is a net onY).

We remark that the intersection of two ®-analytic domains is a ®-analytic domain,
and the preimage of a ®-analytic domain with respect to a morphism of a ®,-analytic
spaces is a ®-analytic domain. Furthermore, the family of ®-affinoid domains that are
contained in a @-analytic domain Y C X defines a @, -affinoid atlas on Y, and there is
a canonical morphism of @, -analytic spaces v: Y — X. For any morphism ¢:Z — X
with ¢(Z) CY there exists a unique morphism ¢ : Z — Y with ¢ = v{. It is clear that
a ®-analytic domain that is isomorphic to a k-affinoid space is a ®-affinoid domain.
A morphism ¢:Y — X that induces an isomorphism of Y with an open ®-analytic
domain in X is said to be an open immersion. If the class @, is dense, then all open subsets
of X are ®-analytic domains.
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1.8.2. Proposition. — Let { Y, }, ¢ be a covering of a ®-analytic space X by ®-analytic
domains suck that each point of X has a neighborhood of the form Y, U ... NY, with

yeY, n...nY, (ie,{Y;}icy s a quasinet on X). Then for any CD-analytw spaee X!
the followmg sequence of sets is exact

Hom(X, X") —>HHom(Y X) —>HHom(Y nY,;, X").
¥

Progf. — Let ¢,: Y, > X’ be a family of morphisms such that, for all pairs
,7€l, ¢ IYij = <p,.|Yij. Then these ¢, define a map X — X’ which is continuous,
by Lemma 1.1.1 (i). Furthermore, let = be the collection of ®-affinoid domains V.C X
such that there exist 7 € I and a ®-affinoid domain V' C X’ with VCY, and ¢,(V)CV".
It is easy to see that v is a net on X, and thcrefOrc there is a morphism ¢ : X — X’
that gives rise to all the morphisms o,.

We now consider a process of gluing of analytic spaces. Let { X Yier be a famlly
of @ -analytic spaces, and suppose that, for each pair 7, j € I, we are given a ®-analytic
domain X;;C X, and an isomorphism of @ -analytic spaces v;;:X;; > X, so that
X=X, v;(X;; n X)) =X, nX,; and v, = v 0v; on X;; N X,;. We are looking
for a @ analytic space X wﬂ:h a famlly of morphisms p,; : X; - X such that:

(1) w; is an isomorphism of X; with a ®-analytic domain in X;
(2) all y,(X,) cover X;

(3 ) i u) = W(X@') N (J':i(Xi);

(4) w = p;ov; on X,

If such X exists, we say that it is obtained by gluing of X, along X;;.

1.3.3. Proposition. — The space X obtained by gluing of X, along X,; exists and is
unique (up to a canonical isomorphism) in each of the following cases:

a) all X,; are open in X;;

b) for any i €1, all X,; are closed in X; and the number of j € I with X;; + O is finite.
Furthermore, in the case a) all p,(X,) are open in X. In the case b) all p,(X,) are closed in X
and, if all X, are Hausdorff (resp. paracompact), then X is Hausdorff (resp. paracompact).

Progf. — Let X be the disjoint union II; X;. The system {v,;} defines an equi-
valence relation R on X. We denote by X the quotient space X/R and by y, the induced
maps X; — X. In the case @), the equivalence relation R is open (see [Bou], Ch. I,
§ 9, n° 6), and therefore all y,(X;) are open in X. In the case ), the equivalence rela-
tion R is closed (see loc. cit., n° 7), and therefore all p,(X;) are closed in X and y; induces
a homeomorphism X; 5 p,;(X;). Moreover, if all X; are Hausdorff, then X is Hausdorff,
by loc. cit., exerc. 6. If all X, are paracompact, then X is paracompact because it has a
locally finite covering by closed paracompact subsets ([En], 5.1.34).

Furthermore, let v denote the collection of all subsets VC X for which there
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exists 2 €I such that VCy(X,) and p; (V) is a ®-affinoid domain in X; (in this
case u;'(V) is a ®-affinoid domain in X; for any j with VC p,(X,)). It is easy to see
that t is a net, and there is an evident @, -affinoid atlas 2/ with the net X. In this way
we get a @ -analytic space (X, &, t) that satisfies the properties (1)-(4). That X is
unique up to canonical isomorphism follows from Proposition 1.3.2. m

Let X be a ®,-analytic space. The family of its ®-analytic domains can be considered
as a category, and it gives rise to a Grothendieck topology generated by the pretopology
for which the set of coverings of an analytic domain Y C X is formed by the families
{Y;}ict of analytic domains in Y that are quasinets on Y. For brevity, the above
Grothendieck topology is called the G-topology on X, and the corresponding site is
denoted by X,. From Proposition 1.3.2 it follows that any representable presheaf
on X, is a sheaf. The G-topology on X is a natural framework for working with coherent
sheaves.

Recall ([Ber], 1.5) that the n-dimensional affine space A" is the set of all mul-
tiplicative semi-norm on the ring of polynomials 2[T,, ..., T,] that extend the valuation
on k endowed with the evident topology. The family of closed polydiscs with center at
zero E(0; 7y, ..., 7,) ={x A" || T,(x)| < r,, 1 < i< n} defines a k-affinoid atlas on A™.
(We remark that A" is a good k-analytic space.) We remark that the affine line A is a ring
object of the category k-o/n. If X = # (o) is a k-affinoid space, then Hom(X, A!) = &/.

We return to ®-analytic spaces. Applying Proposition 1.3.2 to X’ = A! and the
category k-/n, we get a structural sheaf Oy, on X, (this is a sheaf of rings). The category
of @y ,-modules is denoted by Mod(X,). An 0y -module is said to be coherent if there
exists a quasinet 7 of ®-affinoid domains in X such that, for each V e, Oy |y, is iso-
morphic to the cokernel of a homomorphism of free Oy _-modules of finite rank. For
example, suppose that X = .# (&) is a @ -affinoid space. Then a finite &/-module M
defines a coherent Oy (M) by Vi M®, &, and Kiehl’s Theorem tells that any
coherent Oy -module is isomorphic to Ox (M) for some M. The latter fact enables one
to define for a coherent Oy _-module F the support Supp(F) of F. Namely, if X = .# ()
is k-affinoid and F = 04 (M), then Supp(F) is the support of the annihilator of M.
If X is arbitrary, then Supp(F) is the set of point x € X such that for some (and therefore
for any) affinoid domain V that contains x the support of F|VG contains x. Let Coh(X,)
denote the category of coherent Oy _-modules, and let Pic(X;) denote the Picard group
of invertible @y -modules. (One has Pic(X;) = HY(X, 0%,).) From Kiehl’s Theorem
it follows that Coh(X,,) and Pic(X,;) are the same whether X is considered as an object
of ®,-o/n or of k-s/n.

We now consider connection of the above objects with their analogs in the usual
topology of X. For this we assume that the class @, is dense. Then all open subsets of X are
®-analytic domains, and there is a morphism of G-topological spaces = : X, — X which
induces a morphism of the corresponding topoi (x,, ©*) : X7 — X™. The direct image
functor =, is simply the restriction functor. In particular, we have the structural sheaf
Oy := =, O, on X. The functor =, is not fully faithful (see Remark 1.3.8). The inverse

4
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image functor =" is as follows. For a sheaf F on X and a ®-affinoid (or ®-special) domain,
one has
= F(V) = lim F(%),
UdV

where % runs through open neighborhoods of V. It is easy to see that F 3 =, n* F.
In particular, the functor =* is fully faithful.

Let Mod(X) denote the category of @Ox-modules. The functor =, defines an evident
functor Mod(X,) — Mod(X). The natural functor in the inverse direction is as follows:

Mod(X) - Mod(Xg) : F s Fy = n* F®. 0 Oy

An Og-module is said to be cokerent if locally (in the usual topology of X) it is isomorphic
to the cokernel of a homomorphism of free modules of finite rank. (For example, if
X =M(sf) is O-affinoid, then Ox(M) := =, Ox (M) is a coherent Ox-module.) The
Picard group Pic(X) is the group of invertible @y-modules. One has Pic(X) = H (X, 0%).

1.3.4. Proposition. — If X is a good D -analytic space, then
(1) for any Ox-module ¥ one has F > w, Fy; in particular, the functor
Mod(X) - Mod(X,) : F — F
is fully faithful;
(i) the functor F v Fy induces an equivalence of categories Coh(X) S Coh(X,);
(iii) @ coherent Ox-module F is locally free if and only if ¥ is locally free.

Proof. — (i) It suffices to verify that for any point ¥ € X there is an isomorphism of
stalks F, = (w, Fj),. But this easily follows from the definitions because x has an affinoid

neighborhood.
(ii) By (i), it suffices to verify that for a coherent 0y -module & the Ox-module

F = =, # is coherent and F, 5 &. This also follows easily from the definitions.

(iii) We may assume that X = (&) is k-affinoid. It suffices to show that a
finite /-module M is projective if and only if the Oy -module Ox (M) is locally free.
The direct implication is simple. Conversely, suppose that for some finite affinoid cove-
ring { V; }; ¢ of X the finite &/ -modules M ®, o7 are free. It suffices to verify that M
is flat over &7. For this we take an injective homomorphism of finite &/-modules P — Q.
Then the homomorphisms (M ®, P) ®, &/ — (M®, Q) ®, &y, are also injective.
Applying Tate’s Acyclicity Theorem to the finite &/-modules M ®_,P and M®, Q,
we obtain the injectivity of the homomorphism M®,P - M®_, Q. m

1.3.5. Corollary. — If X is a good ®,-analytic space, then there is an isomorphism
Pic(X) 5 Pic(X;). m

The structural sheaf @y will be used only for good spaces X. The group Pic(Xj)
will appear in Corollary 4.3.8. We now compare the cohomology groups in both
topologies.
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1.3.6. Proposition. — (i) For any abelian sheaf F on X, one has HY(X, F) 5 HY(X,, n* F),
g2 0.

(ii) If X is good, then H'(X, F) & HY(X,, Fy), ¢=> 0, for any coherent Ox-module F.

(iii) If X is paracompact, then HY(X, F) = HY(X,,, ©* F) for any sheaf of groups F on X.

Proof. — (i) An open covering of X is a covering in the usual and the G-topology,
and therefore it generates two Leray spectral sequences that are convergent to the
groups HYX, F) and HYX,,, =" F), respectively. Comparing them, we see that it suffices
to verify the statement for sufficiently small X. In particular, we may assume that X is
paracompact. It suffices to verify that if F is injective, then HY(X,, =* F) = 0 for ¢ > 1.
Since X is paracompact, it suffices to verify that the Cech cohomology groups of n* F
with respect to a locally finite covering by compact analytic domains are trivial. But
this is clear because they are also the Cech cohomology groups of F with respect to the
same covering.

(ii) The same reasoning reduces the situation to the case when X is an open
paracompact subset of a k-affinoid space. (In particular, the intersection of two affinoid
domains is an affinoid domain.) In this case H(X, F) is an inductive limit of the ¢g-th coho-
mology groups of the Cech complexes associated with locally finite open coverings
{%,};ct of X. On the other hand, since the cohomology groups of a coherent sheaf on
a G-ringed k-affinoid space are trivial, then H%X,, F;) is the ¢-th cohomology group
of the Cech complex associated with an arbitrary locally finite affinoid covering { V, }, ¢ 5
of X. It remains to remark that for any { %; }, - we can find { V, }, ; such that each V;
is contained in some %; and U, ; Int(V,/X) = X.

(iii) is trivial. m

We remark that a morphism of ®,-analytic spaces ¢ : Y — X induces a morphism
of G-ringed topological spaces ¢ : Yy — X;. If the spaces X and Y are good, then for
any coherent Ox-module F there is a canonical isomorphism of coherent @y -modules
(9" F)g > 95 F.

We finish this subsection by introducing several classes of morphisms.

1.83.7. Lemma. — The following properties of a morphism of @.-analytic spaces
¢:Y — X are equivalent:

a) for any point x € X there exist ®-affinoid domains Vi, ..., V,CX suck that
xeVin...nV, and ¢ '(V,) >V, are finite morphisms (resp. closed immersions) of
k-affinoid spaces;

b) for any ®-affinoid domain VC X, ¢~ (V) =V is a finite morphism (resp. a closed
immersion) of k-affinoid spaces.

Proof. — Suppose that @) is true. Then the collection t of all ®-affinoid domains
V C X such that ¢7*(V) — V is a finite morphism (resp. a closed immersion) of k-affinoid
spacesisa net. Let V be an arbitrary ®-affinoid domain. ThenVCV, u ... UV, for some
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V er. By Lemma 1.1.2 (ii), we can find ®-affinoid domains U, ..., U, C X such
that V.=U, U ... U U, and each U is contained in some V,. Then U, e . It remains
to apply Kiehl’s Theorem. m

A morphism ¢:Y — X satisfying the equivalent properties of Lemma 1.3.7
is said to be finite (resp. a closed immersion). It is clear that this property of ¢ is the same
whether we consider it in the category @,-o/n or in k-2/n. A finite morphism ¢: Y — X
induces a compact map with finite fibres | Y| —| X |, and ¢q (0y,) is a coherent
Oy -module. If ¢ is a closed immersion, then it induces a homeomorphism of | Y | with
its image in | X |, and the homomorphism Oy, — @4 (0y ) is surjective. Its kernel is a
coherent sheaf of ideals in O . Furthermore, we say that a subset X C X is Zariski closed
if, for any ®-affinoid domain V C X, the intersection £ NV 1is Zariski closed in V.
The complement to a Zariski closed subset is called Zariski open. For example, the support
of a coherent Oy -module is Zariski closed in X. If ¢ : Y — X is a closed immersion,
then the image of Y is Zariski closed in X. Conversely, if ¥ is Zariski closed in X, then
there is a closed immersion Y — X that identifies | Y | with 2.

Furthermore, a morphism of ®,-analytic spaces ¢ : Y — X is said to be a G-locally
(resp. locally) closed immersion if there exist a quasinet © of ®@-analytic (resp. open ®-analytic)
domains in Y and, for each V er, a ®-analytic (resp. an open ®-analytic) domain
U C X such that ¢ induces a closed immersion V — U. (It is clear that this property
of ¢ is the same whether we consider it in the category ®,-o/n or in k-o/n.) Of course,
a locally closed immersion is a G-locally closed immersion. If the both spaces are good,
then the converse is also true.

Let now ¢ : Y — X be a G-locally closed immersion, and let V and U be as above.
If .7 is the sheaf of ideals in @, that corresponds to V, then #/.#2 can be considered as
an Oy _-module. All these sheaves are compatible on intersections, and so they define a
coherent 0y _-module that is said to be the conormal sheaf of ¢ and is denoted by Ay ..
If both spaces are good, then one can also define a similar Oy-module 4y, and one has
(A yx)e > N ygxg-

1.3.8. Remark. — Here is an example showing that the direct image functor
7, : Xg — X7 is not fully faithful. Let X be the closed unit disc

E(0,1) ={xcAl|| T(x)< 1},

and let x, be the maximal point of X (it corresponds to the norm of the algebra 2{ T }).
We construct two sheaves F and F’ on X, as follows. Let Y be an analytic domain in X.
Then F(Y)=2Z if x,€Y, and F(Y) = 0 otherwise. Furthermore, F'(Y) =Z if
{xeX|r<|Tx)|<1}uU{x,}CY for some 0< r< 1, and F'(Y) = 0 otherwise. The
sheaves F and F’ are not isomorphic, but «, F = =, F' = ¢, Z, where ¢ is the embed-
ding { %} > X.
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1.4. Fibre products and the ground field extension functor

1.4.1. Proposition. — The category ®,-n admits fibre products.

Proof. — First we shall show the existence of fibre products in the category k-2/n,
and after that we’ll use this fact to show that the same is true for the category @, -o7n.
Let ¢: Y - X and f: X’ - X be morphisms of k-analytic spaces.

Consider first the case when all three spaces are paracompact. In this case we
may assume that ¢ and f are represented by strong morphisms (Y, %, ¢) — (X, &, 7)
and (X', &', 1) - (X, o, 1), where 1, ¢ and ' are locally finite nets. Let S denote
the family of all triples (V, U, U’), where Veo, Uer, U €1’ and ¢(V),f(U’)CU.
For « = (V, U, U’) €S we denote by W, the k-affinoid space V Xy U’ and by Z,
the topological space | V| X,y | U’|. The latter is a compact subset of the topological
space Z:= | Y | X x| | X’ |, and the canonical map W, — X, induces a map =, : W, — Z.
We claim that, for any pair «, 8 €8S, the set W,z := =7 (2, N Z;) is a special domain
in W,, and there is a canonical isomorphism of k-analytic spaces v,z: W,z = Wg,.
Indeed, let g = (V,U,U’). Then UNnU =U; n... nU, for U, €. Furthermore,
for each 1< i< n, one has ¢y y(U,) Negp(Uy) = UL V.. and

fU_'ItI(Ui) N ﬁ—’/%(Ui) = U?i=1 U;z

for some V,;ec and Uje. One has W,, = U, i1 Vij Xy, Uy The right hand
side of the latter equality can also be considered as a subset of Wg,. It follows that W4
and W, are special domains in W, and Wy, respectively, and we get an isomorphism
Vag : Wog > Wy, that does not depend on the choice of the above coverings. It is clear
that W,, = W,, vs(Weg " W,.) = Wy, n' Wy, and v, = vg, 0V, on W nW, .
By Proposition 1.3.3, we can glue all W, along W4 and get a k-analytic space (Y', ', ¢')
which is a fibre product of (Y, %, 6) and (X', &', ') over (X, &, 7).

Consider now the case when only the space X is paracompact. In this case we take
coverings { Y; },c; of Y and { X}, ; of X’ by open paracompact subsets, and we glue
all the spaces Y, Xx X along the open subspaces (Y; NY,) Xy (XN X]). We get
a locally Hausdorff space Y’'. The collection ¢’ of sets of the forms V Xy U’, where
VCY,, UCX and U’'CX] are affinoid domains, is a net of compact subsets on Y’,
and there is an evident k-affinoid atlas #’ with the net ¢’. The triple (Y', #’,¢’) is a
fibre product of Y and X’ over X.

Finally, in the case when all three spaces are arbitrary we take a covering { X; }, ¢
of X by open paracompact subsets and construct a fibre product Y’ by gluing the spaces
9~ 1(X;) Xx,fT!(X,) along the open subspaces 7} (X; NX;) Xx;nx, fHX N X))

We remark that the above construction gives also a compact map

Y | Y| X5 | X



30 VLADIMIR G. BERKOVICH

In particular, if VCY, UCX and U’C X'’ are affinoid domains with ¢(V), f{U’) C U,
then the set n7'(| V| X, | U’'|) is compact. It follows that the canonical morphism
V':=V Xz U - Y’ identifies V' with an affinoid domain in Y’.

Suppose now that ¢ : Y — X and f: X’ — X are morphisms of ®,-analytic spaces.
Then the collection ¢’ of all affinoid domains of the form V Xy U’, where VCY,
UCX and U'C X’ are Q-affinoid domains with ¢(V), f(U’)CU, is a net on Y’, and
there is an evident @, -affinoid atlas with the net ¢’. It defines a ®,-analytic space structure
on Y'. It is easy to see that the canonical projections Y’ —Y and Y’ — X’ are mor-
phisms of ®,-analytic spaces and that Y’ is a fibre product of Y and X’ over X in the
category ®,-o/n. W

Similarly, one constructs, for a non-Archimedean field K over &, a ground field
extension functor ®p-sfn —>Pp-fn: X > XOK and a compact map X&®K - X. A
®-analytic space is a pair (K, X), where K is a non-Archimedean field K over k2 and
X € @g-o/n. A morphism (L, Y) — (K, X) is a pair consisting of an isometric embedding
K< L over 2 and a morphism of ® -analytic spaces Y — X ®¢ L. The category of
®-analytic spaces is denoted by ®-&/n,. If @ is the family of all affinoid spaces, then
the category is denoted by &/n, and its objects are called analytic spaces over k. For brevity
we denote the analytic space (K, X) by X.

We remark that with each point x € X € ®,-o/n one can associate a non-Archi-
medean field 5#(x) over x so that, for any ®-affinoid domain V C X that contains ¥,
there is a canonical bounded character &/, —#(x) that identifies #(x) with the cor-
responding field of the point x with respect to V (see [Ber], 1.2.2 (i)). A morphism
¢:Y — X induces, for each point y € Y, an isometric embedding 5 (¢()) < ().
Furthermore, let x be a point of X. If V is a ®-affinoid domain that contains x, then
the caracter &y ®#(x) —H#(x) : fO A > Af(x) defines an H#(x)-point xy, € V & 5 (x).
It is clear that the image #’ of #, in X ® 5 (x) does not depend on the choice of V. If
now ¢:Y — X is a morphism of ®,-analytic spaces, then the #(x)-analytic space
(Y ®# (%)) Oy & e # (# (%)), where the morphism 4 (#(x)) — X & #(x) corresponds
to the point x’, is denoted by Y, and is said to be the fibre of ¢ at the point x. The canonical
morphism Y, — Y induces a homeomorphism Y, = ¢~ (x). The dimension of ¢, dim(gp),
is the supremum of the dimensions dim(Y,) over all x € X.

Let ¢: Y - X be a morphism of ®,-analytic spaces, and consider the diagonal
morphism Ay : Y - Y Xx Y. The collection t of ®-affinoid domains VCY for which
there exists a ®-affinoid domain UC X with ¢(V)C U is a net, and, for such V and
U,V Xy Visa®-affinoid domain in Y and Ay x induces a closed immersion V -V X V.
Thus, Ayx is a G-locally closed immersion. The conormal sheaf of Ay is said to be
the sheaf of differentials of ¢ and is denoted by Qv x,. If both spaces are good, then one
can also define a similar coherent Oy-module Qy ¢, and one has (Qyx)q > Qy,x,. The
sheaves Qy  and Qyx will be studied in § 3.3.

A morphism of ®,-analytic spaces ¢ : Y — X is said to be separated (resp. locally
separated) if the diagonal morphism Ayyx is a closed (resp. a locally closed) immersion.
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If the canonical morphism X —.#(k) is separated (resp. locally separated), then X
is said to be separated (resp. locally separated). For example good ®@,-analytic spaces and
morphisms between them are locally separated. If a morphism ¢ : Y — X is separated,
then |Y | is closed in | Y Xx Y |. Since the map =:|Y Xx Y| - |Y | X x| Y] is
compact, then | Y | is closed also in | Y | X x| | Y |, and therefore the map | Y | — | X |
is Hausdorff. In particular, if Y is separated, then its underlying topological space | Y |
is Hausdorff.

1.4.2. Proposition. — A locally separated morphism of ®,-analytic spaces ¢ : Y — X
is separated if and only if the induced map |Y | — | X | is Hausdorff.

Proof. — Suppose that the map | Y | — | X | is Hausdorff. Then the complement #~
of Yin | Y| X%, | Y| is open. Since the diagonal morphism A = Ay is a composition
of a closed immersion with an open immersion, it suffices to show that A(Y) is closed
in | Y X5 Y |. For this we consider the compact map n:|Y Xx Y| - |Y| X x| Y|
Let z € (Y Xx Y\A(Y), and let =(2) = (y;,5.). If y; +9,, then == (#") is an open
neighborhood of z that does not meet A(Y). If y, = y,, then we take an open neighbor-
hood ¥ of y, =y, suchthat A, : ¥ — ¥ Xy ¥ is a closed immersion. Since ¥" Xy ¥~
is an open subset of Y Xy Y and z ¢ A(Y), then we can find an open neighborhood
of z that does not meet A(Y). The required fact follows. m

It is clear that the classes of closed and locally closed immersions, finite, separated
and locally separated morphisms are preserved under composition, under any base
change functor and under extensions of the ground field.

1.4.3. Remarks. — (i) The converse implication of Proposition 1.4.2 is not true
in general. For example, the space obtained by gluing two copies of the unit one-dimen-
sional disc along the closed annulus of radius one is Hausdorff but is not separated.

(ii) We conjecture that every point of a separated k-analytic space has an open
neighborhood which is isomorphic to an analytic domain in a %-affinoid space.

1.5. Analytic spaces from [Ber]

In this subsection we recall the notion of a k-analytic space from [Ber] (with the
necessary details that were omitted in [Ber]), and we show that the category of k-analytic
spaces from [Ber] is equivalent to the category of good k-analytic spaces from the previous
subsection.

First of all, recall that a &-quasiaffinoid space is a pair (%, v) consisting of a locally
ringed space % and an open immersion v of % in a k-affinoid space X. We remark that
the immersion v induces a net 7 of all V C # for which v(V) is an affinoid domain in X
and a k-affinoid atlas ./ with the net r for which &/ = &,,, and therefore we get a
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k-analytic space (%, &, ) from k-2/n. We remark also that if V is an affinoid domain
in %, then for any pair of open subsets ¥, %" C % with ¥ CV C#  there are canonical
homomorphisms O(#") — &, — O(¥").

Furthermore, a morphism of k-quasiaffinoid spaces (%,v) — (%’,v') is a morphism
of locally ringed spaces ¢ : % — %’ such that for any pair of affinoid domains VC%
and V' C#%" with ¢(V)C¥ = Int(V'[%') (the topological interior of V' in #'), the
induced homomorphism &5 — O(¥") — O0(p~*(¥")) — &y is bounded. We remark
that from the definition it follows that for any pair of affinoid domains UCV and
U’'C V" with ¢(U) CInt(U’/%') the homomorphisms &y — &y and &y, — &/ are
compatible.

- 1.5.1. Lemma. — The system of homomorphism sfv, — s extends canonically to the
Jamily of all pairs of affinoid domains VCU and V' CU' with (V) C V' so that one gets a
well-defined morphism (U, A, ) — (', L', 7).

Proof. — Let V, V' be such a pair. Assume first that ¢(V) CInt(V'/%’). We
claim that the two maps from V to V' induced by ¢ and by the homomorphism
&y — & coincide. Let ¢ denote the second map, and let x € V. Take affinoid
neighborhoods U of x in % and U’ of ¢(x) in %’ such that ¢(U) C Int(U’/%’). Then
(U N V)CInt(U nV'[%'). The homomorphisms &5 — &y and Ay v > Fyavy
are compatible, and therefore (U NnV)C U’ nV’. Since U and U’ can be taken
sufficiently small; then ¢(x) = ¢(x), and our claim follows. It follows that one can
construct in a canonical way bounded homomorphisms &7y — &/ for every pair of
affinoid domains UCV and U’ C V' with ¢(U) C U’, and the two maps from U to U’
induced by ¢ and by the homomorphism &3 — &y coincide.

Assume now that V and V' are arbitrary. Then we can find affinoid domains
Vi ..o, V,C%and Vy, ..., V, C% suchthat VCV, U ... UV V' CViu...UV,
and ¢(V,) CInt(V;/%'). By the first case, there are canonical bounded homomor-
phisms &y \v; > vy, and Ly nviny: = Lyavay, that induce the maps

e: VNV, >V nV! and VNV, NV, >V NV, NV

Applying Tate’s Acyclicity Theorem to the coverings {V N V,} of V and { V' nV]}
of V', we get a bounded homomorphism &7, — & that is compatible with the homo-
morphisms &/ v: — &y vy, and such that the maps from V to V' induced by ¢ and
by the homomorphism &7, — &/, coincide. Thus, we get the required morphism
(U, A, %) — (U, L', *'). B

We remark that any morphism (%, &, <) — (%', &', ') comes from a unique
morphism (%, v) — (%',v'). Thus, k-quasiaffinoid spaces form a category which is
equivalent to a full subcategory of k-2/n. The latter consists of all k-analytic spaces that
admit an open immersion in a k-affinoid space.
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1.5.2. Corollary. — Let (%, v) and (%', <') be k-quasiaffinoid spaces, and let ¢ : U — U’
be a morphism (resp. an isomorphism) of locally ringed spaces. Then the following are equivalent:
a) ¢ induces a morphism (resp. an isomorphism) of k-quasiaffinoid spaces (%, v) — (%', v');
b) there exist open coverings { U, },cy of U and { U;},c5 of X' such that, for each
pair i, j, ¢ induces a morphism (resp. an isomorphism) of k-quasiaffinoid spaces
(%i N (?_1(%;')’ V) - (%;) v')

(resp. (% O 9™ (X)), V) = (e(%) N U, Y'))5
c) property b) is true for arbitrary open coverings of U and U'. m

Let X be a locally ringed space. An (open) k-analytic atlas on X is a collection
of %-quasiaffinoid spaces {(%;, v;)};c called charts of the atlas such that { %}, o, is
an open covering of X (each %, is provided with the locally ringed structure induced
from X) and, for each pair ¢, j €I, the identity morphism induces an isomorphism of
k-quasiaffinoid spaces (% N %;,v;) > (%, N %;,v;). Furthermore, suppose that we
are given an open subset  C X and an open immersion v of % in a k-affinoid space.
Then (%,v) is compatible with the atlas {(%;, v;)};¢; if, for each i €I, the identity
morphism induces an isomorphism of k-quasiaffinoid spaces (% N %;,v) > (% N U, v,).
Two atlases are said to be compatible if every chart of one atlas is compatible with the
other atlas. From Corollary 1.5.2 it follows that the compatibility of atlases is an equi-
valence relation. A k-analytic space from [Ber] is a locally ringed space X provided
with an equivalence class of k-analytic atlases.

Let X, X’ be two k-analytic spaces defined in the above way, and let ¢ : X — X’
be a morphism of locally ringed spaces. Then ¢ is called a morphism of k-analytic
spaces if there exists an atlas {(%;, v)}ie; of X and an atlas {(%], v)};cs
of X’ such that, for each pair 7, j, ¢ induces a morphism of Z-quasiaffinoid spaces
(%, N o~ (U}),v;) > (X}, v]). From Corollary 1.5.2 it follows that the same condition
holds for any choice of atlases on X and X’ defining the same k-analytic structure, and
that one can compose morphisms. Thus, one gets a category. This is the category intro-
duced in [Ber] (and denoted there by k-7n).

We now construct a functor from the category of k-analytic spaces from [Ber]
to k-o/n. For each k-analytic space X from [Ber] we fix an open k-analytic
atlas {(%;, v;)}; c1- Let © be the family of the subsets V C X for which there exists i € I
such that V is an affinoid domain in %; (in this case V is an affinoid domain in any %;
that contains V). Then 1 is a net on X, and there is an evident %-affinoid atlas &/ with
the net 7. The k-analytic spaces (X, &/, 7) obtained in this way is evidently good. Let
now ¢ : X — X' be a morphism of k-analytic spaces from [Ber]. We denote by o the
family of all V e 1 for which there exists V' € " with ¢(V) C V". It is clear that ¢ is a net
with ¢ < 7, and the morphism ¢ gives rise to a strong morphism (X, &, o) - (X', &', 7').
Therefore we have the required functor, and it is easy to see that it is fully faithful. Let
now X be a good k-analytic space from k-2/n. For an affinoid domain V C X we denote

5
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by %, the topological interior of V in X and by v, the canonical open immersion of
locally ringed spaces %y — V. Then {(%y, vy)} is an open k-analytic atlas on X, and the
k-analytic space from [Ber] obtained in this way gives rise to a k-analytic space from &-s/n
isomorphic to X. Thus, the correspondence X i (X, &, ¢) is an equivalence of the
category of k-analytic spaces from [Ber] and the category of good k-analytic spaces.

We now extend to the category k-o/n several classes of morphisms that were intro-
duced in [Ber] for good k-analytic spaces. Let P be a class or morphisms of good %-analytic
spaces which is preserved under compositions, under any base change and under exten-
sions of the ground field. We say that a morphism ¢ :Y — X in k-o/n is of class P if
for any morphism X’ — X from a good analytic space over % the space Y xy X’ is
good and the induced morphism Y Xy X’ — X’ is of class P. It follows from the definition
that the class P is also preserved under the same operations. Furthermore, if P contains
locally closed immersions, then P processes the following property: if Y — X is a locally
separated morphism, then any morphism Z — Y, for which the composition Z — X
is of class P, is of class P.

1.5.8. Examples. — (i) If P is the class of all morphisms of good analytic spaces,
then the morphisms from P are said to be good. For example, finite morphisms and
locally closed immersions are good morphisms.

(ii) If P is the class of closed morphisms of good analytic spaces ([Ber], p. 49),
then the morphisms from P are said to be closed. For example, finite morphisms and
locally closed immersions are closed morphisms.

(iii) If P is the class of proper morphisms of good analytic spaces ([Ber], p. 50),
then the morphisms from P are said to be proper. It follows from the definitions that a
morphism is proper if and only if it is compact and closed. For example, finite morphisms
are closed. Conversely, if a proper morphism has discrete fibres, then it is finite
([Ber], 3.3.8).

1.5.4. Definition. — The relative interior of a morphism ¢ : Y — X is the set Int(Y/X)
of all points y € Y for which there exists an open neighborhood ¥~ of » such that the
induced morphism ¥ — X is closed. The complement of Int(Y/X) is called the relative
boundary of ¢ and is denoted by 9(Y/X). If X = .#(k), these sets are denoted by Int(Y)
and 9(Y) and are called the interior and the boundary of Y, respectively.

It follows from the definition that 9(Y/X) = O if and only if the morphism ¢ is
closed. The following properties of the relative interior are easily deduced from the
definition and [Ber], 3.1.3.

1.5.5. Proposition. — (1) If Y is an analytic domain in X, then Int(Y[X) coincides
with the topological interior of Y in X.
(i) For a sequence of morphisms Z Sv3% X, one has

Int(Z[Y) N $~*(Int(Y/X)) C Int(Z/X).
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If ¢ is locally separated (resp. and good) then
Int(Z/X) C Int(Y/X) (resp. Int(Z/X) = Int(Z]Y) n ¢~ (Int(Y/X))).

(iii) For a morphism f:X' — X, one has f'~'(Int(Y/)X)) CInt(Y'/X’), where f' is
Y=Y xzX =Y.

(iv) For a non-Archimedean field K over k, one has =~ *(Int(Y/X)) C Int(Y ® K/X & K),
where © is YOK Y. m

1.5.6. Remark. — The notion of a strictly %-analytic space introduced in [Ber],
p. 48, is not consistent with that introduced in the previous subsection. First of all, if
the valuation on % is trivial, the two notions are completely different. (For example,
the affine line A! is strictly k-analytic in the sense of [Ber] but is not such a space in the
sense of § 2.2.) Assume now that the valuation on % is nontrivial. In this case the diffe-
rence is that in [Ber] strictly k-analytic spaces were considered as objects of the whole
category of k-analytic spaces, but here we consider them as objects of their own cate-
gory st-k-o/n because we do not know whether the faithful functor st-k-o/n — k-/n is
fully faithful.

1.6. Connection with rigid analytic geometry

We work here with the category of rigid k-analytic spaces which is defined in
[BGR], § 9.

Assume that the valuation on % is nontrivial, and let X be a Hausdorff strictly
k-analytic space. The corresponding rigid k-analytic structure will be defined on the
set Xy ={xeX|[#(x) :k] <o} (We remark that from [Ber], 2.1.15, it follows
that the set X, is everywhere dense in X.) First of all, if X = .# (&) is strictly k-affinoid,
then the maximal spectrum X, = Max(&/) is endowed with a rigid %-analytic space
structure as in [BGR], § 9.3.1. Suppose that X is arbitrary. We say that a subset
U C X, is admissible open if, for any strictly affinoid domain V C X the intersection N V,
is an admissible open set in the rigid %-affinoid space V. Furthermore, a covering { %, }, <
of an admissible open subset % C X, by admissible open subsets is admissible if, for any
strictly affinoid domain VC X, { %, NV}, c;is an admissible open covering of % N V.
In this way we get a G-topology on the set X,. The sheaves of rings 0, , where V runs
through the strictly affinoid domains in X, are compatible on intersections, and to they
glue together to form a sheaf of rings 0y on the G-topological space X,. The locally
G-ringed space (X,, 0 ) satisfies the conditions of Definition 9.3.1/4 from [BGR],
and so we get a rigid k-analytic space. We remark that the rigid k-analytic space cons-
tructed is quasiseparated. (A rigid k-analytic space is called quasiseparated if the inter-
section of two open affinoid domains is a finite union of open affinoid domains.)

1.6.1. Theorem. — The correspondence X v+ X, is a fully faithful functor from the
category of Hausdorff strictly k-analytic spaces to the category of quasiseparated rigid k-analytic
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spaces. Furthermore, this functor induces an equivalence between. the category of paracompact strictly

k-analytic spaces and the category of quasiseparated rigid k-analytic spaces that have an admissible
affinoid covering of finite type.

A collection of subsets of a set is said to be of finite type if each subset of the col-
lection meets only a finite number of other subsets. of the collection.

Progf. — Let X be a Hausdorff strictly k-analytic space. First of all we establish
the following fact.

» 1.6.2. Lemma. — (i) Any open affinoid domain in the rigid k-analytic space X, is of the
Jorm Vo, where V is a strictly affinoid domain in X.

‘ (i) Let {V,};c1 be a system of strictly affinoid domains in X. Then {Viotier
an admissible covering of X, if and only if each point of X has a neighborhood of the form
ViV ... UV, (ie, {V,},c; is a quasinet on X).

Proof. — (i) An open affinoid domain in X, is an open immersion of rigid k-analytic
spaces f: Uy, - X,, where U is a strictly k-affinoid space. In particular, for any strictly
affinoid domain VC X, f~*(V,) is a finite union of affinoid domains in U,, and
{f'(V,)}, where V runs through strictly affinoid domains in X, is an affinoid covering.
It follows that we can find strictly affinoid domains U, ..., U,CUand V;, ..., V,CX
such that U=U, u ... uU, and f |U‘,,o comes from a morphism of strictly affinoid
spaces @, : U, — V, that identifies U; with an affinoid domain in V,. Moreover, all ¢,
are compatible on intersections. Therefore, we get a morphism of strictly k-analytic
spaces ¢ : U — X, Since ¢, as a map of topological spaces, is compact and induces an
injection on the everywhere dense subset U,C U, it follows that ¢ induces a homeo-
morphism of U with its image in X. Finally, ¢ identifies U; with a strictly affinoid
domain in V;, and therefore ¢ identifies U with a strictly analytic domain in X. It is
clear that this is a strictly affinoid domain.

(ii) Suppose first that { V; o}, is an admissible covering of X,. This means
that, for any strictly affinoid domain VC X, {V, ( NV}, is an admissible covering
of V,. It follows that V is contained in a finite union V; U ... UV, , and therefore
each point of X has a neighborhood of the required form. Conversely, assume that
the latter property is true. Then any strictly affinoid domain is contained in a finite
union V; U ... UV, ,and therefore{ V; , NV, }; ¢ is an admissible covering of V. L]

Let ¢ : Y — X be a morphism of strictly k-analytic spaces. First of all we claim
that the induced map ¢, : Y, — X, is continuous with respect to the G-topologies on X,
and Y,. Let  C X, be an admissible open subset, and let VCY be a strictly affinoid
domain. By [BGR], 9.1.4/2, and Lemma 1.6.2 (i), the set % has an admissible cove-
ring { U, o };c1, where U, are strictly affinoid domains in X. By Corollary 1.2.!4,
for each i e I'one has ¢~ (U) NV = U, 5 Vij» where V;; are strictly affinoid domains
in V and J; is finite. We get a covering { V;; , } of the set g5 }(%) N V,. To verify that
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the latter set is admissible open in V, it suffices to show that for any morphism of
strictly k-affinoid spaces § : W — V with (W) C ¢, (%) N Vg, the covering { o5 *(V,; o)}
has a finite affinoid covering that refines it. But this follows from the fact that the latter
condition is satisfied by the covering {(¢¢), *(U; , };cy- Thus, the set ¢; (%) is admis-
sible open in Y. In the same way one shows that the preimage of an admissible covering
of an admissible open set is an admissible open covering. Hence the map of G-topological
spaces ¢,:Y, - X, is continuous. That ¢ induces a morphism of locally G-ringed
spaces easily follows from this.

Let now f:Y, > X, be a morphism between the above rigid k-analytic spaces.
We have to show that it comes from a unique morphism of strictly k-analytic spaces
@ :Y — X. First of all, from Proposition 1.3.2 it follows that it suffices to verify the
required fact only in the case when Y is strictly %-affinoid. For this we remark that the
system { Uy}, where U runs through strictly affinoid domains in X, is an admissible
covering of X,. Therefore { f~!(U,)} is an admissible covering of Y, by admissible open
subsets. By [BGR], 9.1.4/2, the latter covering has a finite affinoid covering that refines
it. In this way we get strictly affinoid domains V,,...,V,CY and U,,...,U,CX
suchthat Y, =V, ;U ... UV, (and therefore Y =V, U ... UV )and f[V;,) C U, ,.
The induced morphisms of strictly affinoid spaces V;, — U, are obviously compatible
on intersections, and therefore we get a morphism of strictly 2-analytic spaces ¢ : Y — X.
It is easy to see that ¢, = f and that ¢ is a unique morphism satisfying this property.

If X is a paracompact strictly k-analytic space, then it has a strictly k-affinoid
atlas with a locally finite net, and therefore the rigid k-analytic space X, has an admis-
sible affinoid covering of finite type. It is also evident that it is quasiseparated. Conversely,
let & be a quasiseparated rigid k-analytic space that has an admissible affinoid cove-
ring { %}, of finite type. First of all, let %, = U, ,, where the U, are strictly
k-affinoid spaces. Since & is quasiseparated, for any pair i, j € I the intersection %; N %;
is a finite union of open affinoid domains in Z. Thus, there are strictly special domains
U;;CU, and U, C U, that correspond to %; N %; under the identifications %; = U, ,
and %; = U, ,. Let v, denote the induced isomorphism U; = U,. It is clear that
U, =1, v;(U,;nU,)) =U,; nU,; and v;=v;0v; on U;nU,. By Proposi-
tion 1.3.3, we can glue all U, along U,; and get a paracompact strictly k-analytic
space X. It is easy to see that X, is isomorphic to Z. m

Let X be a Hausdorff strictly k-analytic space. From Lemma 1.6.2 it follows
that there is an isomorphism of topoi Xg = X;”. In particular, there is a morphism of
topoi (m,, ©*) : Xg~ — X~ such that the functor =* is fully faithful (and =, is not).
Furthermore, from Proposition 1.3.6 it follows that if F is an abelian sheaf on X, then
HY (X, F) 3 HY(X,, n* F), ¢ > 0, and if X is good and F is a coherent @4 module, then
HYX, F) 3 H(X,, F,), ¢> 0, where Fy = n*F ®.(, Oy . Finally, there are equi-
valences of categories Mod(X;) = Mod(X,) and Coh(X;) = Coh(X,) and an isomor-
phism of groups Pic(X,) = Pic(X,).
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- § 2. Local rings and residue fields of points of affinoid spaces
2.1. The local rings Oy ,

Throughout the section we consider a k-affinoid space X = .#(s7). The stalk Oy ,
of the structural sheaf 0y at a point x € X is a local ring. Its maximal ideal is denoted
by m,, and its residue field Oy ,/m, is denoted by x(x). The field x(x) has a canonical
valuation. The completion of x(x) is the field 5#(x). Furthermore, let Z denote the affine
scheme Spec(/). There is a morphism of locally ringed spaces = : X — £". For a point
x € X we denote by x its image in %, by , the corresponding prime ideal of &7 (it is
the kernel of the seminorm on &/ which corresponds to the point x) and by £(x) the fraction
field of /g, . ‘

2.1.1. Proposition. — The map =:X — % is surjective.

- Proof. — Suppose that the algebra is strictly -affinoid. It suffices to show that if &/
has no zero divisors, then there exists a point x € X with g, = 0. By Noether Normaliza-
tion Lemma, there exists a finite injective homomorphism # =k{T,, ..., T, } - «.
By [Ber], 2.1.16, the map # (&) — # (%) is surjective. So it suffices to consider the
algebra £{T,, ..., T,}. In this case g, =0 for the point x corresponding to the
norm of k{T,, ..., T,}

2.1.2. Lemma. — For a k-gffinoid algebra o/ and a non-Archimedean field K over k the
algebra of' = o ® K is faithfully flat over <.

Progf. — First of all we recall that for Banach spaces B and M over % the canonical
map M®B — M®&B is injective and, if 0 -+ M — N — P — 0 is an exact admissible
sequence of Banach spaces over %, then the sequence 0 > M®B -N®B —-P&®B -0
is also exact and admissible (see [Gru]). (One assumed in [Gru] that the valuation on %
is nontrivial, but in the case of trivial valuation one obtains the same fact by tensoring
with the field K, for some 0 <7< 1.) Let now M be a finite &/-module. It can be
regarded as a finite Banach &/-module and, in particular, as a Banach space over %
(see [Ber], 2.1.9). We have M®, o' = M&, o/’ = M® K. By the above fact, if
M % 0, then M ®,, &’ % 0. Furthermore, if a homomorphism M — N of finite .2/-modules
is injective, the homomorphism of Banach K-spaces M® K -~ N® K is injective. This
implies that the homomorphism M ®, &' -~ N®_ &/’ is injective. Hence, &/’ is a faith-
fully flat o/-algebra. m '

2.1.3. Corollary. — In the situation of Lemma 2.1.2 for any pair of points x € X
8 eX = MA") with o(x') = x, where ¢ is the canonical map X' — X, Oy, .. is a faithfully
Slat Ox .-algebra.
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Proof. — It suffices to show that for any pair of affinoid subdomains V C'X’ and
U CX with ¢(V) CU, &y is a flat &/y-algebra. By Lemma 2.1.2, o, = &z ®K
is a flat o/ y-algebra. Since &/ is a flat &/, _yy,-algebra ([Ber], 2.2.4 (ii)), then &% is
a flat o/-algebra. m

We now consider an arbitrary k-affinoid algebra &/. We can take a non-Archi-
medean field K over % such that the algebra &’ = &/ ® K is strictly K-affinoid. By
the previous case, the map X' = #(&’) > %' = Spec(&’) is surjective, and, by
Lemma 2.1.2, the map &’ — & is surjective. It follows that the map = is surjective. m

2.1.4. Theorem. — The ring Ox , is a Noctherian ring faithfully flat over O , = o, .

Proof. — Suppose first that the valuation of % is nontrivial, the algebra & is strictly
k-affinoid and » € Max (). In this case 0 , coincides with the algebra of germs of affinoid
functions on Max(&/) considered in [BGR], 7.3.2. By [BGR], 7.3.2/7, the ring O , is

Noetherian, and, by [BGR], 7.3.2/3, there is an isomorphism &7 > .J;X ad 0;: between
£x> Px &, » m,-adic completions of the rings &, &, , O ,, respectively. By [Mat], 8.14,

the ring &, O, , is faithfully flat over &, and Oy ,.

We now consider the general case. We can find a non-Archimedean field K over %
with nontrivial valuation such that the algebra &’ = &/ ® K is strictly K-affinoid,
and there exists a point x’ € Max(&/’) which goes to x under the canonical map
X' =uM(") - X.By Lemma 2.1.2 (resp. Corollay 2. 1. 3), the algebra o/, , (resp. O )
is faithfully flat over &/, (resp. O ,). Since Oy ,. is faithfully flat over &/, ,, then O ,
is faithfully flat over &/, . Furthermore, Corollary 2.1.3 implies that a = a0y, , N Oy,
for any finitely generated ideal a € O ,. From this it follows easily that 0 , is a Noe-
therian ring. m :

2.1.5. Theorem. — The ring Ox , is Henselian.

Proof. — We use the following criterion for a local ring A to be Henselian (see [Ray],
1.1.5). A is Henselian if and only if any finite free A-algebra B is a direct product of
local rings.

Let B be a finite free 0y ,-algebra. We claim that there exist an affinoid neigh-
borhood U of the point x and a finite free 2/y-algebra # such that B = #®,, 0O ,.
Indeed, let b, ..., 5, be free generators of the Oy ,-module B and set 1 = X7_, 4, b,
and b, b, = 27_, a,, b,, where a;, a;;, € Ox ,. The fact that B is an associative and
commutative ring with identity is equivalent to certain identities between the coeffi-
cients g; and g;;;. Take a sufficiently small affinoid neighborhood U of the point x
such that all the g, g;;; come from &/ and all the identities are true in &/y. Consider
the free &/y-module # = &y b, + ... + &y b, and endow it with the multiplication
bib,=2" ,a,b. Then B is a finite free o/y-algebra, and, by construction,
B=2¢®, 0 ,.
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Furthermore, we may assume that U = X and consider # as a finite Banach
&f-algebra (see [Ber], 2.1.12). Then we have a finite morphism of k-affinoid spaces
¢:Y =M (#) - X, and the theorem follows from the following lemma.

2.1.6. Lemma. — Let ¢ : Y = M(B) - X = M(A) be a finite morphism of k-affinoid
space.r Then for any point x € X there is an isomorphism of rings B®, Ox , = II2_ Oy v Where
P ={)1 -}

Proof. — Since ¢ is a map of compact spaces, one has ¢~ (U) = U?¢_, V,, for any
sufficiently small affinoid neighborhood U of x, where V, are affinoid neighborhoods

of the points y; such that V, "V, = @ for i % j. Moreover, the domains V; form a
basis of affinoid neighborhoods of y,. We have

d
B ®d 0X,a: = gq:"l(U) ®.szlu 0X,z = illl '@V; ®.sz4u 0X,z'

Here we used the equality Z, 1y, = #8,, oy = #®, oy which follows from the fact

that & is a finite Banach «/-module. Therefore, #®, 0y , =II{_, 0y .. »

2.2. Comparison of properties of 0Ox , and 04 ,

Let P be a property of local rings which is preserved under localizations with
respect to the complements to prime ideals. A commutative ring A is said to possess
the property P (or A is a P-ring) if all of the local rings A, , where @ runs through prime
ideals of A, possess the property P. More generally, let Y be a locally ringed space. The

set of points y € Y such that @y , is a P-ring is denoted by P(Y). If P(Y) =Y, then Y
is said to possess the property P.

2.2.1. Theorem. — Let P be the property of being Red (reduced), Nor (normal), Reg
(regular), CI (complete intersection), Gor (Gorenstein), GM (Cohen-Macauley). Then P(X)
s Zariski open in X and P(X) = =~ (P(Z)).

For the definition of these properties and the verification of the fact that P is pre-
served under localizations see Matsumura’s book [Mat]. We shall deduce Theorem 2.2.1
from known results which are formulated in the following lemmas.

2.2.2. Lemma. — Let (A,m) — (B, n) be a faithfully flat homomorphism of local
Noetherian rings.

(1) If B is a P-ring, then so is A.
ii) If A is a P-ring, where P + Red, Nor, and n = mB, then B is a P-ring. m

2.2.3. Lemma. — Strictly k-affinoid algebras are excellent rings. m
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2.2.4. Lemma. — Let A be an excellent ring.

() If @ is a prime ideal of A such that A, is a P-ring, where P = Red or Nor, then the
completion .sg; is a P-ring. :

(i1) The set of prime ideals g C A such that Ay is a P-ring is open in Spec(A). m

For Lemma 2.2.2 and the assertion (ii) of Lemma 2.2.4 in the cases P = CI
or Gor see [Mat], § 23-24. Lemma 2.2.3 is proved in [Kie]. The assertions (i) and (ii)
(for P + CI, Gor) of Lemma 2.2.4 are proved in [EGAIV], 7.8.3.

Proof of Theorem 2.2.1. — From Theorem 2.1.4 and Lemma 2.2.2 (i) it follows
that P(X) C =~ '(P(Z)). Let x be a point of X such that 2/, isa P-ring. We have to
show that 0y , is a P-ring.

Suppose that the valuation of % is nontrivial and the algebra .« is strictly k-affinoid.
From Lemmas 2.2.3 and 2.2.4 it follows that the set P(Z) is open in Z. Furthermore,

if x € Max (&), then ,,q?;x = @/,;, and therefore Oy , is a P-ring. Let x be an arbitrary
point. Since P(Z) is open in &, then V C =~ }(P(Z)) for any sufficiently small strictly
affinoid neighborhood V of x. If y € Max(&/y) C Max (&), then Oy ., is a P-ring, and
therefore Oy , isa P-ring. Since O , = Oy, then O, ., is a P-ring, where ¥~ = Spec(«/y).
It follows that P(¥") = ¥ because P(¥") is open in ¥". Thus, the algebras &/ are P-rings
for all sufficiently small strictly affinoid neighborhoods V of x. Since Oy , = lim /y,
then Oy , is a P-ring. Indeed, this is evident if P = Red or Nor. If P & Red, Nor, we
remark that m, = @, O , for a sufficiently small strictly affinoid neighborhood V
of x, where @, v is the prime ideal of ./, corresponding to the point x. From
Lemma 2.2.2 (ii) it follows that Oy , is a P-ring.

We remark that (under the same assumptions) the fact already verified implies
that the subsheaf of ideals 4 C 0y consisting of nilpotent elements is coherent and, in
fact, is generated by the nilradical rad(&/) of .. Furthermore, if X is reduced, then the
subsheaf 0%™ of the sheaf # of meromorphic functions consisting of elements, whose
images in all stalks .#y , are integral over Oy ,, is coherent, and there exists a €.,
which is not a zero divisor, such that a0™ C Oy.

~ We now consider the general case.

2.2.5. Lemma. — Let K be a field of the form K, . (se [Ber], § 2.1) and
' = o ® K. Consider the map o:X — X' = .M (A') which sends a point x € X to the
point x' € X' corresponding to the multiplicative semi-norm 2, a, T® + max | a,(x)| 7. Then

Py = 9y A'. Furthermore, if Y' is a Zariski closed subset of X', then o= *(Y') is a Zariski
closed subset of X.

Proof. — Let fi, ..., f, be generators of ,. Since the canonical epimorphism
A" P, (ay, ... a,) = 2" af is admissible (see [Ber], 2.1.9), there exists a
constant C > 0 such that any element a € @, can be represented in the form X"_, g, f;
with || ¢ || < Clla||, 1<i<n Let a =2, a, T € p,. By construction, all the a,

6
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belong to p,. For every v we take a representation 4, = X_, 4, f, as above. Then
b, =2, a, , T are well defined elements of &/’, and we have o' = X, b, f, € p, o".
Thus g, = o, &'.

Let Y’ be defined by an ideal a’ C &/’. Denote by a the ideal of &/ generated
by all of the coefficients a, from the representations ¢’ = X, a, T® of elements 4’ € a'.
We claim that ¢~ !(Y’) is the closed %-analytic subset of X defined by the ideal a. Indeed,
let xeX and 2’ = o(x). Then x e (Y') <1 €Y «-a’'Cp.,<>aCp,. m

Take a field K of the form K, |, , 7> 1, such that the algebra &' = A/ &K
is strictly K-affinoid (the valuation on K is nontrivial since » > 1). First we consider
the case when P+ Red, Nor. Since @, = @, &', where x’ = o(x), it follows from
Lemma 2.2.2 (ii) that &/} , is a P-ring. By the strictly affinoid case, 0y, , is a P-ring.
Therefore Oy , is a P-ring, by Lemma 2.2.2 (i). We have

P(X) = =" 1(P(Z)) = ¢~ (P(X")).

From Lemma 2.2.5 it follows that P(X) is Zariski open in X.

Let P = Red. It suffices to verify that the subsheaf of ideals £y C @y consisting
of nilpotent elements is generated by rad(%/). We may assume that rad(&/) = 0.
Then rad(/’) = 0. Hence Jx, = 0. Since 0 , is embedded to Oy .., where ' = a(x),
we have S5 = 0.

Let P = Nor. By the previous case, we may assume that X is reduced. We want
to verify that there exists a € & which is not a zero-divisor such that a0y™ C Oy.
Since this is true for the subsheaf of .#y generated by the normalization of &/ (see [Ber],
2.1.14 (i)), we may assume that & is a (normal) integral domain. By the strictly affinoid
case, there exists a non-zero element ¢’ = X, a, T" € &’ with a’ O™ C Ox.. It suffices
to show that a, 0™ C @y for any v. Let % be an open subset of X, and let f be an element
from the full ring of fractions of Og(%). Then a’ f € Ox.(9” (%)), where ¢ denotes the
canonical map X' — X. But Oy (¢~ (%)) consists of the series X, f, T" such that
Jf, € Ox(%), and, for any affinoid subdomain V C %, || f, ||y r* — 0 as v — co. It follows
that a, f € Ox(%) for any v. m

2.2.6. Corollary. — Let P be one of the properties in Theorem 2.2.1. Then for any good
k-analytic space Y the set P(Y) is Zariski open in Y. Furthermore, if Y is reduced, then the comple-
ment to Reg(Y) is nowhere dense in Y. m

2.2.7. Corollary. — Let P be one of the properties in Theorem 2.2.1. Let % be a scheme of
locally finite type over k, and let 7 be the canonical map U™ —¥. Then P(%*) = =~ '(P(¥)).

Proof. — We may assume that & = Spec(B) is an affine scheme, and B is a finitely
generated k-algebra. Suppose first that the valuation on £ is trivial. If f3, ..., f, gene-
rate B over %, then #* is a union of affinoid subdomains of the type

V={pe?"|fix|<snl<i<n}

Butifr > 1, then #, = B. Therefore the required statement follows from Theorem 2.2.1.



ETALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES '43

* Suppose now that the valuation on % is nontrivial, and let y € #*», By [Ber], 3.4.1,

Ogan , is a faithfully flat 0, -algebra, and if y € Max(B), then Gyan, = g ,. Since A

is: an excellent ring, we get the required statement, by the reasoning from the proof
of Theorem 2.2.1. m

2.2.8. Corollazy; — For any affinoid subdomain V C X one has Reg(V) = Reg(X) NV,

Proofs. — If X and V are strictly k-affinoid, this is clear because both sets are
determined by their intersections with X,. The general case is reduced to the strlctly
‘affinoid one by the reasoning from the proof of Theorem 2.2.1. m

2.2.9. Remark. — The maximal ideal m, of the local ring Oy , can be strictly
larger than g, Ox ,. This is related to the fact that the Zariski topology on an
affinoid subdomain V CX can be strictly stronger than that induced by the Zariski
topology on X. Here is an example. Let AT = 22,4 T be a formal power
series in one variable over the residue field %, which is algebraically independent
of T, and set f(T) = X2 ,q, T", where a; are representatives of @ in £°. We
claim that for any non-zero g(T,, T,) € 2{ T;, T, } one has g(T, f(T)) % 0. Indeed, let
&(Ty, Ty) = 22;_oa,; TS Ti. Multiplying g by a constant, we may assume that
gl _maxl ,|— 1. Let S ={(¢,7) | |4 ;| =1} (it is a finite set) and set

P(T,, Tp) = z(&,f)es 4 ; T, T}
and h(T,, Ty) = g(T,, Ty) — P(Ty, Ty).

Since ||Iz|| <1, we have || #(T, f(T))|| < 1. If g(T, f(T)) = 0, then || P(T, A(T))|| < L.
It follows that P(T. f (T)) = 0. This is impossible because f(T) is algebraically inde-
pendent of T over %. Thus, the Zariski closed subset of the two-dimensional disc V of
radius 7 < 1, which is defined by the equation T, — f(T;) = 0, does not extend to a
Zariski closed subset of the two-dimensional unit disc X. If now x is the point of X, which
corresponds to the multiplicative seminorm on k{T;, T,}: g(Ty, Tp) | g(T, f(T)H|,
then m, + 0 because T, — f(T;) em,, but g, = 0.

2.3. The residue fields «(x)

© 2.3.1. Definition. — A field K with valuation is said to be quaswomplete if the
valuation extends uniquely to any algebraic extension of K.
For example, if K is complete with respect to its valuation (i.e. K is a valuation

field in the terminology of [Ber], § 1.1), then it is quasicomplete. The followmg lemma
easily follows from [BGR], § 3.2.
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2.3.2. Lemma. — The following properties of a field K with valuation are equivalent:

(i) K s quasicomplete;

(ii) for any drreductible polynomial T" + a, T"~' + ... + a, eK[T], one has
a4 < 0, %, 1< i< n3

(iii) the spectral norm of any finite extension of K is a valuation. m

2.3.3. Theorem. — The residue field x(x) of a point x € X is quasicomplete.

Proof. — Note that the field k(x) does not change if we replace X by a smaller
affinoid neighborhood of x or by a closed k-analytic subset which contains x. Since
the ring 0 , is Noetherian, m, = @, y Ox , for some affinoid neighborhood V of x,
where @, y is the prime ideal of 2/, which corresponds to x. So we can replace X
by M (o v[§y,v) and assume that m, = 0. Furthermore, since X is regular at x, we can
decrease X and assume that the algebra & is regular and has no zero divisors.

Let L be a finite extension of K = k(). It suffices to show that the spectral
norm | |, of L is a valuation. Recall (see [BGR], 3.2.1/1) that for an element g € L
one has | gl|, = max |f; |/, where T* + f; T~ ' + ... + f, is the minimal poly-

1<i<n
nomial of g and | | is the valuation of K (if f comes from 7, then | f| = | f(x)|). We
may assume that L is separable over K and, in particular, that L is generated by one
element «. Let T™ 4+ ¢, T~ ! 4 ... + @, be the minimal polynomial of « over K.
Decreasing X, we may assume that all the g; and f; belong to &/. Let X" be the fraction
field of /. Consider the finite extension % of A  which corresponds to the minimal
polynomial of «. We may assume that «, g € £ and L = K.Z. Let # be the integral
closure of &7 in %, and let ¢ denote the morphism of %-affinoid spaces Y = .#(#) — X.
By construction, ¢~ !(x) ={y} and k() = L. It suffices to show that | g|, = |g())]-
One has :

| 4(0)| = infey(g),

where V runs through a basis of affinoid neighborhoods of y, and py(g) is the spectral
norm of g in the Banach algebra &/,. Since ¢~ !(x) ={y}, we have

| ()| = inf pg-1m) (g)s

where U runs through a basis of affinoid neighborhoods of x.

~ 2.3.4. Lemma. — Let of — & be a finite injective homomorphism of regular k-affinoid
algebras, and suppose that & has no zero divisors. Then for any element g € B one has

p(g) = max e( ),

<i<n

where T + f T + ... + f, is the minimal polynomial of g over .
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Proof. — Suppose that the valuation of % is nontrivial and the algebra & is strictly
k-affinoid. Then for an element f € &/ (resp. g € #) the spectral norm p( f) (resp. p(g))
is equal to the supremum semi-norm |f|, (resp. | g|,,) on the maximal spectrum
Max (/) (resp. Max(%#)). Hence the required fact follows from [BGR], 3.8.1/7.

In the general case we take a field &’ of the form K, ., #n> 1, such that the
algebra &' = o/ ® k' is strictly k’-affinoid; then the rings &/’ and &' = Z®F' are
regular. From Lemma 2.2.5 it follows that #’ has no zero divisors. Since the canonical
homomorphisms & — &/’ and & — #’ are isometric, it suffices to show that the minimal
polynomial of g over &/ remains to be irreducible over .&’. But this is clear because #’
has no zero divisors. W

Using Lemma 2.3.4, we have

| ()| = inf po15)(¢) = inf max og(f)"

U 1<Kisn

— max infey(f)¥ = max |f(x)|" =gl

1<is<n U 1<i<n

Theorem 2.3.3 is proved. m

2.4. Quasicomplete fields

In this subsection we establish properties of quasicomplete fields which will be
very useful in the sequel. The Galois group of a normal extension L/K will be denoted
by G(L/K). The Galois group G(K*/K) of the separable closure K* of K will be denoted
by Gg. If K is a quasicomplete field, then the valuation on K uniquely extends to its
algebraical closure K® The same, of course, is true for the completion R of K';

2.4.1. Proposition. — Let K be a quasicomplete field. Then for any finite separable
extension L/K one has L L®g KR, and the correspondence L +— L induces an equivalence
between the categories of finite separable extensions of K and of R. In particular, there is an iso-
morphism Gg > Gg.

Progf. — Since the valuation of L coincides with the spectral norm, L is
weakly K-cartesian ([BGR], 3.5.1/3). By [BGR], 2.3.3/6, one has [L: K] = [L:K],
and therefore L3 L®g K. Our assertion now follows from Krasner’s Lemma (see
[BGR], 3.4.2). m '

2.4.2. Corollary. — Let K be a quasicomplete field, and let K’ be a bigger quasicomplete
field whose valuation extends the valuation of K. Suppose that the maximal purely inseparable extension
of K in R" is dense in K. Then the correspondence L v L ®y K' induces an equivalence between the
categories of finite separable extensions of K and of K', and there is an isomorphism Gg. = Gg. m
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2.4.3. Proposition. — The following properties of a ﬁeld K with valuation are. equwalent

a) K is quasicomplete;
b) the local ring K® ={a e K ||a|< 1} is Henselian.

Proof. — a) = b) (see [BGR], 3.3.4). Let F be a polynomial in K°[T] with
| F| =1 (the Gauss norm). Suppose that F is a product of two coprime polynomials
g h e K[T]. Take a decomposition F = F,, ..., F, of F into irreducible polynomials.
We may assume that |F,| =1 for all ¢ and that the polynomials F,,...,F,
are monic and the leading coefficients of F, ;, ..., F, have the norm < 1. Then
F, =f% for some irreducible polynomials f, e K[T], 1< i< m (this follows from
Proposition 2.4.4 (ii)). From Lemma 2.3.2 it follows that ﬁ,,“, ceey ﬁ, are elements
of K*. Since g and % are coprime in K[T], we may assume that g = af}, ..., f¥ for
some ¢ € K with |a| =1 and r< m. Then for the polynomials G = aF,, ..., F, and
H=a4"'F, ,,...,F, one has é:g, H =4 and F = GH.

b) = a). Let L be a finite extension of K, and let B the integral closure of A = K°
in L. We claim that B is a local ring. Indeed, it suffices to show that the set b = B\B*
is an ideal in B. Suppose that for some elements f, g € b one has f + g ¢ b. Consider
the A-subalgebra C of B generated by the elements f, g and ( f + g)~ ' Then C is a finite
A-algebra. But any finite algebra over a local Henselian ring is a product of local rings.
Since C is an integral domain, it follows that C is a local ring. We get that the elements f
and g belong to the maximal ideal of C but their sum f + g is invertible in C. Thus,
B is a local ring.

Furthermore, from the definition of the spectral norm it follows that

B={feL||fle<1}

Let | |y, ..., ]| |, be the valuations on L which extend the valuation on K. One has
|flp = max |f]; (see [BGR], § 3.3). Suppose that n> 1. By the Artin-Waples

1Si<n
Lemma, one can find for each 1< i< 7 an element f, €L such that |f|; =1 and

|fi|; < 1forj % i. The elements f;, ..., f, are not invertible in B, and therefore belong
to the maximal ideal of B. But for the element f=f; + ... 4+ f, one has | f|, =1,
1< i< n It follows that |f~'|; =1, 1< i< n, and therefore ||, =1, ie., fis
invertible in B. Hence, n = 1, i.e., the spectral norm on L is a valuation. m

Let K be a quasicomplete field, let L be a Galois extension of K (finite or infinite).
We set I(L/K) = {6 € G(L/K) | ¢ acts trivially on L} (L is the residue field of L) and
WL/K) ={0c e G(L/K) | | %« — «| < | «]| for all « e L*}. We set p = char(K).

2.4.4. Proposition. — (i) I(L/K) and W(L/K) are normal divisors of G(L/K) and
W(L/K) C I(L/K); :

(i) the extension L/K is normal and G(L/K)/I(L/K) 5 G(L/K),

(ili) there is a canonical isomorphism I(L/K)/W(L/K) > Hom(| L* |/| K* |, L‘),

(iv) W(L/K) is a pro-p-group.
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Proof. — (i) is trivial. .

(ii) Let & e T.. We take a representative « of ¥ in L® and the minimal polynomial
PT)=T"+ 4, T" '+ ... + a, of « over K. Since the valuation of L coincides
with the spectral norm,

ol =z lapis L
and therefore all a; belong to K° The element @ is a root of the polynomial
P(T) =T+ 2, T"* + ... + &, e K[T]. Hence all the elements of (K)* conjugated
to & are also roots of ﬁ(T). Since the group G(L/K) acts transitively on the set of roots
of P(T), its image in the automorphism group of L. over K acts transitively on the set of
roots of P(T). It follows that L. is normal over K, and the canonical map G(L/K) - G(L/K)
is surjective.

(iii) For ¢ € I(L/K) and « € L* we denote by {(s, «) the image of the element ®«/«
in T*. The map ¢:I(L/K) x L* - T* is bilinear because for o, € I(L/K) one has

L '_’E(:E_fﬁ) - "(‘ﬁ)_‘i‘f <1

o oqL oK o o o o o
Furthermore, if |a| = ||, then

Bl _ i'E("_“_z) _ °(5)_“ <1,

« B « \°® B B/ B

i.e., ¢(o, «) depends only on |« |. If « € K*, then (o, «) = 1. Therefore ¢ induces an
embedding

M(L/K) = I(L/K)/W(L/K) < Hom(| L" |/ K* |, L).

2.4.5. Lemma. — If K' is a Galois extension of K with KCK'CL, then there are
exact sequences

0 - I(L/K’) - I(L/K) - I(K'/K) -0,
0 - W(L/K’) > W(L/K) > W(K'/K) - 0.

Proof. — The only nontrivial fact is the surjectivity of the maps I(L/K) — I(K'/K)
and W(L/K) — W(K'/K). The surjectivity of the first map is equivalent to the sur-
jectivity of the map G(L/K) — G(i/K) which is proved in (ii). The surjectivity of the
second map is equivalent to the injectivity of the map M(L/K’) — M(L/K). The latter
fact follows from the part of (iii) which is already verified. m

Suppose that L is finite over K and set K’ = L"%®, By Lemma 2.4.5,
W(K'/K) = 0. We claim that R’ is the maximal subfield T,,C T separable over K,
and [I(K’/K):1] = [Hom(| K™ |/| K*|, K»):1] =[| K™ |:| K*|]. Indeed, since

G(R'/K) = 6(L/K) = G(L,K),
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we have T, C K’. Furthermore,
[K': K] = [G(K'/K) : 1] [I(K'/K) : 1]
< [K’: K] [Hom(| K" || K* |, R™) : 1]
<[R:KJ[K"|:|K[|]<[K:K].

Therefore all the inequalities are actually equalities, and our claim follows. The case
of an arbitrary L is deduced from this, using Lemma 2.4.5.

(iv) As above, it suffices to assume that L is finite over K. Suppose that W contains
an element o of order / which is prime to p. Let K’ be the subfield of L, which consists
of elements fixed by 6. Then L is a cyclic extension of K’ of degree /. Take an element
« € L with L = K'(«). If @ = Trp g (a), then replacing « by a — a/l, we may assume.
that Tty («) = 0. On the other hand, since ¢ € W then ®« = « + 8,, where | B; | < | «|.
We have

1—1

0=a-+ % + ... + % ta = la + i@
i=0

This is impossible because | X218, | < |a| =|lx|. ®
The group I(L/K) is said to be the inertia group, and the group

M(L/K) = I(L/K)/W(L/K)

(resp. W(L/K)) is said to be the moderate (resp. wild) ramification group of the
Galois extension L/K. Furthermore, applying Proposition 2.4.3 to the separable
closure K* of K, one gets the maximal unramified (resp. moderately ramified) extension K™
(resp. K™) of K. We set G= = G(K™/K), G¥ = G(K™/K), Mg = G(K™/K™)
and Wy = G(K*/K™).

2.4.6. Corollary. — (i) K™ is the separable closure R* of K and | K™ | = | K |;
(i) Gx = Gg;

(iii) My = Hom (V| K[| K* |, (R*)");

(iv) Wg is a pro-p-group. m

"~ We say that an algebraic extension L/K is unramified (resp. moderately ramified) if
LCK™ (resp. LCK™).

2.4.7. Proposition. — A finite separable extension LK is unramified (resp. moderately
ramified) if and only if it satisfies the following conditions:

a) L is K-cartesian, i.e., [L:K] =[L:KJ[|L"]:|K"|];

b) T is separable over K;

¢) |L'[ = K| (resp. p 4[| 1| : | K" []).
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Progf. — The direct implication follows from Proposition 2.4.4 and the fact that
a subfield of a K-cartesian field is K-cartesian.

2.4.8. Lemma. — Any finite extension LJK with p Y[L : K] is moderately ramified.

Proof. — The assertion follows from the fact that the wild ramification group
W(L'/K) is an invariant p-subgroup of the Galois group G(L’/K), where L' is the minimal
Galois extension of K which contains L. m

Suppose that L satisfies the conditions a)-c). Let L’ be a finite Galois extension
of K which contains L, and let K, be the maximal subfield of I which is unramified
over K. We take the field K’ C K, for which K’ = T. and claim that K’C L. Indeed,
let « be an element of K'® with K’ = IA{'(Q). Since [K':K] = (K’ : K], we have
K’ = K(«). Let P(T) be the (monic) minimal polynomial of « over K. It is clear that
P(T) e K[T]. The polynomial B(T) is separable and has a root in L. Since L? is Hen-
selian, there exists a root B of P(T) in L with § = & From this it follows that § = «
because that polynomial T’(T) is separable.

We have [L:K']=[|L*|:|K*|]]. If |L*| =]|K*|, then L =K. If p does
not divide [| L*|:| K*|], then p J[L:K’], and, by Lemma 2.4.8, L is moderately
ramified over K'. Since K’ is unramified over K, L is moderately ramified over K. m

2.5. The cohomological dimension of the fields x(x)

Recall that the /-cohomological dimension cd,(G) of a profinite group G is the
minimal integer n (or o) such that H¥(G, A) = 0 for all : > n and all /-torsion G-mo-
dules A (/is a prime integer). The l-cohomological dimension cd,(K) of a field K is, by
definition, the [/-cohomological dimension cd,(Gg). Recall also that if ! = char(K),
then cd;(K) < 1 ([Ser], Ch. II, § 2.2).

2.5.1. Theorem. — For a point x € X, one has cd,(x(x)) < cd, (k) + dim(X).

Progf. — First of all we remark that the statement is evidently true if dim(X) = 0
and that, by Proposition 2.4.1, one has cd,(x(x)) = cd,(##(x)). Consider first the case
when X is a closed disc in Al If [k(x) : ] < oo, then cd,(x(*)) < cd,(k). Assume there-
fore that [x(x) : #] = . Then the field of the rational functions in one variable %(T)
is embedded in k(x) and everywhere dense in it. Fix an embedding %(T)® < x(x)® over
the canonical embedding %(T) < x(x). Since the field k(x) is quasicomplete, it follows
that x(x)* = &(T)*x(x). In particular, the Galois group G,, can be identified with
a closed subgroup of G, and therefore one has cd,(x(x)) < cdy(k(T)) (loc. cit., Ch. I,
§ 3.3). By Tsen’s Theorem (loc. cit., Ch. II, § 4.2), one has cd,(k(T)) < cd;(k) + 1,
and hence cd,(x(x)) < cd,(k) + 1.

Suppose now that dim(X) > 1 and that the theorem is true for affinoid spaces
whose dimension is at most dim(X) — 1. Take an analytic function f on W which is

7
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nonconstant at any irreducible component of X and consider the induced morphism
S:X — Al The morphism f can be considered as a morphism to a closed disc of a
sufficiently big radius Y. Let y = f(x). The point x is also a point of the J#( y)-affinoid
space X, whose dimension is at most dim(X) — 1. By induction,

cdy(#(x)) < cdy(#(5)) + dim(X) — 1,

and, by the first case, cd,(5#()) < cd,(k) + 1. The required inequality follows. m

If I is not equal to the characteristic of the residue field of %, then one can get as
follows a more strong inequality for cd,(x(x)) (the result will not be used in the sequel).
For this we recall some definitions and facts from [Ber], § 9.1.

Let K be an extension of 2 with a valuation which extends the valuation of Z.
We denote by s(K/k) the transcendence degree of K over % and by #(K/k) the dimension
of the Q-vector space V|K*|[V|k'|, and we set d(KJk) = s(KJk) + t(K[k) (the
dimension of K over k). It is clear that d(K/k) = d(K/k).

2.5.2. Lemma. — For a point x € X, one has d(x(x)[k) < dim(X). Moreover, the
equality is achieved for some point of X.

Proof. — If X is strictly k-affinoid, the assertion is proved in [Ber], 9.1.3. The proof
also shows that d(x(x)/k) = dim(X) for some point x from the Shilov boundary of &/
(see [Ber], § 2.4). In the general case we take a field K of the form K, ', for which
the algebra &’ = &/ ® K is strictly K-affinoid. Let ¢ denote the canonical map
X' =M(H') - X, and let ¢ denote the map X — X’ from Lemma 2.2.5. Since the
fiber of ¢ at x coincides with (s (x) ® K), it follows that d(x(c(x))/k(x)) = n. By
the strictly affinoid case, d(k(c(#))/K) < dim(X). Let now x’ be a point from the Shilov
boundary of &/’ for which d(k(x')/K) = dim(X). It is easy to see that x’ = o(x) where
x = @(x'). Therefore d(x(x)/k) = d(x(x')/K) = dim(X). m

~

2.5.3. Theorem. — Suppose that |+ char(k). Then for a point x € X, one has
cd(x(x)) < cd,(k) + d(x(x)[R).

2.5.4. Lemma. — Let K be a quasicomplete field, and let ¢ be a prime integer different from
char(K). Suppose that the numbers cd,(K) and s,(K) = dimg (| K*|/| K" |') are finite.
Then cd,(K) < cd)(K) + 5(K).

Proof. — Since Wy is a p-group, then cd,(K) = cd,(GEF). Furthermore, since
the group Mg is abelian, cd,(Mg) coincides with the /-cohomological dimension of
the l-component of My. The latter group is isomorphic to Z}™, and therefore
cd;(Mg) = 5,(K). Since G¥ = Gg, the required fact follows from the spectral sequence
H?(Gg, H{(Mg, A)) = H? TG, A). m

Proof of Theorem 2.5.3. — As in the proof of Theorem 2.5.1 consider first the
case when X is a closed disc in Al Let ' be a point of X' = X ® E* over x. Since the



ETALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 51

field x(x) £* is everywhere dense in x(x’) and the both fields are quasicomplete, from
Corollary 2.4.2 it follows that G, G,);s. Therefore there is an exact sequence

0 g Gx(:c’) g Gx(z) g G(K(x) ks/K(x)) - O

The latter group is a closed subgroup of G,, and hence its cohomological dimension is at
most cd,(%). It follows that cd,(k(x)) < cd,(&) + cd;(x(#')). Since d(k(x)[k*) = d(x(x)[k),
Lemma 2.5.4 implies that cd,(x(x")) = d(x(x)/k).

Suppose now that dim(X) > 1 and that the theorem is true for affinoid spaces
whose dimension is at most dim(X) — 1. As in the proof of Theorem 2.5.1 we can
find a morphism f: X — Y, where Y is a closed disc in Al, such that all of the fibres
of X has dimension at most dim(X) — 1. Let_ y = f{x). By induction,

cdy(#(x)) < cdy(H#())) + d(H#(%)[# (),
and, by the first case, cd;(5#(y)) < cd,(k) + d(o#(y)/[k). Since
d(H ()| H# () + d(H# ())[k) = d(# (x)[F),

the required inequality follows. m

2.6. GAGA over an affinoid space

Let % be a scheme of locally finite type over &, and let F be the functor from the
category of morphisms Z — X, where Z is a good analytic space over %, to the cate-
gory of sets which associates with Z — X the set of morphisms of locally ringed
spaces over &, Homy(Z, #).

2.6.1. Proposition. — The functor F is representable by a closed morphism of k-analytic
spaces H* — X and a morphism of locally ringed spaces w: %™ — . The correspondence
B > Y™ is a_functor which commutes with extensions of the ground field and with fibred products.

Proof. — The k-analytic space #%** is constructed in the same way as in the case
when X = #(k) (see [Ber], 3.4.1). Namely, one shows that if % is the affine space
over &, A, then %™ = A% = X x A% After that one shows that if #*® exists for ¥,
then 2" exists for any subscheme & C #. In particular, #*" exists for any affine scheme
of finite type over £ and for any its open subscheme. Finally, if # is an arbitrary scheme
of locally finite type over &, then one takes an open covering { #;};.; of ¥ by affine
subschemes of finite type over Z. One glues together all of the #s and obtains the
k-analytic space #*" associated with %. That the correspondence & — %** is a functor
possessing the necessary properties follows from the universal property of #**. m

2.6.2. Proposition. — The map ©: Y = ¥* — ¥ is surjective, and for any point y € Y
the ring Oy , is flat over O ,, where y = =(y) (i.e., ™ is a faithfully flat morphism).
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Proof. — By Proposition 2.1.1, the map X — & is surjective. Therefore to show
that the map = :Y — & is surjective, it suffices to verify that for any point x € X the
map Y, - %, is surjective. One has

Y, = (% ®Opx (%)™

Since the morphism of schemes %, ®, ., #(x) — %, is faithfully flat, the situation is
reduced to the case when X = (k). In this case it suffices to verify that if % is an
irreducible affine scheme of finite type over % and y is its generic point, then there exists
a point y € Y whose image in # is y. The Noether Normalization Lemma reduces the
problem to the case when % is the affine space A% In this case, for any point y e Y = A?
associated with a closed polydisc, n( ») is the generic point of # = A‘

2.6.3. Lemma. — The map w:Y = #** — ¥ induces a bijection
Yo 5%, ={ye¥|[k(y) :k] < o}
If yeY,, then there is an isomorphism of completions 0;: e (D/Y\v

Proof. — Let ye¥,. For n> 1 we set & = Spec(Uq y/my). The scheme 2
consists of one point z and is finite over k. Therefore Z = 2™ consists of one point 2,
and one has 0y , = O ,/m] = 0, ,. Furthermore, there is a canonical closed immersion
Z — % which takes z to y. Therefore Z —Y is also a closed immersion, and the
point p, which is the image of z in Y, is the only preimage of y in Y. (In particular,
Y, > %,.) Moreover, one has

Oy ,m; >0, ,= 0y [m} 0Oy .

—~

If n =1, we get m, = m, Oy , and k(y) = (). Hence &_,,/: =0y, m

From Lemma 2.6.3 it follows that 0y , is flat over O , at least in the case when
7 €Y,. In the general case we take a sufficiently big non-Archimedean field K over %
such that there exists a K-point 3’ € Y’ = Y® K over y. We set X' = .#(« ® K) and
&' = Spec(o/ ®K). One has Y = @™ where ¥’ = ¥ X, %'. Let y' be the image
of the point y’ in #’. We know that Oy, ,, is flat over 0. , . Since £’ is faithfully flat
over & (Lemma 2.1.2), it follows that 0. . is flat over Oy ;, and therefore Oy, . is

flat over 0y ,. Finally, from Corollary 2.1.3 it follows that Oy ,. is faithfully flat
over Oy ,. Hence Oy , is flat over Oy ,. W

2.6.4. Proposition. — Let T be a constructible subset of ¥. Then =~ (T) = =~ }(T).

2.6.5. Lemma. — Suppose that ¥ is affine of finite type over &. Let 'y, z be points of ¥
with z €Y, and let z be a point of U™ with n(z) = z. Then any open neighborhood of z contains
a point y with ©(y) =y.

Proof. — For a non-Archimedean field K over , we set &' = A® K, X' = #("),
Z' = Spec(H'), ¥' =¥ X4 Z'. Since ¥’ is faithfully flat over %, there exists points
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y’, 2z’ € %’ over y and z, respectively, with z’ € §'. Since the tensor product k(2) ®,,, k(z’)
is nontrivial, the valuation on x(2) extends to a multiplicative seminorm on it. It follows
that there exists a point 2z’ € #"*® whose image in %’ is z’ and in #*® is z. Thus, we can
extend the field £, and, in particular, we may assume that the valuation on % is nontrivial
and & is strictly k-affinoid. Let # = Spec(B). Replacing B by B/gp,, we may assume
that % is reduced and irreducible and that y is its generic point. Since %" is everywhere
dense in #*", we may assume that z € #3". Furthermore, since the ring B is excellent
(it is finitely generated over the excellent ring &), Reg(%) is an everywhere dense
Zariski open subset of #. Shrinking %, we may assume that % is regular. In this case
the homomorphism B — @ , is injective. From Lemma 2.6.3 it follows that the homo-
morphism B — @pan , is injective. Take a sufficiently small connected strictly affinoid
neighborhood V = #(%,) of the point z. The latter homomorphism goes through %,
therefore the homomorphism B — % is injective. Since #/*" is regular and V is connected,
the ring %, is an integral domain. By Proposition 2.1.1, there exists a point » € V for
which the character #, — 5 (») is injective. It follows that the character Z — 5#( y)
is injective, and therefore =( ») is the generic point of #. m

Proof of Proposition 2.6.4. — It is clear that =~ '(T) C =~ (T). To verify the inverse
inequality, we may assume that T = #. Since T is constructible, it contains an every-
where dense Zariski open subset of # and, in particular, all of the generic points of #.

From Lemma 2.6.5 it follows that =7 }(T) = #**. m

2.6.6. Corollary. — A constructible set ‘T is open (resp. closed, resp. everywhere dense)
in ¥ if and only if nw—(T) is open (resp. closed, resp. everywhere dense) in %/*". m

2.6.7. Corollary. — A morphism ¢ : & — ¥ between schemes of locally finite type over X
is separated if and only if @™ : 2" — H* is separated.

Proof. — Let A: % - Z X4 Z be the diagonal morphism. If ¢ is separated,
then A is a closed immersion, and it follows that so is A*. Assume that ¢*" is separated.
It suffices to verify that the set A(Z) is closed in & X4 Z. This follows from Corol-
lary 2.6.6 because A(Z) is a constructible set and its preimage in 2™ Xgan 2™
is closed. m

2.6.8. Proposition. — For a morphism ¢ : & — ¥ between schemes of locally finite type
over &, one has n Y (p(Z)) = ¢*™(Z™).

Proof. — From the construction of the analytification it follows that the statement
is true when 2 is an open subscheme of % and, if { %, },.; is |an open covering of %,
then { #3" },c is an open covering of #**. Hence the situation is reduced to the case
when % = Spec(B) and £ = Spec(C) are affine schemes of finite type over Z. The
inclusion ¢**(2™) C n~!(p(Z)) is evident. To verify the converse inclusion, it suffices
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to show that if q is a prime ideal of C, then any multiplicative norm on B/p, where p
is the preimage of q in B, extends to a multiplicative norm on C/q. But this follows
from the well known fact that a valuation on a field can be extended to a valuation on
any bigger field. m

The following statement is proved in the same way as its particular case when
X = M) (see [Ber], 3.4.7).

2.6.9. Proposition. — Let ¢ : & — % be a morphism of finite type between schemes of
locally finite type over Z. Then ¢ is proper (resp. finite, resp. a closed immersion) if and only if ™
possesses the same property. m

2.6.10. Proposition. — Let ¢ : Z = Spec(C) — % = Spec(B) be a finite morphism
between affine schemes of finite type over &. Let z € & and y € U™ be points with ¢(z) = n(y) =y,
and let o™ () ={2z, ..., 2,} and ¢ () nnNz) ={z,...,2,}, m<n Then
there is an isomorphism of rings
H (02”‘“, z,) 0z

m
aqyan,,”@@g v 0_“2‘,z - H 09;311’ % X
’ i=1 i=m+1

where (Ogan ), 15 the localization with respect to the complement of the prime ideal of G cor-
responding to the point z.

Proof. — If V is an affinoid domain in #**, then for its preimage W in 2™ one
has €y = #,®5 C. Since ¢ is finite, from Lemma 2.1.6 it follows that
wgan’v ®B c3 H?=1 (PZm‘,l.. The ring 0@"‘"‘,11 ®0@I,y 09',1 is the localization of 0gan‘”®B C
with respect to the complement of ,. If ©(z) = z, then the ring Ogan ,. does not change
under this localization. The required statement follows. m

§ 3. Etale and smooth morphisms

3.1. Quasifinite morphisms

3.1.1. Definition. — A morphism of %-analytic spaces ¢ : Y — X 1is said to be finite
at a point y €'Y if there exist open neighborhoods ¥~ of y and % of ¢( ») such that ¢ induces
a finite morphism ¥~ — %; ¢ is said to be quasifinite if it is finite at any point y € Y.

It follows from the definition that quasifinite morphisms are locally separated
and closed.

3.1.2. Lemma. — If a morphism ¢ : Y — X is finite at a point y €Y, then the neigh-
borhoods ¥~ and U from the Definition 3.1.1 can be found arbitrary small.

Progf. — We may assume that the morphism ¢ is finite. Let x = ¢(») and let
e (%) = {91 =02 - +> I }- Since the map |Y | - | X | is compact, we can find a
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sufficiently small open neighborhood # of x such that ¢~ (%) = II7_, ¥;, where

y;€¥,and ¥, NnY¥,; =0 for i+j. It follows that all of the morphisms ¥; — %
are finite, and the neighborhood ¥] of y is sufficiently small. m

3.1.3. Corollary. — Quasifinite morphisms are preserved under compositions, under any
base change functor, and under any ground field extension functor. m

We remark that if ¢ : Y — X is a quasifinite morphism and the space X is good,
then Y is also good. Quasifinite morphisms between good k-analytic spaces can be
characterized as follows.

3.1.4. Proposition. — Let ¢ : Y — X be a morphism of good k-analytic spaces, and let
y€Y and x = @(9). The following are equivalent:

a) @ is finite at y;

b) there exist sufficiently small affinoid neighborhoods V of y and U of x such that ¢ induces
a finite morphism V — U;

¢c) the point y is isolated in the fibre ¢~ (x) and y € Int(Y/X).

Proof. — The implications @) =¢) and b) =¢) are trivial. The implication
b) = a) follows from the following Lemma.

3.1.5. Lemma. — Let ¢: Y — X be a morphism, and let VCY and UC X be affinoid
subdomains such that ¢ induces a finite morphism § : V — U. Then Int(V]Y) = ¢~ *(Int(U/X)).
In particular, ¢ induces a finite morphism Int(V]Y) — Int(U/X).

Progof. — From [Ber], 3.1.3, it follows that
Int(V/X) = Int(V]Y) N Int(Y/X) = Int(V/Y).

On the other hand, Int(V/X) = Int(V/U) N ¢~ (Int(U/X)) = ¢~ (Int(U/X)). There-
fore Int(V/Y) = ¢7(Int(U/X)). m
To verify the implication ¢) = b), it suffices to assume that X = .#(&f) and
Y = .# (%) are k-affinoid. Furthermore, since X and Y are compact, we can decrease
them and assume that ¢~ '(x) ={}. Since y e Int(Y/X), there exists an admissible
epimorphism
n:d {7 Ty, ..., ;' T, } > &

such that | =(T}) (»)| <7, 1< i< n For any affinoid neighborhood U of », = induces
an admissible epimorphism
gt Lg{m Ty, .., T} > By

If U is sufficiently small, then ¢~!(U) is a sufficiently small affinoid neighborhood
of the point y. Therefore we can find sufficiently small U such that | =(T,) ()| <~
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for all points y’ € ¢~ '(U). This means that the induced morphism of k-affinoid spaces
¢ (U) - U is closed. By [Ber], 2.5.13, the latter morphism is finite. m

3.1.6. Corollary. — If a morphism of good k-analytic spaces ¢ : Y — X is finite at a point
Y €Y, then Oy, is a finite Og ., -algebra. m

Recall that a morphism of schemes ¢ : % — % is called quasifinite if any point
y € ¥ is isolated in the fibre ¢~ !(x) = #,, where x = ¢(y) (see [SGAl], I.2).

3.1.7. Corollary. — A morphism ¢ : & — ¥ between schemes of locally finite type over
X = Spec(), where L is a k-affinoid algebra, is quasifinite if and only if the corresponding
morphism @ 1 ™ — ¥ is quasifinite.

Proof. — For any point y € #*, there is an isomorphism of #( y)-analytic spaces

(gy ®k(y)'9f(.y))m = zy

Therefore our assertion follows from the fact that the morphism ¢*" is closed (Pro-
position 2.6.1). m

3.1.8. Proposition. — Let ¢ : Y — X be a morphism of k-analytic spaces, and let y € Y
and % = (). Then the following are equivalent:

a) ¢ is finite at y;

b) there exist analytic domains X, ..., X, CX such that xeX, n... NnX,,
X, U ... UX, is a neighborkood of x and the morphisms ¢~ Y(X,) — X, are finite at y;

¢) there exist affinoid domains V,,...,V,CY and Uy, ..., U, CX such that
yevin...nV,, V;u...UV, and Uyu ... U, are neighborhoods of y and x,
respectively, ¢(V,) C U;, and the induced morphisms ¢,: V, - U, and ¢,;: V, "V, > U, N U,
are finite at y.

We remark that if the spaces X and Y are separated, then the finiteness at y of
all the morphisms ¢, from ¢) implies the same property for the morphisms ¢,;. Indeed,
in this case U; " U, and V; NV, are affinoid domains and, by Proposition 3.1.4,
it suffices to verify that y eInt(V, nV,[/U, nU,)). If V,;:=¢;7}(U, nU,), then
y€Int(V,,/U;, nU,), and therefore y e Int(V;; n V,/U, N U,). It remains to note
that V; NV, =V, NV,

Proof. — The implication @) = b) is trivial. Furthermore, we remark that all
three properties remain true if we replace X and Y by sufficiently small open neigh-
borhoods of the point x and y, respectively. In particular, we may assume that X and Y
are Hausdorff.

b) =c¢). We may assume that X; = U; are affinoid domains. Then we can
find affinoid neighborhoods V| of y in ¢~ '(U;) such that the induced morphisms



ETALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 57

@; : V{ = U/ are finite at y. Furthermore, shrinking X and Y, we may assume that
the morphisms ¢; are finite and ¢; ~'(x) ={y}. Thus we get a morphism ¢ : V — U,
where V=Vju ... UV, and U=Uju... UU, are compact analytic neigh-
borhoods of y and x, respectively. It follows that we can find on open neighborhood %
of x in X with % C U such that ¥" := {~*(%) is an open neighborhood of y in Y and,
for every 1< i< n, ¢7(U; Nn %) CV,. If now U, is an affinoid neighborhood of x in
U; N, then V,;:={¢~'(U,) is an affinoid neighborhood of y» in V; N %] and the
induced morphism ¢, : V, — U, is finite. Since V; "V, = ¢; (U, n U,), the induced
morphisms ¢;;: V, "V, > U, n U, are finite. Hence, ¢ satisfies ¢).

3.1.9. Lemma. — If Y is an analytic domain in X and the canonical morphism Y — X
is quasifinite, then Y is open in X.

Proof. — Since quasifinite morphisms are closed, Int(Y/X) =Y. By Proposi-
tion 1.5.5 (ii), Int(Y/X) coincides with the topological interior of Y in X. It follows
that Y is open in X. m

¢) = a). We can shrink all the affinoid domains V; and assume that ¢; *(x) ={» }.
Then for sufficiently small affinoid neighborhoods U; of x in U, ¢;(U;) and
0;; (U nU}) = ¢/} (U;) Nne;(U;) are sufficiently small neighborhoods of y in V
and V; NV, respectively. Thus, we can shrink all the affinoid domains U, and assume
that all of the morphisms ¢, and g,; are finite.

Furthermore, the morphism ¢; induces finite morphisms ¢;;: V, "V, > U, n U,
and V,;:=¢;'(U;,nU,;,) >U;nU,, and therefore the canonical embedding of
special domains V, "V, -V, is finite. From Lemma 3.1.9 it follows that V, NV,
is open in V,;, and therefore V;; = (V, n V,) I W,, for some special domain W;CV,.
We get o~ (U) = V,IIW,, where W, =U,,,W,. Since yeV,n...nV,, we
have x ¢ ¢(W,), and therefore we can find, for each 1 < i < 7, an affinoid neighborhood U;
of x in U, such that U] N ¢(W,) = . The latter implies that ¢~ }(U;) = V| := ¢; }(U;).
Hence, the morphism V;u ... UV, ->U;/u ... uU, is finite, and the required
statement follows. m

3.1.10. Corollary. — A morphism of k-analytic spaces ¢ : Y — X is finite at a point
y €Y if and only if the point y is isolated in the fibre o~ '(o(»)) and y € Int(Y[X).

Progf. — The direct implication is clear. Suppose that y is isolated in ¢~ *(¢(y))
and y € Int(Y/X). We can shrink Y and assume that ¢ is closed. Let U, ..., U, be
affinoid domains in X such that ¢(») eU;n ... nU, and U, U ... U U, is a neigh-
borhood of ¢(y). From Proposition 3.1.4 is follows that ¢~ '(U,) - U, are closed
morphisms of good %-analytic spaces. In particular, the property 4) of Proposition 3.1.8
holds. It follows that ¢ is finite at y. m
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3.2. Flat quasifinite morphisms

A morphism of good k-analytic spaces ¢ : Y — X is said to be flat at a point y € Y
if Oy , is a flat Ox ,-algebra. ¢ is said to be flat if it is flat at all points y € Y.

3.2.1. Proposition. — A finite morphism of k-affinoid spaces ¢ : Y = M(B) - X = M (A)
is flat at a point y € Y if and only if .Zfé’py is a flat o , -algebra, where x = (). In particular,
o is flat if and only if B is a flat of-algebra.

Proof. — If Oy , is flat over O ,, then it is also flat over &/, , by Theorem 2.1.4.
Thus, the ring Oy , is faithfully flat over u@py and is flat over &/, . It follows
that .%@,y is flat over &, . Conversely, suppose that .@'Py is a flat &, -algebra.
Then the ring @X,w®w’px By, 1s flat over O ,. If o (%) ={91 =2, - -»0a }» then
Ox,®,%=I17_, 0y y; (Lemma 2.1.6). But the ring Oy , ® ot ﬂpy is the localization

of O ,®_, % with respect to the complement of gy, and therefore, is a direct product
of the same localizations of the rings Oy ,.. Since the ring Oy , does not change under
this localization, it is a direct summand of the flat 0y ,-module Oy ,®,, ﬂpy. It

follows that Oy , is a flat Oy ,-algebra. m

3.2.2. Corollary. — A morphism of good k-analytic spaces ¢ : Y — X is flat quasifinite if

and only if for any point y €Y there exist affinoid neighborkoods V of y and U of x = () such
that (V) C U and &y is a flat finite o/ y-algebra.

Proof. — The converse implication follows from Proposition 3.2.1. Suppose
that ¢ is flat quasifinite. By Corollary 3.1.6, Oy , is a finite Oy ,-algebra. Therefore
there is an isomorphism 0% , = Oy ,. It is clear that it comes from a homomorphism
Ay — By for some affinoid neighborhoods V of y and U of x such that ¢ induces a finite
morphism ¢ : V — U. The homomorphism considered is related to a homomorphism
of sheaves 0y — ¢,(0y). The supports of the kernel and cokernel of the latter homo-
morphism are Zariski closed in U and do not contain the point x. It follows that one
can decrease U and V such that Oy > {,(0y), ie., 5> %y. Hence ¢:V ->TU is
a flat finite morphism. m

3.2.3. Proposition. — Let ¢:Y — X be a finite morphism of k-analytic spaces, and let
y€Y and x = (). Then the following are equivalent:

a) there exist affinoid domains Vi, ..., V,CX such that xeV,n...NV
ViU ... UV, is a neighborhood of x and ¢~ *(V,) -V, are flat at y;
b) for any affinoid domain x € VC X, o~ (V) — V is flat at y.

"

Progf. — The implication 4) = @) is trivial. Suppose that a) is true. Then ) is
true for any V that is contained in some V,. Assume that V is arbitrary. Replacing V
by a small affinoid neighborhood of x in V, we may assume that VCV, u ... UV,. By
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Lemma 1.1.2 (ii), there exist affinoid domains U,, ..., U,suchthatV=U,u ... U,
and each U is contained in some V. By the first remark, if x € U;, then the finite

morphism ¢~!(U;) — U, is flat at y. Therefore the required fact follows from the fol-
lowing lemma.

3.2.4. Lemma. — A finite morphism of k-affinoid spaces o : Y — X is flat at a point
> €Y if and only if there exists a finite affinoid covering { V,}, <. <, of X suck that, for each
with o(y) €V, the induced finite morphism o~ *(V,) -V, is flat at y.

Proof. — Shrinking X, we may assume that ¢(») e V; n ... NV, . Furthermore,
from Proposition 3.2.1 it follows that we can shrink X and Y and assume that all of
the morphisms ¢~ !(V,) — V, are flat. It suffices to show that ¢ is flat after an extension
of the ground field. Therefore, we may assume that the valuation on % is nontrivial,
and all V; are strictly k-affinoid. (Then X and Y are also strictly k-affinoid.) If x € X,
then 0y , = Oy, , for any V, that contains x. It follows that ¢ is flat at all points of Y,
ie., ¢ is flat. m

Let ¢: Y - X be a quasifinite morphism of k-analytic spaces.

3.2.5. Definition. — The morphism ¢ is said to be flat at a point y € Y if there exist
open neighborhoods ¥~ of y and # of ¢( ») such that ¢ induces a finite morphism ¥~ — %
that possesses the equivalent properties of Proposition 3.2.3; ¢ is said to be flat if it is
flat at all points of Y.

From Proposition 3.2.3 it follows that if a quasifinite morphism ¢ : Y — X is flat
at a point y € Y, then the neighborhoods ¥~ and % can be found sufficiently small.

3.2.6. Corollary. — Flat quasifinite morphisms are preserved under compositions, under
any base change functor, and under any ground field extension functor. m

3.2.7. Proposition. — A flat quasifinite morphism ¢ : Y — X is an open map.

Proof. — We may assume that X and Y are k-affinoid. Let y € Y and x = ¢( ).
By the proof of Corollary 3.2.2, there exist affinoid neighborhoods V of y and U of »
for which there is an isomorphism %, > &%. In particular, the canonical homo-
morphism &/ — %y is injective and finite. By [Ber], 2.1.16, the map

$:V=AM(By) >U =MLy
is surjective. By Lemma 3.1.5, Int(V[Y) = ¢~ *(Int(U/X)), and therefore
¢(Int(V[Y)) = Int(U/X). m

3.2.8. Proposition. — Let @ : Y — X be a quasifinite morphism. Then the set of poinis
v €Y such that ¢ is not flat at y is Zariski closed.
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Progf. — We may assume that ¢ is a finite morphism of %-affinoid spaces. In this
case Proposition 3.2.1 reduces the statement to the corresponding fact for morphisms
of ‘affine schemes. m

3.2.9. Proposition. — Let ¢:Y — X be a closed morphism of pure one-dimensional
good k-analytic spaces, and suppose that X is regular and Y is reduced. Then o is flat quasifinite
if and only if ¢ is nonconstant at any irreducible component of Y.

Progf. — The direct implication is trivial. Suppose that ¢ is nonconstant at any
irreducible component of Y. Then ¢ has discrete fibres, and therefore is quasifinite, by
Proposition 3.1.4. It follows that for any point » € Y we can find connected affinoid
neighborhoods V of y and U of ¢( ) such that ¢ induces a finite morphism of k-affinoid
spaces V — U. Then &7y is a one-dimensional regular integral domain, the ring %,
is reduced, and the canonical homomorphism &7, — %, is injective. By [Ha2], II1.9.7,
Ay is a flat o/ -algebra. m

3.2.10. Proposition. — A morphism ¢ : & — % between schemes of locally finite type
over = Spec (), where o is a k-affinoid algebra, is flat quasifinite if and only if the corres-
ponding morphism ¢* : X — Y™ is flat quasifinite.

Proof. — Since #*® and Z** are faithfully flat over # and Z, respectively, the
converse implication follows. Assume that ¢ is flat quasifinite. Then ¢* is quasifinite,
by Corollary 3.1.7. Let z € ™, y = ¢**(2), z = ©n(2), and y = =n(_y). We may replace %
and Z by open affine subschemes of finite type over Z. By Zariski’s Main Theorem,
there is an open immersion of & in an affine scheme & finite over . Then Z* — Z*
is also an open immersion, and 2™ is finite over #*". By hypothesis, 0, , is flat over Oy ,.
Therefore Ogan, ”®%,y Oy, , is flat over Ogyan ,. By Proposition 2.6.10, Ogyan , is a direct
factor of the above tensor product. It follows that Ogyan , is flat over Opan ,. W

2

3.3. Etale morphisms

We start this subsection with establishing basic properties of the sheaves of dif-
ferentials that were introduced in § 1.4. Of course, the essential case is that of k-affinoid
spaces.

Let ¢:Y = M(B) - X = M(/) be a morphism of k-affinoid spaces. In this
case the sheaf Qg is associated with the finite Banach #-module Qg , = J/J2, where J
is the kernel of the multiplication y: #®_, & — #. Furthermore, let M be a Banach
#-module. An /-derivation from % to M is a bounded map D:# — M such that
D(x + ») = Dx + Dy, D(xy) = » Dy + y Dxand D(/) = 0. The set of all «/-derivations
from % to M is a Banach #-module with respect to the evident norm. It is denoted by
Der_(#, M). For example, the mapping Z - J:x+— 1®x — x® 1 induces an &/-deri-
vation d: % — Qg . ‘
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3.3.1. Proposition. — (i) The finite B-module Qg , is generated by the elements dx, x € 4.
(ii) For any Banach %-module M there is a canonical isomorphism of Banach %B-modules

Homg(Qg,,,, M) = Der, (%, M)
(the left hand side is the set of all bounded %B-homomorphisms).

Proof. — (i) Let T be the #-submodule of Qg4 , generated by the elements dx, x € #.
Recall that the ring # is Noetherian, and all its ideals are closed. Since Qg , is a finite
Banach #-module, T is closed in it. We claim that for any w € Qg4,, and any ¢ > 0 there
exists an element ¢ € T with || w — ¢ || < . Indeed, let v be an inverse image of w in J.
There exists an element X', x,®y, € #®,# such that ||v — X'  x®y || <e
Since p(v) =0, || Zr_, %, || < e. We have

2x®y =2 (x01)(1®y, —y,®1) + X x9®1.
i=1 i

i=1 i=1

I'herefore
|| o El(xi@l) (1®y, —»,®1)]
< max(|| v p> x®y; |, || % %2,01|) <e.
i=1 i=1

The required claim follows.

(ii) It is clear that the homomorphism considered is bounded. From (i) it follows
that it is injective. Therefore it suffices to construct an inverse bounded homomorphism.
Consider the following Banach #-algebra & * M. As a Banach #-module it is the direct
sum of # and M. Its multiplication is defined as follows: (x, m) (y, ) = (x, xn 4 ym).
Let now D: # —~ M be an &/-derivation. The bounded /-bilinear mapping

BXRB—~>RB*M:(x,9) — (2, xDy)

induces a bounded homomorphism of Banach «/-algebras ¢: #® , B — % * M. The
reasoning from (i) shows that ¢(J) C M. Since M2 = 0, the homomorphism ¢ induces
a bounded homomorphism of Banach %-modules f:Qg , =J/J* -~ M. We have
Dx = f(dx) for all x € #. That the correspondence D i f is bounded follows from the

construction. m

3.3.2. Proposition. — Suppose we are given a commutative diagram of morphisms of
k-analytic spaces

Yy % X

NA

S
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(1) There is an exact sequence
0a(Qxqss) > Lygae > Lygx, 0

(i) If ¢ is a closed immersion and S, is the subsheaf of ideals in O that corresponds to Y,
then there is an exact sequence

Fal fé - ‘PE(QXG/SG) g qu/se — 0.

Proof. — We may assume that X = #(), Y =.#(#) and S = H(¥) are
k-affinoid.

(i) We have to show that the sequence of finite Banach %-modules

Qe ®y B — Qe Qg —0

is exact (note that Q_,®, % = Q_,®,, %). For this it suffices to show that for any
finite Banach #-module M the induced sequence

0 - Homg(Qg, s M) — Homg(Qg e, M) — Homy(Q,/ ¢, M)

is exact. But, by Proposition 3.3.1, the latter sequence coincides with the sequence
0 — Der,(#, M) — Dery(%#, M) — Dery(2/, M) which is exact for trivial reasons.
(ii) Let J be the ideal of & corresponding to #. We have to show that the sequence

of finite Banach #-modules J/J? 2o w6 O B — Qg — 0 is exact, where 3(x) = dx® 1.
As above, it suffices to show that for any finite Banach #-module M the sequence
0 — Dery(#, M) — Dery(&Z, M) — Homg(J/J2, M) is exact, but this is evident. m

3.3.3. Proposition. — Let ¢ : Y — X be a morphism of k-analytic spaces. Then:

(i) for any morphism of k-analytic spaces f:X' — X, one has Qyx = f5" (Qyyxs)s
where f' is the induced morphism Y' =Y Xy X' >Y;

(ii) for any non-Archimedean field K over k, one has Qg . = fo'(Qyyx,), where f'
is the induced morphism Y = Y ®K - Y.

Proof. — We may assume that Y = (%), X = (L) and X' = (') from (i)
are k-affinoid. In this case Qyy is defined by the finite Banach #-module J/J2, where J
is the kernel of the multiplication ¥ = #®_, # — #. Note that the exact admissible
sequence 0 - J - € - % — 0 is split.

(i) If B = BB, ', then Qy, 5 is defined by the finite Banach %’-module J'/J'?,
where ]’ is the kernel of the multiplication ¢’ = %' ®_, #' — #'. We have to show that
JJ2®, B ][]’ (since J/J? is a finite Banach #-module, J/J2 Q4 B’ = J|J2 B4 &').

The exact sequence 0 —J' — €' — %' — 0 is obtained from the above exact
sequence by tensoring with &/’ over 7. It follows that J' = J&_, &' = J®, €' =J¥¢
because J is a finite Banach %-module. Tensoring the exact sequence

0—>J2 =] =JJ2 =0
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with €’ over %, we get an exact sequence J?2®, €' —]J —J/J2®, €' — 0. Since
JJ?®, € = J|J?*®4 #' and the image of J2®, €’ in J' = J¥ coincides with J'2 = J2 €,
we get the required isomorphism.

(i) If &' =L BOK and &' = #OK, then Qy,x is defined by J'/J’2, where
J’ is the kernel of the multiplication ¥’ = #'®,,, # — %'. As above we get that
J=]JO®K =]J% and J2=]J2®K = J2 ¥". Therefore J/J2® K = J'/J’2. It remains
to note that J/J2O K = J/J2 @, %". m

Let ¢: Y — X be a quasifinite morphism.

3.3.4. Definition. — The morphism ¢ is said to be unramified if Qy y = 0. It
is said to be étale if it is unramified and flat. It is said to be unramified (resp. élale) at a
point y € Y if there exists an open neighborhood ¥~ of y such that the induced morphism
¥ — X is unramified (resp. étale).

For example, if ¢ is a local isomorphism at a point y € Y (i.e., there exist open neigh-
borhoods ¥~ of y and % of ¢(x) such that ¢ induces an isomorphism ¥~ 5 %), then ¢
is étale at y. Therefore if ¢ is a local isomorphism (i.e., ¢ is a local isomorphism at every
point y € Y), then ¢ is étale.

3.3.5. Lemma. — If ¢:Y — X is a quasifinite morphism of good k-analytic spaces,
then the stalk of Qyx at a point y €Y coincides with the module of differentials Qg ,, where
B=0y, A=0, and x = ¢().

Proof. — We may assume that ¢ is a finite morphism of k-affinoid spaces
Y =uM(B) >X=ML). In this case BO, B =B ®,, %, and therefore Qyy is
defined by the module of differentials Qg , (regarded as a finite Banach %-module).
The required statement easily follows from this. m

3.3.8. Corollary. — A quasifinite morphism of good k-analytic spaces ¢:Y — X is
unramified (resp. étale) at a point y € Y if and only if Oy Jm, Oy  is a finite separable extension
of the field x(x) (resp. and Oy , is flat over O ), where x = ¢(y). M

The following statement is straightforward from the definitions.
3.8.7. Proposition. — Let ¢ : Y — X be a quasifinite morphism and y € Y. Then the
JSollowing are equivalent:

a) ¢ is unramified at y;
b) the support of Qyx does not contain y;
¢c) the diagonal morphism A:Y —Y Xx Y is a local isomorphism at y. m

3.3.8. Corollary. — Unramified (resp. étale) morphisms are preserved under compositions,
under any base change functor, and under any ground field extension functor. m

3.3.9. Corollary. — Let :Z —Y and ¢ : Y — X be quasifinite morphisms and suppose
that @y is étale and ¢ is unramified. Then § is étale.
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Proof. — The morphism ¢ is a composition of the graph morphism ', : Z - Z x 3 Y
with the projection p, : Z Xy Y — Y. The first morphism is an open immersion because it
is a base change of the open immersion Y — Y Xy Y with respect to the evident mor-
phism Z Xy Y —Y X Y, and the second one is étale because it is a base change of
the étale morphism ¢¢:Z - X. m

Let Et(X) denote the category of étale morphisms U — X. Corollary 3.3.9 implies
that any morphism in the category Et(X) is étale.

3.3.10. Proposition. — Suppose that ¢ : Y — X is a quasifinite morphism or is a closed
morphism of good k-analytic spaces. Then the set of points y € Y such that ¢ is not unramified (resp.
étale) at y is Zariski closed.

Proof. — We can replace Y by the complement to the support of the coherent
Oy,-module Qg . and assume that Qy = 0. In the second case the latter equality
implies that ¢ has discrete fibres, and therefore ¢ is quasifinite, by Proposition 3.1.4.
Hence our statement follows from Propositions 3.3.7 and 3.2.8. m

3.3.11. Proposition. — A morphism ¢ : & — ¥ between schemes of locally finite type
over & = Spec(), where A is a k-affinoid algebra, is unramified (resp. étale) if and only if
the corresponding morphism @™ : ZX* — HU** is unramified (resp. étale).

Progof. — The unramifiedness statement follows from Corollary 3.3.7 and the
simple fact that Qgangan = (Qg4)*". The étaleness statement now follows from Pro-

position 3.2.10. m

3.4. Germs of analytic spaces

A germ of k-analytic space (or simply a k-germ) is a pair (X, S), where X is a k-analytic
space, and S is a subset of the underlying topological space | X |. (S is said to be the under-
lying topological space of the k-germ (X, S).) If S = {x }, then (X, S) is denoted by (X, x).
The k-germs form a category in which morphisms from (Y, T) to (X, S) are the morphisms
9:Y —X with ¢(T)CS. The category k-%erms we are going to work with is
the category of fractions of the latter category with respect to the system of morphisms
¢: (Y, T) > (X,S) such that ¢ induces an isomorphism of Y with an open neigh-
borhood of S in X. This system obviously admits a calculus of right fractions, and so
the set of morphisms Hom((Y, T), (X, S)) in & @erms is the inductive limit of the set
of morphisms ¢ : ¥ — X with ¢(T) CS, where ¥” runs through a fundamental system
of open neighborhoods of T in Y. (Such a morphism ¢ : %" — X is said to be a repre-
sentative of a morphism (Y, T) — (X, §).) Itis easy to see that a morphism (Y, T) — (X, S)
is an isomorphism in -&erms if and only if it induces an isomorphism between some
open neighborhoods of T and S. We remark that the correspondence X (X, |X))
induces a fully faithful functor k-o/n — k-%erms.
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The category k-%erms admits fibre products. Indeed, let (Y, T) — (X, S) and
(X', 8") - (X,S) be two morphisms. If ¢: %" —X and f: %' — X are their repre-
sentatives, then (¥ Xy %', = (T X498’)) is a fibre product of (Y, T) and (X', S’)
over (X, S), where 7 is the canonical map | ¥ xx %' | = | ¥ | X|x;| %' |. Thus, for
any morphism ¢ : (Y, T) - (X, S) and a point ¥ € S one can define the fibre of ¢ at x
in the category k-@erms as the fibre product (Y, T) X x g (X, #) which is actually iso-
morphic to the 2-germ (Y, ¢~ '(x)), where ¢~ () is the inverse image of x in T. In par-
ticular, for a morphism of %-analytic spaces ¢ : Y — X and a point x € X, one has the
fibre (Y, ¢~ !(x)) of ¢ at x in the category k-@erms. (Recall that in § 1.4 we defined the
fiber Y, of ¢ at x in the category &/n, of analytic spaces over %.)

Furthermore, for a non-Archimedean field K over % there is a ground field extension
Sfunctor k-Zerms — K-Germs : (X, S) - (X ® K, =~%(S)), where = is the canonical map
X ®K — X. Similarly to &/n, one can define the category %erms, of germs of analytic
spaces over k (or simply germs over k). Its objects are pairs (K, (X, S)), where K is a non-
Archimedean field over % and (X, S) is a K-germ. A morphism (L, (Y, T)) — (K, (X, S))
is a pair consisting of an isometric embedding K < L and a morphism of L-germs
(Y, T) - (X, S) & L. As above, there is a fully faithful functor

o, — Germs, : (K, X) — (K, (X, | X ]).

For a k-germ (X,S), let Et(X,S) denote the category of the morphism
(Y, T) - (X, S) that have an étale representative ¢ : ¥~ — X with T = ¢~ !(S). It is
clear that for X ek-&/n there is an equivalence of categories Et(X) 3 Et(X, | X |).
For a point x € X, let Fét(X, x) denote the full subcategory of Et(X, x) consisting of
the morphisms (Y, T) — (X, x) that have an étale representative ¢: ¥ — X such
that the morphism ¥ — ¢(¥") is finite. (Equivalently, Fét(X, x) consists of the mor-
phisms (Y, T) — (X, ) with finite set T that have an étale separated representative
¢: ¥ — X.) For a field K, let Fét(K) denote the category of schemes finite and étale
over the spectrum of K.

3.4.1. Theorem. — Let X be a k-analytic space. Then for any point x € X there is an
equivalence of categories Fét(X, x) = Fét(H#(x)).

Progf. — Consider first the case when the point x has an affinoid neighborhood.
Let Fét(%Z(x)) denote the category of schemes finite and étale over the affine scheme
Z(x) = Spec(0 ,). Then the functor considered is a composition of the three evident
functors
Fét(X, x) — Fét(Z(x)) — Fét(x(x)) — Fét(H#(x)).

The third functor is an equivalence of categories because the field k(x) is quasicomplete.
The second one is an equivalence because the ring 0y , is Henselian. We now verify
that the first functor is faithful. Let ¢, ¢ : (Y,») — (X, #) be two morphisms that induce

9
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the same homomorphism Oy , — O , (we do not need here the étaleness of ¢ and ¢).
We may assume that X = (/) and Y = #(#) are k-affinoid, and ¢ and ¢ are
induced by two homomorphisms of k-affinoid algebras «, B: .o — %. Consider an
admissible epimorphism y:k{r;* Ty, ..., 7, ' T,} —> & and set f; = v(T,). Since the
images of a( f;) and B(f)) in Oy , coincide, we can find an affinoid neighborhood V of »
such that «(f) |y = B(f)[v- By [Ber], 2.1.5, the induced morphisms ¢|,, ¢|;: V - X
coincide, and therefore the first functor is faithful. Furthermore, we claim that a morphism
in Fét(X, x) that becomes an isomorphism in Fét(Z'(x)) is an isomorphism. Indeed, let
¢ : Y — X be an étale morphism with x = ¢( ) such that Oy , — O , is an isomorphism.
We can shrink X and Y and assume that X = .# (/) and Y = #(%#) are k-affinoid,
o '(x) ={»} and # is a free &/-module. From Lemma 2.1.6 it follows that
B®, 0« , = 0Oy ,, and therefore the rank of # over &7 is one, i.e., & > %. Finally,
that any finite étale morphism over Z'(x) comes from an étale morphism over (X, x)
is obtained by the construction from the proof of Theorem 2.1.5. That the first functor
is fully faithful now follows from the fact that any morphism in the categories Fét(X x)
and Fét(%(x)) is étale.

Suppose now that the point x is arbitrary. We may assume that the space X
Hausdorff, and we take affinoid domains U,, ..., U, such thatx e U; n ... n U, and
U,u...uU, is a neighborhood of x. First we verify that the functor considered
is faithful. Indeed, let¢ : Y — X and ¢ : Z — X be two étale morphisms with ¢~ *(x) ={y}
and ¢ !(x) ={ 2}, and suppose that f,g:Z — Y are two morphisms over X with
f(2) = g(2) = that give rise to the same embedding of fields #( ») < #(z). By the
first case, we can find for each 1< i< n an affinoid neighborhood W; of z in ¢~*(U))
such that f|y. = glw,. Then the analytic domain W = W, U ... U W, is a neighborhood
of the point z and f lw g|w It follows that the morphism from (Z, z) to (Y, y) induced
by f and g coincide. In the same way one shows that a morphism in Fét(X, x) that
becomes an isomorphism in Fét(#(x)) is an isomorphism. Since any morphism in the
category Fét(X, x) is étale, to prove the theorem it remains to show that the functor
considered is essentially surjective.

Let K be a finite separable extension of the field #(x). By the first case, we can
shrink all U; and find finite étale morphism ¢,:V, — U, such that ¢;'(x) ={»}
and there are isomorphisms of fields K = 5#( y,) over 5#(x). (We fix such isomorphisrils.)
Suppose first that X is separated at . Then we may assume that X is separated, and
therefore U; N U, are affinoid domains. Setting V,; = ¢; (U, N U,), we have two
finite étale morphlsms V,;=>U;nU; and V; - U, n U, and, for the points y;.€V,;
and y,eV,, an 1somorphlsm of ﬁelds H( y,) 35 () over #(x) induced by the
isomorphisms K 5 5#( ») and K 5 5#( ;). By the first case, we can shrink all U,
and assume that there exist isomorphisms v;;:V;; 5V, over X that give rise to the
above isomorphisms of fields. By construction, V; = V; and v;;(V;; " V;) =V, n'V,.
We now can shrink all U; and assume that v; = v, 0v;; on V;; nV,. By Proposi-
tion 1.3.3, we can glue all V; along V,; and get a k-analytic space Y with a morphism
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¢ : Y — X, By Proposition 3.1.8, the morphism ¢ is finite at the point y (that corres-
ponds to the points y,). It is clear that the point y is not contained in the support
of Qy x> i-€., ¢ is unramified at y. It is flat at », by Proposition 3.2.3.

Suppose now that X is arbitrary (and Hausdorff). The intersections U, n U,
are not affinoid now, but they are separated compact k-analytic spaces, and therefore

we can apply the above construction using the fact that everything is already verified
for separated spaces. The theorem is proved. m

3.4.2. Corollary. — Let ¢:Y — X be a morphism of analytic spaces over k, and let
yeY, x = o@(y). Suppose that the maximal purely inseparable extension of S (x) in #(y) is

dense in (). Then the correspondence U U Xy Y induces an equivalence of categories
Fét(X, x) 3 Fét(Y, ). m

3.5. Smooth morphisms

a _ For a k-analytic spaces X we set AL = A? X X (the d-dimensional affine spaces over X)

3.5.1. Definition. — A morphism of k-analytic spaces ¢:Y — X is said to be
smooth at a point y € Y if there exists an open neighborhood ¥~ of y such that the induced
morphism 7~ — X can be represented as a composition of an étale morphism ¥~ — A%
with the canonical morphism A% — X; ¢ is said to be smootk if it is smooth at all points
€Y. If the canonical morphism X —.#(k) is smooth, then X is said to be smooth.

We remark that the number d is equal to the dimension of ¢ at the point y, i.e., to
the dimension of the fibre Y,, where x = ¢( ), at the point y. If this number is inde-
pendent of y, we say that ¢ is of pure dimension d. For example, smooth morphisms of
pure dimension 0 are exactly étale morphisms. We remark that smooth morphisms are

locally separated and closed. The following proposition follows easily from the definition
of smooth morphisms and Corollary 3.3.8.

3.5.2. Proposition. — Smooth morphisms are preserved under compositions, under any
base change functor, and under extensions of the ground field. m

3.5.3. Proposition. — Suppose we are given a commutative diagram of morpkisms of
k-analytic spaces
' Y 2 X
>\ /
S
(i) If o is étale, then @5(Qxys,) > Lyyse:
(i) If f and g are smooth and of(Qg e,) = Qyys,,> then @ is étale.

Since QA%.,/XG is a free @Aga-module of rank 4 and, if X is good, the canonical mor-
phism' A% — X is flat, then the statement (i) implies
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3.5.4. Corollary. — Let ¢ : Y — X be a smooth morphism between good k-analytic spaces.

Then o is flat, and Qg x is a locally free Oy-module whose rank at a point y €'Y is equal to the
dimension of ¢ at y. m

. 8.5.5. Lemma. — Suppose we are given a cartesian diagram
Y % X

¢

Y! _ﬁ'_) X’
where ¢ 15 a G-locally closed immersion and f is flat quasifinite. Then f™* (N y,x,) = N yyxs-
Proof. — We may assume that all the spaces are k-affinoid, ¢ is a closed immersion,
and fis a finite morphism. Let X = #(),Y = MH(B), X' = M (') and Y’ = #(Z'),
where &' = # &, o/’. One has exact admissible sequences 0 —J — o/ — % — 0 and
0->]) - >% —0. Since & is a flat finite o/-algebra, then the second sequence is

obtained by tensoring of the first one with &/’ over . In particular, J' = J &, o' = J&".
It follows that J'[]’2 = J/J2®, &' = J/J2®, . m

Proof of Proposition 3.5.8. — (i) Consider the diagram

X 2L X x X

b

Y 25 Y xg Y — Y XY

where Y X Y is identified with the fibre product of X and Y XY over X X4 X.
The morphism ¢ is flat quasifinite. By Lemma 3.5.5, the conormal sheaf of the G-locally
closed immersion Y X5 Y —Y XY coincides with ¢"*(Qy ). Since wa is an open
immersion, then QYG/SG = ch(QXG,SG)

(ii) Consider first the case when the space S is good. (Then X and Y are also good.)
From the exact sequence 3.3.2 (i) it follows that Qg = 0, and therefore the mor-
phism ¢ has discrete fibres. By Proposition 3.1.4, ¢ is quasifinite. Since Qg = 0, it is
unramified. Let y €Y, x = ¢(») and s = g(y). We have to verify that Oy , is a flat
0Ox ,-algebra. Suppose first that [5#( y) : k] < co. Since Oy , and Ox , are flat O ,-algebras
(Corollary 3.5.4), then, by Corollary 5.9 from [SGAIl], Exp. IV, it suffices to
verify that 0y ,/m, Oy  is a flat Ox ,/m, Oy ,-algebra. Since [#(y) : k) < oo, we have
Oy,,/m, 0y, = Oy , and Oy . /m,0Oy,= O ,. Therefore we may assume that
S = # (k). In this case the ring Oy , is regular and, in particular, normal. Since Oy ,
is a finite unramified Oy -algebra, it suffices by Theorem 9.5 (ii) from [SGA1], Exp. I,
to verify that the canonical homomorphism Oy , — Oy , is injective or, equivalently,
that Oy , and Oy , have the same dimensions. But these dimensions are equal to the
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ranks of Qy, and Qy, at the points x and y, respectively. Since ¢*(Qg,) > Qy,, they
are equal.

Suppose now that the point y is arbitrary. Let K be a big enough non-Archimedean
field such that there exists a pointy’ € Y’ = Y ® K with [#( ') : K] < o0 and =(y') =y,
where = is the canonical mapping Y’ — Y. From Proposition 3.3.3 it follows that
9" (Qx5) > Qyg» where ¢’ is the induced morphism Y’ - X' = X®K. By the
previous case, Oy . is a flat Oy ,-algebra, where x' = ¢’(’). By Corollary 2.1.3,
Oy, and Oy . are faithfully flat over Oy , and Oy ,, respectively. It follows that Oy ,
is flat over O ,.

Consider now the general case. If U is an affinoid domain in S, then, by the first
case, the induced morphism g~*(U) —f~1(U) is étale and, in particular, it is quasifinite.
From Proposition 3.1.8 it follows that the morphism ¢ is quasifinite. This implies
immediately that it is étale. m

3.5.6. Corollary. — In the situation of Proposition 3.3.2 (i) suppose that ¢ is smooth.
Then there is an exact sequence

00— (PE(QXGISG) - QYe/Sa — QYo/Xc. 0. =

3.5.7. Corollary. — Let ¢:Y — X be a smooth morphism, and let f:Y — Ay be an
X-morphism defined by some functions fy, ..., f; € O(Y). Then f is étale at a point y € Y if and
only if for some affinoid domain U C X that contains the point x = @( p) the elements df;, . . ., df;
Jorm a base of Q 1,y at y.

Proof. — The direct implication is trivial. Suppose that df;, ..., df, form a base
of Q_1gyu at ». By Proposition 3.5.3, the induced morphism ¢~ '(U) — A} is étale
at y. In particular, the point y is isolated in the fibre f~'( f{ »)). From Proposition 3.1.4
it follows that for any affinoid domain V C X that contains the point x the induced
morphism ¢~ !(V) — A4 is finite at », and therefore, by Proposition 3. 1.8, the morphism f
is finite at y. It is étale because the elements dfj, ..., df; form a base of Q, y,y at y for
any V as above. m

3.5.8. Proposition. — A morphism @ : & — ¥ between schemes of locally finite type
over = Spec(), where o is a k-affinoid algebra, is smooth if and only if the corresponding
morphism @*® : X — F* 15 smooth.

Proof. — The direct implication follows from Proposition 3.3.11. Suppose that ¢**
is smooth. By Corollary 3.5.4, ¢* is flat, and Qgangan is a locally free @gan-module.
Since the morphisms #*® — & and Z* — Z are faithfully flat, it follows that ¢ is flat.
Since Qgangan = (Qgye)™, it follows that Qg4 is a locally free @Op-module. Therefore ¢
is smooth. m
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3.5.9. Proposition. — Suppose we are given a commutative diagram of morphisms of good
k-analytic spaces S

Yy % X

NS

S

where ¢ is a closed immersion and f is smooth. Then the following are equivalent:

a) g is smooth; » .

b) for any point y €'Y there exist an open neighborhood X, of y in X and an étale morphism
kX, — A over S such that Y, =Y N X, is the inverse image of the closed k-analytic subset
of AS defined by the equations T, = ... =T,=0 (T,, ..., T, are the coordinate functions
on A%). ' ’

Proof. — The implication b) = a) is trivial. Suppose that g is smooth. Then the
Oy-modules ¢"(Qg/q) = Qg3 ®y Oy and Q¢ from the exact sequence 3.3.2 (ii)
are locally free. We may decrease X and assume that they are free. Since the ele-
ments dh, ke O(X), generate Qg over Oy, then we can find %, ,, ...,k € O(X)
such that the restrictions of dk, , ,, ..., dh; to Y form a base of Qy . After that we can
decrease Y and find 4, ..., k, € #(X) such that dh,, ..., dk; form a base of Qy,
where £ is the subsheaf of ideals in @y that corresponds to Y. By Corollary 3.5.7, the
induced morphism %: X — A$ is étale. Let Z be the closed k-analytic subset of Al
defined by the equations T, = ... = T, = 0, and let Y’ be the inverse image of Z
in X. By construction, Y is a closed k-analytic subset of Y’. Corollary 3.5.7 implies
that the induced morphism Y — Z is étale. Therefore the closed immersion : Y — Y’
is étale (Corollary 3.3.9). Since it is an open map (Proposition 3.2.7), it follows that
we can decrease X and assume that i is 2 homeomorphism. Finally, since the sheaf 7,(0y)
is a locally free 0y.-module and the homomorphism @y. — 7,(0y) is surjective, we have
Oy 31,(0y). It follows that 7 is an isomorphism. m

3.5.10. Corollary. — In the situation of Proposition 3.3.2 (ii) suppose that f and g are
smooth. Then there is an exact sequence

0— fa/j(z; —> ?&(Qxa/sg) —> QY(;ISG — 0.

In particular, I |5 is a locally free Oy ~module whose rank is the codimension of Y in X. m

3.6. Smooth elementary curves

In this subsection we recall some results from [Ber] on the structure of the &-analytic
curve X = 2™ associated with a smooth geometrically connected projective curve &
over k of genus g> 0, and we recall the Stable Reduction Theorem of Bosch and
Liitkehbomert from [BL] which is actually the most important ingredient in the study
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of X. Furthermore, we introduce the notion of an elementary triple (X, Y, x)-where Y is
an open neighborhood of a point x € X. (A k-analytic curve Y and pairs (X, Y) and (Y, %)
for which such a triple exists will be called elementary.) And we show that any point of
a smooth k-analytic curve has, after a finite separable extension of %k, an elementary
open neighborhood. First we consider the case of trivial valuation on & because it is
very simple. But we remark that everything considered in the case of nontrivial valuation
has the same meaning in the trivial valuation case.

Thus, suppose that the valuation on k is trivial. Then points of X are of the following
three types. First, there is a canonical embedding of the set &, of closed points of &
in X, 53X, ={xeX|[#(x):k] <o} For xeX, one has Ox,= @: and
k(x) = H#(x) = k(x) (x is the image of x in &). Furthermore, there is a generic point
which corresponds to the trivial valuation on the field of rational functions k(%Z’). For
this point x one has Oy , = k(x) = #'(x) = k(x) = k(%). (The one-element set { x}
is denoted by A(X) and called the skeleton of X.) Finally, for any closed point a there
is an interval which connects a with the generic point and which is parametrized by
the unit interval [0, 1]. Namely, the point x associated with a number 0 <7 <1 corres-
ponds to the valuation on k2(%") which takes the value 7™**¥ on a local paremeter f at a,
i.e., | f(x)]| = #™@ ¥, This point x is denoted by p(E(a, r)). One has Oy , = x(x) = H#(x),
and this field coincides with the fraction field of the ring 0;:. We also set
E(g,r) ={y eX||f)[< ™"}, D(a,r) ={y e X|[f))| < r™@¥} and

B(a; r, R) — {y e X l r[lc(a):k] < |f(y)| < R[K(a):k] }.

The topology of X inducés the usual topology on each of the intervals, and a basis of
open neighborhoods of the generic point is formed by sets of the form X\Ur_, E(a,, 1.),
where g, € X, and 0<r, < 1.

Let Y be an open neighborhood of a point x € X. We say that the triple (X, Y, x)
is elementary if one of the followmg is true:

a) g =0, x_an()andY D(ar),where0<r<1
b) g =0, x = p(E(a,r)), where a e X(k) and 0<r< 1, and Y = B(a; 7, 7""),
where 0 <7 <r<r"<1; - ’
¢ ) x is the generic point of X and Y = X\H a‘, ), m = 1, where g, € X(&)
and 0< 7, < 1. C

It is clear that for'any open neighborhood Y of an arbitrary point ¥ € X one can
find a finite separable extension K of % and an open subset Y C Y’ = Y®K such that
the point x has a unique preimage %’ in Y and the triple (X', Y",;%’) is elementary,
where X' = X ® K. . .

Suppose that the valuation on k is nontrivial. As above, one has %, X; and
k(%) = #(x) = k(x) for x € X,. But in this case the set X; is everywhere dense in X.
For a point x.€ X\ X, one has Ox ., = x(%). : o
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Consider first the case & = P'. Let a € A] and r > 0. Then the real valued function
on k[T]

frsmax | 3,f(a)] 1",

] i 1 &
where 9,(X o, T") = Z(v + z) a, ;T (6,. is the operator i Z’f’)’ is a multiplicative
1 .

norm, and therefore it defines a point x € A' which is denoted by p(E(g, r)). The notation
tells that the point depends only on the closed disc E(a,7) ={y e A'||f(»)| <™},
where f = T" 4+ «, T"~! + ... 4+ «, is the monic generator of the maximal ideal of 2[T]
which corresponds to a. (We also define the open disc D(a,r) ={ycA'||f(»)| <}
and the open annulus B(a; 7, R) ={yeAl|r" < |f(y)|<R"}. We remark that the
radius 7 of the disc E(a, r) does not depend on the choice of the center a. If r € V/ ]—I_eT—]

(such a point is said to be of #ype (2)), then the extension .%c,) /; is finitely generated of
transcendence degree one, and the group | #(x)* |/| #* | is finite. If r ¢ V| *| (such a
point is said to be of #ype (3)), then the extension ?{x) /; is finite and the group | 5 (x)* |
is generated by | x(a)* | and 7.

A more general construction of points of A! is as follows. Let & ={E} be a
decreasing family of closed discs in Al. Then the real valued function on %[T]

S inf [ f(p(E)]

Ee¢

is a multiplicative seminorm, and therefore it defines a point x = p(&) € AL. By
[Ber], 1.4.4, any point of A! is obtained in this way. We set ¢ = nE ce(E NAY)
and r = infy  , 7(E). Suppose first that ¢ + 0. Then one does not obtain a new point.
Namely, if r = 0, then x € A;, and if r > 0, then x = p(E(a, 7)) for any a € 6. Suppose
therefore that ¢ = @. Then one obtains a new point. If r = 0, then x is the image of
an element from £*\A® under the mapping A}, — Al. Points with 7> 0 (they are said
to be of type (4)) exist if and only if the field £* is not maximally complete. Points with
r = 0 (for arbitrary o) are said to be of type (1). For a point x of type (1) or (4) the

extension J;Tx/)/z is algebraic and the group | (x)* |/| &* | is torsion.

A basis of topology on Al is formed by open sets of the form D(a, r)\U™ , E(a;, 7,).
(We recall that any affinoid domain in A! is a disjoint union of the standard affinoid
domains which have the form E(a, r)\U™, D(g;, 7,).) Let Y be an open neighborhood
of a point x € A, We say that the triple (PL, Y, x) is elementary if one of the following

is true:

a) x is of type (1) or (4) and Y = D(a, 7), where a €k and r> 0;

b) x = p(E(a, 7)), where a€k and r¢V|k|, and Y = B(a;r',r"), where
0<r<r<r”;

¢) x = p(E(a,r)), where ack and re|k*|, and Y = D(q, 7)\LI"_, E(a;, 7.),
m> 0, where 0<r,<r<7, g€k, |a,—a|<r and |g —a;| =71 for i+
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It is clear that if & is of genus zero, then for any open neighborhood Y of a point
x € X one can find a finite separable extension K of 2 and an open subset Y/ C Y’ = Y® K
such that £ ® K 5 Pk, the point x has a unique preimage x’ in Y”, and the triple
(Px, Y", x') is elementary.

Consider now the case of an arbitrary smooth geometrically connected projective curve % .
Assume that the k-analytic curve X admits a distinguished formal covering % by strictly
affinoid domains with ’l;-split semistable reduction X = X,,, and let =: X — X be the
reduction map (see [Ber], § 4.3). Furthermore, let { 2}, be the irreducible compo-
nents of X. One has g = b + 2,1 8(Z,), where b is the Betti number of the incidence
graph A(X) of X. For a point % € X one of the following possibilities holds ([Ber], 4.3.1).

(i) If ¥ is the generic point of %, then there exists a unique point x; € X with
N

n(x) = % One has #(x) = k(Z,) ([Ber], 2.4.4 (ii)).

(ii) If ¥ is a smooth closed point belonging to %, then n~!(¥) is a connected
open set which becomes isomorphic, after a finite separable extension of &, to a dis-
joint union of a finite number of copies of the open unit disc with center at zero, and
(7)) =7 Y(F) u{x). If ¥e X(E), then =~ (%) 3 D(0, 1).

(iii) If ¥is a double point belonging to components %, and Z; (which may coin-
cide), then o~ (%) 5> B(0; 7, 1), wherere | k* |and r< l,and = }(¥) = = '(X") U {x;, x;}.

One constructs as follows a closed subset A,(X)C X which has the structure of
a finite graph and is isomorphic to the incidence graph AX) (it is called the skeleton
of X with respect to the covering %). The vertices of A, (X) are the points x;, ¢ € I. The edges
of A, (X) correspond to the double points of X as follows. If ¥'is a double point belonging
to components &, and %, then the subset /; Cn~!(%), which is the preimage of the
set { p(E(0, #))| r < ¢<1} under the isomorphism =~ (%) = B(0; r, 1), does not depend
on the choice of the isomorphism, and the set Z; =¢; U{x,, x,} is an edge of A,(X).
There is a canonical (deformational) retraction 7:X — A, (X).

The reduction is said to be good if X is smooth. In this case A,(X) consists of one

point x (the generic point) for which J?Fx/) = %’()N() The reduction is said to be stable if X
is a stable curve. In this case, if g > 2 or if g = | and the reduction is good, then any
other distinguished formal covering of X with stable reduction is equivalent to %, and
therefore the reduction map X — X and the finite graph A(X) = A,(X) do not depend
on %. If g =1 and the reduction is bad, then the set A(X) = A, (X) (without the
structure of a graph) does not depend on %. The graph A(X) is called the skeleton of X.
The complement X\A(X) is the set of points x € X which have an open neighborhood
such that it becomes isomorphic, after a finite separable extension of %, to a disjoint
union of a finite number of copies of the open unit disc with center at zero.

Assume that g > 1, and let Y be an open neighborhood of a point x € X. We say
that the triple (X, Y, x) is elementary if X has good reduction, x is the generic point of X,
and Y = X\U"_,E;,, m> 1, where E, is an affinoid domain in =~ }(%), % ei(%),
isomorphic to a closed disc E(0, r;), and the points %;, ..., %, are pairwise different.

10
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The Stable Reduction Theorem asserts that, for every smooth geometrically
connected projective curve & over k of genus g > 1, there exists a finite separable exten-
sion K of & such that the K-analytic space (Z ® K)** has stable reduction.

Finally, we drop any assumptions. A triple (X, Y, x) is said to be elementary if it is iso-
morphic to one of the elementary triples which were defined above. The following Propo-
sition 3.6. 1 is a particular case of the main result of the next subsection, Theorem' 3.7.2,
on the local structure of a smooth morphism of pure dimension one. The proof of
Theorem 3.7.2 is essentially a generalization of the proof of Proposition 3.6.1.

3.6.1. Proposition. — Let Y be a smooth k-analytic curve. Then for any point y € Y there
exist a finite separable extension K of k and an open subset Y’ CY' =Y ® K such that the point
y has a unique preimage y' in Y'' and the pair (Y, y') is elementary.

The following statement will be used also in § 7.3.

3.6.2. Lemma. — Let ¢:Y — X be a smooth morphism of pure dimension one with

k-affinoid X = M (). Then for any point y € Y there exist an open neighborhood Y' of y and a
commutative diagram

Yy oy gm
NP
X

where § : ¥ —~ X = Spec() is a smooth affine curve of finite type over X, and j is an open
immersion.

Proof. — We can shrink Y and find an étale morphism g: Y — A%. Let z denote
the image of the point z = g(») in Aj. The field %(z) is everywhere dense in «(2),
and x(y) is a finite separable extension of x(z). By Proposition 2.4.1, there exists a
finite separable extension K of £(z) which embeds in k( ») and is everywhere dense in it.
Take an arbitrary étale morphism of finite type between affine schemes %:% — A}
for which there exists a point y € # with k(y) = z and k(y) = K.

Y %> AL — AL @

~ A

X —

The embedding of K in k( y) defines a point ' € #*". Since K is everywhere dense in k( »),
we have k() = x()'). We get two étale morphisms of k-germs (Y, y) — (A}, z) and
(@™, y') — (AL, z) such that x(y) = k(»’). From Theorem 3.4.1 it follows that the
k-germs (Y, ) and (%*,y') are isomorphic. m

Proof of Proposition 3.6.1. — By Lemma 3.6.2, we can shrink Y and find an open
embedding of Y in the analytification £ of a smooth affine curve £’ of finite type
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over k. Let Z be the smooth projectivization of Z”. Increasing the field &, we may assume
that & is geometrically connected. If the valuation on % is trivial or if the genus g of &
is zero, then the statement is clear. Thus, assume that the valuation on # is nontrivial
and g > 1. By the Stable Reduction Theorem, we can increase the field % and assume
that X = Z™®" has %—split stable reduction. If the point y is not a vertex of the skeleton A(X),
then, after increasing of %, y has an open neighborhood in X (and therefore in Y) iso-
morphic to an open subset of P1. Assume therefore that y is a vertex of A(X).

First, we want to reduce the situation to the case when A(X) ={y»}. Let L
be a connected open neighborhood of the point » in A(X) which does not contain
loops and other vertices of A(X). One has L ={y}u U ¢4, where ¢ is homeo-
morphic to an open interval. Furthermore, for each 1< i< m there is an isomor-
phism v 1(¢) 5 B(0; r;, 1), where 0 < r, < 1. We fix such an isomorphism so that the
point p(E(0, #)) tends to the point y for £ — 1. We now glue the open set +~!(L) with m
copies of D(0, 1) via the isomorphisms =~ !(¢) = B(0;7, 1) CD(0, 1). We get a new
proper smooth k-analytic curve X which is the analytification of a smooth geometrically
connected projective curve £ of (new) genus g > 0. Suppose that g > 1. Increasing
the field k2, we may assume that X has stable reduction. Since any point x # y has an
open neighborhood such that, after a finite separable extension of %, it becomes iso-
morphic to a disjoint union of open discs, it follows that the reduction of X is good and y
is the generic point of X.

Consider the reduction map = : X — X. Since yis a unique preimage of the generic
point of X, there exist m > 1 closed points %, . .., %, € X with o~ (X\{ %, ..., %, }) C Y.
Increasing the field &, we may assume that %; e i(%) , and therefore =~ (%) > D(0, 1). It
follows that we can replace Y by a smaller open neighborhood of y of the form X\U? | E,,
where E,C n(%)) and E; S E(0,7,). m

3.6.3. Remark. — (i) Let (Y, ») be an elementary pair. Then Y contains a disjoint
union of m > 1 open annuli B(r;, R;) such that the set Y\U™ , B(r,, R)) is a connected
compact neighborhood of the point y (it is actually an affinoid domain).

(ii) Suppose that the field % is algebraically closed. If (Y, ») is an elementary pair
such that Y is not isomorphic to an open disc, then the open set Y\{ y } is isomorphic
to a disjoint union of a finite number of open annuli and an infinite number of open
discs. From Proposition 3.6.1 it follows that any smooth £-analytic curve has a covering
by elementary open subsets.

(iii) A broader class of smooth k-analytic curves is that of standard curves which
are isomorphic to an open subset of the analytification of a smooth geometrically
connected projective curve such that its complement is a disjoint union of m > 1 closed
discs with center at zero. We remark that a standard curve is connected. We remark
also that an elementary (resp. standard) curve remains elementary (resp. standard)
after any extension of the ground field.
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3.7. The local structure of a smooth morphism

8.7.1. Definitions. — (i) A morphism ¢ : Y — X is said to be an elementary fibration
of pure dimension one (resp. at a point y € Y) if it can be included to a commutative diagram

Y s Z <« V=1 (X xE)
i=1

N l*A

X

such that

a) ¢ :Z — X is a smooth proper morphism whose geometric fibres are irreducible
curves of genus g > 0;

b) Y is an open subset of Z, and V = Z\Y;

¢) V is an analytic domain in Z isomorphic to a disjoint union II7_, (X X E)),
m > 1, where E, are closed discs in A! with center at zero, and pr is the canonical projection;

d) there exists an analytic domain V CV’ such that the isomorphism

v O (X x E)

from ¢) extends to an isomorphism V'3 ™ (X x E/), where E; is a closed disc
in A! which contains E; and has a bigger radius;
¢) the pair (Z,,Y,) (resp. the triple (Z,,Y,,)), where x = ¢( ), is elementary.

(ii) A morphism is said to be an elementary fibration if it is a composition of ele-
mentary fibrations of pure dimension one.

(iii) A morphism ¢ :Y — X is said to be standard of pure dimension one if everything
from (i), except the property ¢), is true for it. A composition of standard morphisms of
pure dimension one is said to be standard.

We remark that the geometric fibers of a standard morphism are nonempty and
connected. Furthermore, elementary fibrations (resp. standard morphisms) are preserved
under any base change functor and under any ground field extension functor.

3.7.2. Theorem. — Let ¢ : Y — X be a smooth morphism of pure dimension one, and
suppose that X (and therefore Y ) is good. Then for any point y € Y there exist an étale morphism
f: X" —> X and an open subset Y'CY' =Y Xy X’

Yy % X
[ ¢
Yy 2 X
I
v

such that y has a unique preimage 3" in Y'' and @'" : Y'' — X' is an elementary fibration of pure
dimension one at the point y'.
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3.7.3. Corollary. — Let ¢ : Y — X be a smooth morphism of good k-analytic spaces. Then
Jor any point y €Y there exist étale morphisms f: X' > X and g: Y’ > Y =Y xx X’

Yy % X
o0
Yy 2 X
o
v
such that y € f'(g(Y'")) and @'’ is an elementary fibration. m

3.7.4. Corollary. — A smooth morphism is an open map. W

Proof of Theorem 3.7.2. — All the analytic spaces considered in the proof are
assumed to be good. For numbers 0 < 7' < 7" (resp. 0 < 7’ < r"") we denote by A(7', ")
(resp. B(r’, r"’)) the closed (resp. open) annulus E(0, ")\ D(0, ) (resp. D(0, ")\ E(0, 7))
with center at zero.

3.7.5. Proposition. — Let ¢ : Y — X be a separated smooth morphism of pure dimension
one, and let x € X. Suppose that the fibre Y, is tsomorphic to the open annulus B(r, R),,,. Then
there exist numbers r < r' < R’ < R, an open neighborhood U of x and an open subset ¥~ C ¢~ (%)
such that

a) ¥, coincides with B(r', R’) 4, under the identification of Y, with B(r, R),e.,;
b) V" is isomorphic to the direct product U X B(r', R') over %.

3.7.6. Lemma. — Let Y be an open subset of A, and suppose that

\%

Y, = D(0, e\ U E(e ne, m> 0,

where v, < r and | T(a,)| <r (T is the coordinate function on A'). Then

(i) if m = 0, then for any number 0 < r' < r there exists an open neighborhood % of x
such that Y contains the direct product % X D(0,r').
() if m> 1, then for any numbers max(|T(a)|,n,) <1 < ¢ <71, there exists an

open neighborhood U of x such that Y contains the direct product % X B(r', r"').

Progf. — In the case (i) (resp. (ii)) the intersection of all compact sets of the form
U x E(0,7') (resp. U x A(r,r"”)), where U runs through compact neighborhoods
of the point x, coincides with E(0, 7'),4,, (resp. A(7’, 7"") ¢,), and therefore it is contained
in the open set Y. It follows that there exists a compact neighborhood U of x with
U X EQ0,7)CY (resp. U X A(,7")CY). m
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8.7.1. Lemma. — Suppose we are given a commutative diagram
Yy Lz

N4
X

with smooth ¢ and  of the same pure dimension, and let y € Y and x = ¢( ). Suppose that the
induced morphism f,: Y, — Z, is a local isomorphism at the point y. Then f is a local isomorphism
at y.

Proof. — Since Y, is the fibre product of Y and Z, over Z, the inverse image of
the sheaf of differentials of f on Y, coincides with that of f,. But the latter sheaf is equal
to zero at the point y. Therefore we may decrease Y and assume that f is unramified.
By Proposition 3.3.2 (i), the canonical homomorphism f*(Qgy) — Qyx is surjective.
Since both @y-modules are locally free and of the same rank, we have f*(Q,x) > Qg x.
From Proposition 3.5.3 (ii) it follows that fis étale at the point y. By hypothesis, finduces
an isomorphism of fields 5#(z) = 3#( y). By Proposition 2.4.1, x(z) = x(), and there-
fore f is a local isomorphism at y, by Theorem 3.4.1. m

Proof of Proposition 3.7.5. — We may assume that X = #(&f) is k-affinoid. Take
a number r< ¢< R and set y = p(E(0,#)) €Y,. Let V be an affinoid neighborhood
of y in Y. Shrinking X and Y, we may assume that the fibre V, is connected. Then

V., = E(0, R,)x’(x)\igl D(a;, 1) s)s

where t < R’ < R, 7, < R’and | T(g;)| < R’ (T is the coordinate function on B(7, R),,).
Let V = .#(%). Since the image of # ®, x(x) in # &, # (x) is everywhere dense, we
can shrink X and assume that there exists an element f € & such that the norm of f — T
in #8,5(x) is less than m}n (r;, t). It follows that the morphism f: V — A} induces

an isomorphism V, 5V, and f{y) = p(E(0, ¢)). Take an open neighborhood ¥~ of
the point y such that ¥ " CV. Then the induced morphism f: ¥ — A} satisfies the
hypothesis of Lemma 3.7.7, and therefore fis a local isomorphism at the point y. The
required statement now follows from Lemma 3.7.6. m

3.7.8. Proposition. — Let ¢ : Y — X be a smooth morphism of pure dimension one, and let
x € X. Suppose that the fibre Y, is isomorphic to the open disc D(O0, R) i and that the morphism ¢
is a composition of an open immersion Y <> Z with a compact morphism § : Z — X. Then for
any 0 < r < R there exist an open neighborhood U of x and an open subset ¥~ C ¢~ () such that

a) ¥, coincides with D(0, 7),p,, under the identification of W, with D(0, R),ey,;

b) ¥ is isomorphic to U X D(0,r) over %.

- Let P and Q be Hausdorff topological spaces, and let P, C P and Q,C Q be their
open subsets for which there is a homeomorphism f: P; 5 Q,. The topological space,
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which is obtained by gluing P and Q via f, will be denoted by P U, Q. The following
statement is trivial.

3.7.9. Lemma. — Suppose that there exists an open subset P’ C P such that P, C P’ and
the space P' U, Q is Hausdorff. Then the space P U, Q is Hausdorff. Furthermore, suppose in
addition that P\P, is compact and Q = P, U, Q is relatively compact in P’ U, Q. Then the space
P u,Q is compact. m

Proof of Proposition 3.7.8. — We may assume that X is k-affinoid. In particular,
Z is Hausdorff and compact. From Proposition 3.7.5 it follows that we can shrink X
and find an open subset ¥"CY such that ¥, = B(r', R'),,, and ¥'3 X x B(r, R’)
for some r <7 <R’< R. Take numbers ' <r”"<¢<R”<R’ and denote by #~
the open subset of ¥~ which corresponds to X x B(r”’, R”). The subset ¥ C %/, which
corresponds to X X A(¢, t), is compact because X is compact, and therefore Z\X is
an open subset of Z. We apply the above gluing procedure to the spaces P = Z\ZX,

=7Y\Z, P, =7"\2, Q=X x (P\E(, ")) I X x D(0,R"),

Q, =X x B(r”,#) 1 X x B(:, R"),
and to the canonical isomorphism f:P; > Q,. One has
PPu, Q5 X x (PN\E(©, ) I X x D(0,R").

From Lemma 3.7.9 it follows that the space Z' = P U, Q is Hausdorff and compact.
In particular, the morphism ¢’ :Z’ — X is compact.

Furthermore, the above construction restricted to the fibre at x gives a compact
2 (x)-analytic space Z, such that the connected component of D(0, R),,, is isomorphic
to the projective line P),, . Moreover, the morphism ¢’ is smooth at all points of this
connected component. Since ¢’ is compact, we can shrink X and replace Z’ by the
connected component of D(0, R),,, in Z’ so that the morphism ¢’ becomes proper smooth
of pure dimension one. It has a section ¢: X — Z’ defined by the point infinity of the
disc P1\E(0, 7). One has dimy,,, H(Z,, 05) = 1 and H'(Z;, 0) = 0. By the Semi-
continuity Theorem ([Ber], 3.3.11), we can shrink X and assume that the same is true
for all x' € X. It follows that all the fibres of ¢’ are isomorphic to the projective line.

Finally, let L be the invertible sheaf on Z’ which corresponds to ¢(X), and let L,
denote the inverse image of L on the fibre Z,, s’ € X. Then HY(Z,,L,) =0 and
dim H°(Z.,, L,) = 2. It follows that {,(L) is a locally free Ox-module of rank two.
Shrinking X, we may assume that (L) is free. In this case it defines a morphism Z’' — P}
over X which is evidently an isomorphism. The required statement now follows from
Lemma 3.7.6 (i). m

We are now ready to prove the theorem. First of all we remark that if K is a
finite separable extension of the field k(x), then there exists an étale morphism f: X' - X
such that f ~}(x) = {«" } and x(+’) = K. The preimage of the point y under the morphism
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S 1Y =Y x5 X’ > Y is a nonempty finite set of points. Fixing one of them, say y’,
we can replace ¢ by a morphism Y” — X', where Y is an open neighborhood of »’
which does not contain other points from f’~!( y). If we make the above procedure,
we say for brevity that we increase the field x(x). Furthermore, we may assume that the
space X is k-affinoid.

Step 1. — One can increase the field x(x) so that ¢ s included in a commutative diagram
Yy <&z

NP

X
where

a)  is a smooth proper morphism of pure dimension one whose geometric fibres are irreducible
curves of genus g > 0, and j is an open immersion;
b) if g= 1, then Z, has good reduction and y is the generic point of Z,.

Let Z be an affinoid neighborhood of the point y. Replacing Y by a small open
neighborhood of y which is contained in Z, we may assume that the morphism ¢ : Y - X
is a composition of an open immersion Y < Z with a compact morphism ¢ :Z — X.
By Proposition 3.6.1, we can increase the field k(x) and assume that the pair (Y,, )
is elementary. In particular, Y, contains a disjoint union of m > 1 open annuli B(r;, R,),4,,
such that the set Y\I"_, B(r,, R)),, is 2 connected compact neighborhood of the
point » (Remark 3.6.3 (i)). By Proposition 3.7.5, we can shrink X, Y and the annuli
and assume that there are pairwise disjoint open subsets ¥;CY, 1< ¢< m, such that
Y. = B(r, R,y and 7,5 X X B(r;, R;). We take numbers 7, <r/ < < R; <R
and denote by #/ the open subset of ¥; which corresponds to X X B(r{, R}). The
set 3, C ¥, which corresponds to X X A(t, ¢,), is compact because X is compact, and
therefore Z\U™ , =, is an open subset of Z. We apply the gluing procedure to the

spaces P = Z\Ur, =, P' = U (/)\5), P, = Ur ,(#}\5),
Q= II7_,(X x (P'\E(0, 7)) I X x D(0, R}),
Q, = II7_ (X x B(r, ) I1X x B(z, RY)),

and to the canonical isomorphism f:P; > Q,. One has

PPu, Q3 I (X x (PY\E(0, ,)) II X x D(0, R)).
i=1
From Lemma 3.7.9 it follows that the space Z’ = P U, Q is Hausdorff and compact.
In particular, the morphism ¢':Z" — X is compact.
Furthermore, the above construction restricted to the fibre at x gives a compact
J (x)-analytic space Z, such that the connected component of the point y is a smooth
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geometrically connected proper J#(x)-analytic curve. Moreover, ¢’ is smooth at all
points of this connected component. Since ¢’ is compact, we can shrink X and replace Z’
by the connected component of the point » so that the morphism ¢’ becomes proper
smooth of pure dimension one and the fibre Z; becomes a smooth geometrically connected
proper 5 (x)-analytic curve. The point infinity of P1\E(0, r{) or the point zero of E(0, R})
defines a section ¢ : X — Z’. From the construction it follows that we can increase the
field x(x) and assume that the curve Z; has good reduction. Moreover, if the genus g
of Z, is positive, then y is the generic point of Z..

Finally, one has dim,, H°(Z;, 0,) = 1 and dim,, H'(Z;, 0,) = g. By the
Semicontinuity Theorem, we can shrink X and assume that the above equalities hold
for all points " € X. In particular, the fibres of ¢’ are connected. They are geometrically
connected because ¢’ is smooth and has a section.

Step 2. — One can increase the field x(x) and shrink Y so that the morphism ¢ : Y — X
is an elementary fibration at y.

We can increase the field k(%) and assume that the triple (Z,, Y,, ») is elementary.
In particular, Y, = Z\II?_, E;, where E, 3 E(0,R),,, R;<1, and there are
bigger open subsets E,CD,CZ, with D, > D(0,R])4,, R;<R;< 1. From Propo-
sition 3.7.8 it follows that we can shrink X and find pairwise disjoint open subsets
¥,CZ such that ¥, = D(0,¢),, and 7,5 X X D(0,f), where R, <# <Rj.
Take numbers R, < ¢ <# and set #; =X x D(0,#). Since (Z\Ur ,#,.CY,,
we can shrink X and assume that Z\U?_, #; C Y. Finally, we take numbers R, < 7, <
and set V = LI™_ (X x E(0, 7,)). By construction, Z\V C Y. Therefore we can replace Y
by Z\V so that all the conditions of Definition 3.7.1 (i) hold. (The condition d) holds
for V' = l"_ (X x E(0, 7})), where r, < r, < t.) The theorem is proved. m

The following remarks will not be used in the sequel.

3.7.10. Remarks. — (i) One can add to the definition of an elementary fibra-
tion 3.7.1 (i) the condition that all the fibres of the morphism ¢ have stable reduction.
Indeed, taking an integer » > 3 which is prime to char (Z), one can increase the field k()
and assume that all the points of order n on the Jacobian of the curve Z, are rational.
One can then shrink X so that, for any »’ € X, all the points of order » on the Jacobian
of Z,, are rational, and therefore Z,, has stable reduction.

(ii) One can show that if X = # (&) is k-affinoid, then the space Z from
Definition 3.7.1 (i) is the analytification 2™ of a smooth projective curve Z over
Z = Spec(H).

(ili) One can give a similar local description of a flat morphism of good k-analytic
spaces ¢ : Y — X at a point y € Y such that the fibre Y., x = ¢( ), is a curve smooth
outside the point y.

(iv) We think that the theorem 3.7.2 is true without the assumption that
the space X (and therefore Y) is good. At least this is so if each point of X has

11
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an open neighborhood which is isomorphic to an analytic domain in a k-affinoid space
(see Remark 1.4.3 (ii)). Indeed, shrinking X and Y, we may assume that X is a special
domain in a k-affinoid space X’ and that ¢ factorizes through an étale morphism Y — A}.
Since Ay is an analytic domain in A}., then, by Corollary 3.4.2, we can shrink Y and
assume that the étale morphism Y — A} is a base change of an étale morphism Y’ — A%,
i.e., the morphism ¢ is the base change of a smooth morphism ¢’ : Y’ — X’ with respect
to X — X'. Then the validity of the theorem 3.7.2 for ¢’ implies its validity for .

§ 4. Etale cohomology

4.1. Etale topology on an analytic space

The étale topology on a k-analytic space X is the Grothendieck topology on the
category Et(X) generated by the pretopology for which the set of coverings of
(U - X) e Et(X) is formed by the families { U, Xy Yier such that U = U, ., £(U,).
We denote by X,, the site obtained in this way (the étale site of X) and by X the cate-
gory of sheaves of sets on X,, (the étale topos of X). Furthermore, we denote by S(X)
(resp. S(X, A)) the category of abelian sheaves (resp. sheaves of A-modules) on X,
and by D(X) (resp. D(X, A)) the corresponding derived category. For a sheaf F on
X, we often say that F is a sheaf on X. The cohomology groups of an abelian sheaf
F € S(X) will be denoted by HY(X, F).

Any morphism ¢ :Y — X of analytic spaces over % induces a morphism of sites
Y, — X,. If Z is a scheme of locally finite type over Spec(&/), where & is a k-affinoid
algebra, then Propositions 2.6.8 and 3.3.11 imply that there is a morphism of sites
(Z™) g — X, where Z, is the étale site of the scheme %. The inverse image of a
sheaf & € &, on Z* will be denoted by F®

Odur first purpose is to show that certain reasonable presheaves on X, are actually
sheaves. For this we introduce a (big) flat quasifinite site X, of X. This is the site with the
underlying category k-2/ny of k-analytic spaces over X and with the Grothendieck topo-
logy generated by the pretopology for which the set of coverings of (Y — X) € k-o/nx

is formed by the families {Y; d Y };cr such that the f; are flat quasifinite and
Y = U, c; £(Y). There is an evident morphism of sites X, — X. It is clear that
if a presheaf on X, is a sheaf, then its restriction on X, is also a sheaf.

4.1.1. Lemma. — The following conditions are sufficient for a presheaf F on X, to be
a sheaf:

(1) for any k-analytic space Y over X the restriction of F to the G-topologv on Y is a sheaf;
(2) for any finite faithfully flat morphism of k-affinoid spaces Z — Y over X the sequenc
F(Y) > F(Z) 3 F(Z Xy Z) is exact. '
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Proof. — Let ¥ = (U, % Y);c1 be a covering in X .. We have to show that
the sequence -

(%) F(Y) - IIF(U,) 3 IIF(U; Xy U))

is exact. For every i € I we take an open covering { V,}, ;. of U, such that the induced
morphisms V; — ¢,(V,) are finite. From (1) it follows that if (*) is exact for the cove-
ring { V, },c;, where J = U,;ELL., then (x) is exact for %. So we may assume that all
the morphisms U; — ¢,(U,) are finite. Furthermore, since (x) is exact for the open
covering { ¢,(U;)},c; of Y, it suffices to show that the sequence

F(Y) > F(Z) > F(Z x4 Z)

is exact for any finite faithfully flat morphism ¢ : Z — Y over X. Finally, if ¥" ={V, },<;
is a quasinet of affinoid domains on Y, then #" = { ¢™'(V,)}, < is a quasinet of affinoid
domains on Z and, by (1), the sequences (%) for the coverings ¥ and #” of Y and Z,
respectively, are exact. Thus, the situation is reduced to the case of k-affinoid spaces.
But the required fact in this case is guaranteed by (2). m

4.1.2. Corollary. — Let F be a coherent sheaf on Xg. Then the presheaf ¥, whick assigns
to a k-analytic space Y over X the group of global sections of the inverse image of F on Y, isa
sheaf on X, and therefore on X, m ‘

4.1.3. Proposition. — A presheaf representable by a k-analytic space good over X is a
sheaf on X, and therefore on X,.

Proof. — Let F be representable by a k-analytic space X' over X, i.e.,
F(Y) = Homy(Y, X’). The condition (1) holds for F, by Proposition 1.3.2. Let
Y = #(%) and Z = A (¥). Then ¥ is a faithfully flat #-algebra. It is well known that
in this situation the sequence 0 —~ % — € 3> ¥ ®4 ¥ is exact. Since € is a finite Banach
A-algebra, we have €¥®, % = €®,4 %, and the above sequence is admissible. It
follows that the condition (2) holds, at least, for k-affinoid X'. In the general case we have
to show that for any g: Z — X' over X with go p, = go p,, where p, are the canonical
projections Z X y Z, there exists a unique f: Y — X' over X with g = fo ¢ (pis Z > Y).

Uniqueness of f. (Here the assumption that X’ is good over X is not used.) Assume
that we are given f, f,: Y — X’ with fj o ¢ = fy0 ¢. Since ¢ is surjective, f; and f,
coincide as maps of topological spaces. Let U be an affinoid domain in X’. Then
FYU) = £1(U) = Up_, V, for some affinoid domains V;C Y. Applying the particular
case to the morphisms ¢~ *(V,) -V, and the k-affinoid space U, we get f1|v', = lev'..
Since Y is covered by a finite number of such V,, it follows that f; = f,.

Existence of f. We can replace X by Y and X’ by Y Xy X’ and assume that X' is
good. By the uniqueness, it suffices to construct f locally. Let y €Y, z€¢~ (), U an
affinoid neighborhood of g(z) in X'. Since ¢ is an open map, ¢(g~'(U)) contains an
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affinoid neighborhood V of the point y. We claim that ¢=*(V) C g~ *(U). Indeed, if
¢(2;) = ¢(2,), then there exists 2’ €Z Xy Z with p,(2') = 2z, and p,(2') = z,. If
z; € g7} (U), then g(z,) = gp,(2') = gp,(2') = g(2,) € U. And so the situation is reduced
to the morphism ¢~ (V) -V and the k-affinoid space U. m

4.1.4. Corollary. — (i) There is a fully faithful functor Et(X) — X3 . In particular,
the étale topolog y on Et(X) is weaker than the canonical one.

(ii) If a sheaf ¥ is representable by an X-space T étale over X, then for any morphism
@ :Y — X the sheaf ¢ F on Y s representable by the space T Xz Y. m

4.1.5. Remark. — The Proposition 4.1.3 certainly should be true without the
assumption that the space X’ is good over X. For this it would be enough to know that
for a finite étale morphism of k-affinoid spaces ¢ : Y — X and for any affinoid domain
V CY the image ¢(V) is a finite union of affinoid domains in X. If everything is strictly
k-affinoid, this is a particular case of a result of Raynaud that gives the same fact for
an arbitrary flat morphism.

4.1.6. Example. — (i) Let A be a set. Then the k-analytic space U, o, X over X
represents the constant sheaf Ay.

(i) The skeaf of abelian groups G, x is defined by G, x(Y) = O(Y).

(iii) The sheaf of multiplicative groups G, x is defined by G, x(Y) = O(Y)*".

(iv) The sheaf of n-th roots of unity u, x is defined by p, x(Y) ={fe O0(Y)*|f"* =1}
If the field % contains all z-th roots of unity and # is prime to char(k), then the sheaf y, ¢
is isomorphic to the constant sheaf (Z/nZ).

4.1.7. Proposition. — (i) The Kummer sequence
0— y‘n,X'—) Gm,X'{—Z_{: Gm,X__> 0
is exact in S(Xyy). If n is prime to char(k), then it is exact also in S(X).
(ii) If p = char(k) > 0O, then the Artin-Schreier sequence

ph _
0— (Z/p"Z)x — G, x 3G, x— 0

is exact in S(X) (and therefore in S(Xy) ).

Proof. — (i) It suffices to show that for a compact k-analytic space X and
an element fe O(Y)" there exists a flat quasifinite morphism Y — X such that
the image of f in O(Y)* is in O(Y)*". Let {U,;};c; be a finite affinoid covering
of X. Then %, := oy [T]/(T* — 1) is a finite Banach /-algebra, and the mor-
phism ¢,:V, =#(%,) — U, is finite flat (étale if » is prime to char(k)). Further-
more, for any pair 7,7 €I, there is a canonical isomorphism of special domains
vi;: Vi;i= 07 (U;nU)) 3V, :=9;1(U, nU,), and one has V; =V,

vii(Vi; nVy) =V nVy,

%



ETALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 85

and v; = v;0y; on V;; NV, Therefore we can glue all V; along V,;, and we get
a compact k-analytic space Y and a flat (étale if # is prime to char(k)) finite morphism
Y — X. The image of T in each %, defines an element g € O(Y)* with g" = f. (ii) is
proved in the same way. m

The cohomology groups of Ay (if A is an abelian group), G, x, G, x and u, ¢
will be denoted by HYX, A), HY(X, G,), HY(X, G,) and H*(X, u,), respectively. The
first Cech cohomology set H!(X, F) can be defined for any sheaf of groups F on X.
This set contains a marked element that corresponds to the trivial cocycle. (If F is
abelian, then H'(X, F) = HY(X, F).) The set H(X, F) has the usual interpretation
as the set of sheaves on X that are principal homogeneous spaces of F over X. On the
other hand, if F is representable by an X-group G (a group object in k-2/ny), then one
has the set PHS(G/X) of isomorphism classes of principal homogeneous spaces of G in

the category k-o/,x, and there is an evident mapping PHS(G/X) - H'(X, G).
4.1.8. Proposition. — If G is an X-group étale over X, then PHS(G/X) > H'(X, G).

Proof. — It suffices to verify that a sheaf F, which is a principal homogeneous space
of G over X, is representable by an étale X-space. Furthermore, by Corollary 4.1.4,
it suffices to show that F is representable locally in the usual topology of X. In particular,
we may assume that X is paracompact and there is a finite étale surjective morphism
U — X for which F|y is representable. If X is k-affinoid, then U is also k-affinoid and
the representability of F follows from the descent theory of schemes. In the general case
we take a locally finite net t of affinoid domains of X. For V e, let £, : Yy -V be
an étale morphism that represents the inverse image of F on V. For a pair V, W € r, there
is a canonical isomorphism ay w: Yy w:=/fy (VA W) > Yy o= fr (VN W), and
the system of isomorphisms oy y satisfies the necessary conditions for gluing of Y,
along Yy . In this way we get an X-space Y. It is easy to see that the canonical mor-
phism Y — X is étale and that it represents the sheaf F. m

If G is an abstract group, then the principal homogeneous spaces of the constant
X-group Gy are called étale Galois coverings of X with the group G.

4.1.9. Corollary. — Let G be an abstract group. Then there is a bijection between H'(X, G)

and the set of isomorphism classes of étale Galots coverings of X with the Galois group G and with
a given action of G. m

We remark that if ¢ : Y — X is an étale Galois covering with the Galois group G,
then for any abelian sheaf F on X there is a spectral sequence

H?(G, HY(Y, F)) = H?**+¢(X, F).

The group H'(X, G,,) can be interpreted as the group of invertible Oy, -modules,
where Oy, is the sheaf of rings on X, associated with the structural sheaf Oy (see

Corollary 4.1.2). In particular, there is an injective homomorphism Pic(X) — H'(X, G,,).
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4.1.10. Proposition. — (Hilbert Theorem 90). If X is good, then Pic(X) > HY(X, G,).

Proof. — Let £ be an invertible Oy, -module. Since the homomorphism considered
is injective (for an arbitrary X), it suffices to show that any point x € X has an open
neighborhood % such that & [{,, comes from Pic(%). Therefore we can shrink X and
assume that there is a finite étale morphism Y — X such that #|; comes from Pic(Y).
If V is an affinoid neighborhood of x, then % defines an invertible @, -module on the
affine scheme ¥” = Spec(%/y). By the descent theory for schemes, the latter module
comes from an invertible @,-module, Thus, if % is an open neighborhood of x that is
contained in V, then #|, comes from an invertible Op-module. m

For an arbitrary k-analytic spaces X we can prove only the following

4.1.11. Corollary. — There is a canonical homomorphism HY(X, G,) — Pic(X,)
such that its composition with Pic(X) — HY(X, G,) coincides with the canonical homomorphism

Pic(X) — Pic(X,).

Proof. — Let £ be an invertible Oy -module. Then it defines for any affinoid
domain VCX an invertible Oy-module Ly, and these modules are glued together to
an invertible Oy -module L. The correspondence £ +—» L gives the required homo-
morphism. m

The group HY(X, p,) (n is prime to char(k)) can be interpreted as the group of
isomorphism classes of the pairs (%, ¢), where £ is an invertible Oy, -module and ¢ is
an isomorphism Oy, = #®". From Proposition 4.1.10 it follows that if X is good,
then the latter group coincides with the group of isomorphism classes of the pairs (L, ¢),
where L e Pic(X) and ¢ is an isomorphism Oy 5 L®". In the general case Corol-
lary 4.1.11 gives a canonical homomorphism from H*(X, u,) to the group of isomorphism
classes of the pairs (L, @), where L € Pic(X;) and ¢ is an isomorphism Oy, = L®"
(The latter is the group H'(X, p,) introduced by Drinfeld in [Drl].) In § 4.3 we’ll
show that this is an isomorphism.

4.2. Stalks of a sheaf

~ For technical reason we consider the étale topology on a k-germ (X, S). It is the
Grothendieck topology on the category Et(X,S) (see § 3.4) generated by the preto-
pology for which the set of coverings of ((U, T) — (X, S)) € Et(X, S) is formed by the
families {(U,, T)) 4 (U, T)}ier such that T = U, f(T). We denote by (X, S),
the corresponding site (the étale site of (X, S)) and by (X, S);, the category of sheaves
of sets on (X, S), (the étale topos of (X, S)). The category of abelian sheaves (resp.
presheaves) on (X, S),, will be denoted by S(X, S) (resp. P(X, S)). There is an evident
morphism of sites 7y o : (X, 8), - X,. (If S =|X]|, it is an isomorphism.) For a
sheaf F on X we set Fx 5 = ijx o F and F(X,8) = Fx (X, §).



ETALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 87

For a field K we denote by K, the étale site of the spectrum of K and by K
the category of sheaves of sets on K,,. (The latter is equivalent to the category of dis-
crete G, -sets.) The following statement follows immediately from Theorem 3.4.1.

4.2.1. Proposition. — For any point x of a k-analytic space X there is an equivalence of
categories H ()5 > (X, x)5 . W

Let (X, S) be a k-germ. For a point x € S let 7, denote the canonical morphism of
sites (%), — (X, S)g. The inverse image of a sheaf F with respect to i, is denoted
by F, and is called the stalk of F at x. (We identify F, with the corresponding discrete
G,¢y-set.) The image of an element f € F(X, S) in F, is denoted by f,. If F is an abelian
sheaf, then the support of an element f e F(X, S) is the set Supp(f) ={xeS|f,+0}
(from the following Proposition 4.2.2 it follows that this is a closed subset of S.) Further-
more, for a subextension 5 (x) C K C 5 (x)® we denote by F,(K) the subset of G(+#(x)*/K)-
invariant elements. (For example, F, (#(x)) = FS#® and F (#(x)*) =F,.)

4.2.2. Proposition. — For a sheaf F on (X, S) and a point x € X, one has
F,(#(x)) = lim F(%,S n %),

UDx

where U runs through open neighborhoods of x in X.

Proof. — The set F,(#(x)) is the inductive limit of the sets F(Y, T) over all
(Y, T) L (X, 8)) e Et(X, S) with a fixed point y € T over x such that 5#(x) > #(y).

By Theorem 3.4.1, the latter implies that the morphism f induces an isomorphism of
k-germs (Y, ) & (X, ), and the required statement follows. m

4.2.3. Corollary. — A morphism of sheaves F — G on (X, S) is a mono|[epi[isomorphism
if and only if for all x € X the induced maps ¥, — G, possess the same properties. m

Let (X, S) be a k-germ. For each open subset UC S we fix an open subset % C X
with NS = U. Then the correspondence U — % defines a functor from the category
of open subsets of S to the category Et(X, S), and this functor does not depend (up to
a canonical isomorphism) on the choice of the sets %. In this way we get a morphism
of sites = : (X, S), — S, where S is the site induced by the usual topology of S.

4.2.4. Proposition. — For an abelian sheaf F on (X, S) and a point x €S, one has
(Rq T F)a: = Hq(GJf’(z)’ Fz)3 q > 0.

Proof. — The case ¢ = 0 follows from Proposition 4.2. 2. Therefore in the general case
it suffices to verify thatif F is a flabby sheaf on (X, S), then Fy ,, is a flabby sheaf on (X, x).
For this it suffices to show that HY(#; Fx ) =0, ¢> 1, for any covering #” of (X, x)

of the form ((U, u) 54 (X, x)) where f is finite. By Proposition 4.2.2, the Cech complex
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of the covering %" is an inductive limit of the Cech complexes of the coverings
(", Tn¥) > (%S N %)), where % runs through sufficiently small open neigh-
borhoods of the point x, T = f~(S) and ¥~ = f~*(%). Since F is flabby, those Cech
complexes are acyclic. m

In the previous proof and in the sequel, an abelian sheaf F on a site C is called
Slabby if its ¢g-dimensional cohomology groups on any object of G are trivial for all ¢ > 1.
In [SGA4], Exp. V, 4.1, such a sheaf is called C-acyclic. Recall (loc. cit., 4.3) that F is
flabby if and only if the Cech cohomology groups H? of any object of C (resp. for all
coverings of any object of C) are trivial for ¢ > 1. We remark that if C is the site of a
topological space, then the notion of a flabby sheaf is not related to the notion of a
flasque sheaf from [God]. If G is a profinite group, then a discrete G-module M is flabby
if HY(H, M) = 0 for all open subgroups HC G and all ¢ > 1.

4.2.5. Corollary. — An abelian sheaf F on (X, S) is flabby if and only if

(1) for any point x €8S, F, is a flabby G4, -module;
(2) for any ((Y, T) - (X, 8)) e Et(X, S), the restriction of F to the usual topology
of T is a flabby sheaf. m

We now obtain first applications of the above results. They are obtained using
the spectral sequence

* E»¢— H?(| X |,R'%, F) = H?+(X, F
2

of the morphism of sites = : X, — | X |.

Let / be a prime integer. The [-cohomological dimension cd,(X) of a k-analytic
space X is the minimal integer n (or o) such that HY(X, F) = 0 for all ¢ > n and for
all abelian I-torsion sheaves F on X. (F is said to be /-torsion if all its stalks are /-torsion.)
For example, if X = .#(k), then cd,(X) = cd,(%).

4.2.6. Theorem. — Let X be a paracompact k-analytic space, and let | be a prime integer.
Then cd,(X) < cdy(k) + 2 dim(X). If [ = char() then cd(X) < 1 + dim(X).

Progf. — Let F be an abelian /-torsion sheaf. From Proposition 1.2.18 it follows
that the member EZ'? of the spectral sequence () is zero for p> dim(X). Since
(Rm, F), = HYG,,,, F,), then Theorem 2.5.1 implies that EJ*? = 0 for

q > cd,(k) + dim(X)
(resp. ¢ > 1if | = char(k)). The required fact now follows from the spectral sequence. ®

4.2.7. Theorem. — If X is a good k-analytic space, then for any coherent Ox-module F
there is a canonical isomorphism

HY(| X |, F) 3 H(X, F), ¢>0.
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4.2.8. Lemma. — Let x € X. Then (G, x), = 0% ,, where O

' o 15 the strict Hense-
lization of the local Henselian ring Oy .

Progof. — The assertion straightforwardly follows from Proposition 4.2.2. m

Proof of Theorem. — It is clear that x,(F) = F. It suffices to show that R¢ m(F) =0
for all ¢> 1. For this it suffices to verify that HY(G,,, (F),) =0 for all xeX and
g> 1. Weset A = O ,. From Lemma 4.2.8 it follows that (I~7)x =F,®, A®™ where F,
is the stalk of the coherent module F at the point x (this is a finitely generated A-module).
We claim that HY(G(K/k(x)),F,®, B) =0, ¢ > 1, for any finite Galois extension K
of k(x), where B is the finite extension of A which corresponds to the extension K/x(x).
For this we remark that the cohomology groups considered coincide with the coho-
mology groups of the Cech complex

F,®, B—>F,®,B®,B—>... ->F,®, B®" —» ...

Since B is a faithfully flat A-algebra, this complex is exact. m

4.3. Quasi-immersions of analytic spaces

Let ¢: (Y, T) - (X,S) be a morphism of germs over k. Then for any pair of
points y €T and x €S with x = ¢(y) there is an isometric embedding of fields
H(x) > H(y). We always fix for such a pair an extension of the above embedding to
an embedding of separable closures 5#(x)° < 5 ( )°. It induces a homomorphism of
Galois groups G, — Gy, The following statement follows straightforwardly from
the definitions and Proposition 4.2.2.

4.3.1. Proposition. — (i) For any sheaf ¥ on (X, S) and any pair of points y € T and
x €S with x = ¢(), there is a canonical bijection ¥, (o* F), that is compatible with the
action of the groups G,p,, and Gy, .
(ii) For any sheaf ¥ on (Y, T) and any point x €S, one has
(9. F), (#(x)) = lim F(¢™ (%), T N o™ }(%)),

U

where U runs through open neighborhoods of x in X. M

4.3.2. Corollary. — Let ¢:Y — X be a finite morphism of k-analytic spaces. Then
the functor ¢, :S(Y) — S(X) is exact. In particular, for any abelian sheaf F on Y one has
HY(X, ¢. F) 3 HY(Y, F), ¢ 0.

Progf. — From Proposition 4.3.1 (ii) it follows easily that for any point x € X
the stalk (¢, F), is isomorphic to the direct sum over all y € 97 '(x) of the induced

G, -modules Ind%¥(F,). It follows that the functor ¢, is exact. m

12
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4.3.3. Definition. — A morphism ¢: (Y, T) - (X,S) of germs over % is said
to be a quasi-immersion if it induces a homeomorphism of T with its image ¢(T) in S
and, for every pair of points y € T and x €S with * = ¢(»), the maximal purely inse-
parable extension of £ (x) in () is everywhere dense in J#( y).

For example, analytic domains, closed immersions and the morphisms of the
form X ® K — X, where K is a purely inseparable extension of %, are quasi-immersions.
Furthermore, if ¢ : Y — X is a morphism of %-analytic spaces, then for any point x € X
the canonical morphism Y, — Y is a quasi-immersion. We remark that quasi-immersions
are preserved under compositions and under any base change in the category Zerm,
(when it is well defined).

4.3.4. Proposition (Rigidity Theorem). — Let ¢ : (Y, T) — (X, S) be a quasi-immersion
of germs over k. Then

(i) @ induces an equivalence of categories (Y, T)x > (X, o(T))%;
(ii) if @(T) is closed in S, then ¢ induces an equivalence between the category S(Y, T) and
the full subcategory of S(X, S) whick consists of suchk F that F, = 0 for all x € S\p(T).

Proof. — (1) We may assume that S = ¢(T). Let y € T and x = ¢( ). By hypo-
thesis, there is an isomorphism G,z,, > Gz, . We claim that for any sheaf F on (Y, T)
there is a bijection of G, = G,,-sets (¢, F), > F,. It suffices to verify that

(9. F), (#(x)) = F,(H# ()
By Proposition 4.3.1 (ii), one has

(9. F), (#(x)) = qlll_gl, Flo™ (%), T n o~ (%))
Since ¢ induces a homeomorphism of T with S, the limit coincides with F, (5#( »)). It
follows that the functor ¢, is fully faithful.

Let now F be a sheaf on (X, S). Then there is a bijection of G, = G (,-sets
F, = (¢* F),. We have (¢*F), = (o, ¢*(F)),. Therefore, F > ¢, ¢*(F). The required
statement follows.

(ii) By (i), we may assume that T is closed subset of S, and ¢ is the canonical
morphism (X, T) — (X, S). It is clear that for an abelian sheaf F on (X, T) one has
(¢, F),=F,if xeT and (¢, F), =0 if x e S\T. If now F is a sheaf on (X, S) such
that F, = 0 for all x e S\T, then (¢, ¢*(F)), = (¢"F), =F, if x €T, and therefore
F3o,¢'(F). m ’

We remark that from Proposition 4.3.4 it follows that if ¢: (Y, T) - (X, §)
is a quasi-immersion of germs over %, then the cohomology of (Y, T) with coefficients

in an abelian sheaf coincides with the cohomology of (X, ¢(T)) with coefficients in the
corresponding sheaf.
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A k-germ (X, §) is said to be paracompact if S has a basis of paracompact neigh-
borhoods (in this case S is evidently paracompact). For example, 2-germs of the form (X, x),
where x € X, are paracompact. From this it follows that if X is Hausdorff, then any
k-germ (X, S) with compact S is paracompact. Finally, if X is paracompact and § is
closed, then (X, S) is paracompact.

4.38.5. Proposition (Continuity Theorem). — Let (X, S) be a paracompact k-germ, and
let F be a sheaf of sets on X. Then the following map

41}%_% H"(%, F) 3 HY((X,S), Fx,¢)>

where U runs through open neighborhoods of S in X, is bijective in eack of the following cases:

(1) ¢=0;
(2) F is an abelian sheaf and q > 0;
(3) S is locally closed in X, F is a sheaf of groups, ¢ = 1 and one takes HY instead of H'.

Proof. — Consider the following commutative diagram of morphisms of sites

Xy s | X |

fer B

(X,8)y —> S

From Proposition 4.2.2 (resp. 4.2.4) it follows that in the case (1) (resp. (2)) there is an
isomorphism of sheaves ii(w, F) 5w, (Fx ) (resp. {(R?w, F) 3 Romg, (Fixg))-
Therefore the case (1) (resp. (2)) follows from the corresponding topological fact [God],
II.3.3.1 (resp. [Gro], 3.10.2).

(3) We may assume that S is closed in X. Let « e HY((X,S),F), and let

{(V;, T) 3 (X,8)}ie; be an étale covering such that « is induced by a cocycle of
this covering. We can refine the covering and assume that the morphisms f; induce
finite morphisms V; - %, :=f,(V,), T,=f""(S), the sets %, are paracompact,
and { %, };c1 is a locally finite covering of X. The sets S;:=S N %; and their finite
intersections have a basis of paracompact neighborhoods. It follows that we can find,
for each pair 7,j € I, an open neighborhood %;; of S, N S; in %; N %; and, for each
triple 4,7,/ €I, an open neighborhood #;; of S, NS, NS, in %; N %; N %, such
that a is defined by elements «;; € F(f;7 (%)), where f;; : V, X5 V; - X, that satisfy the
cocycle condition in F( f;;(%;;)), where fi;: V; Xx V; XV, > X, Let now { % };c¢
be an open covering of X with compact W, and % C%,. Since S is closed, the sets

S, N %! are compact. Therefore there exist open neighborhoods %;’ of S; N U in %,
such that %' N Uy CU,; and %' N U; N U’ C%U,;. Then « comes from the group
Hi(#, F), where % = U, o, %/'. m



92 VLADIMIR G. BERKOVICH

4.3.6. Corollary. — Let ¢:Y — X be a quasi-immersion of analytic spaces over k.

Suppose that the image ¢(Y) of Y has a basis of paracompact neighborhoods in X. Then for any
abelian sheaf ¥ on X there is a canonical isomorphism

lim HY(% F) 3H(Y,¢'F), ¢>0,
U DY)

where U runs through open neighborhoods of o(Y) in X. m

For a Hausdorff k-analytic space X, let P(X; ) denote the category of abelian
presheaves on the category of closed analytic domains in X. Then any abelian presheaf
P eP(X;,) and any covering ¥" ={V,};c; of X by closed analytic domains define
a Cech complex %(¥; P). Its cohomology groups are denoted by H"(#; P). One has
HY(¥;, P) = R'L,(P), where Ly :P(Xg,) — /b is the left exact functor defined as
follows

L, (P) = Ker(ITP(V,) S IIP(V, nV})).
i i : :
4.8.7. Theorem (Leray spectral sequence). — Let X be a paracompact k-analytic space.
For F € S(X) and q > 0, let 5#°(F) denote the abelian preasheaf V — H(V, F|‘) Then for
any locally finite covering V" = { V, }; c 1 of X by closed analytic domains there is a spectral sequence

E?» ¢ = H?(¥, #(F)) = H**¢(X, F).

Proof. — We will show that the required spectral sequence is the Grothendieck
spectral sequence ([Gro], 2.4.1) of the composition of functors

S(X) > P(X,,) -5 oAb,
where Q is the composition of functors
i T, 14
$(X) = P(X) % P(| X |) > P(X),

and the functor j? is defined as follows
J*P(V) = lim P(%).
75V

(Here P(X) and P(| X |) are the categories of abelian presheaves on the étale and the
usual topologies of X, respectively, and =, is the restriction functor.)

We have to verify the following three facts:

(1) RTQ(F) = #7F); |

(2) if F is injective, then the presheaf Q (F) is L,-acyclic;

- (8) (Lyo Q) (F) = HY(X, F). ‘

(1) From Corollary 4.3.6 it follows that for any closed analytic domain VC X
one has '

H9F) (V) = lim

m HY(%, F).
%DV
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This means that #(F) = j”(x,(#*(F))). But the functors =, and j® are exact, and the
functors ¢ and =, send injectives to injectives. Therefore R? Q (F) = s#%(F).
(2) Consider the commutative diagram of functors

i

$(X) —— P(X)

I~ b

S(|X|) - P( X))

If F is injective, then =, (F) is an injective sheaf on | X |. By Theorem II.5.2.3 ¢) from
[God], one has

He(#,j7 0 i o m,(F)) = 0 for ¢ 1.

From the above diagram it follows that Q = j? o 7, 0 ¢ = j? 0 i’ o m,, i.e., the sheaf Q (F)
is L-acyclic.
(3) follows from the above diagram and Theorem II.5.2.2 from [God]. m

4.3.8. Corollary. — Let n be an integer prime to char(k). Then for any k-analytic space X
ihe group H'(X, ) is canonically isomorphic to the group of isomorphism classes of pairs (L, @),
where L € Pic(X,) and ¢ is an isomorphism Oy = LO".

Proof. — The homomorphism from the first group to the second one (let us denote
it by 'HY(X, w,)) was constructed in the end of § 4.1, and we know that it is an iso-
morphism if X is good. Suppose that X is paracompact, and let ¥~ be a locally finite
affinoid covering of X. The Leray spectral sequence for ¥~ gives an exact sequence

(%) 0 ~E° -~ H(X,p,) ~E' —Ey°

If we set 'HY(X, p,) := H(X, 1,) and define groups ‘E2'% ¢ =0, 1, in terms of the
groups 'H(X, u,), i = 0, 1, in the same way as E?% ¢ = 0, 1, are defined in terms of
the groups HY(X, p,), ¢ = 0, 1, then one can show directly that the similar exact
sequence (') takes place even in the more general situation when X is arbitrary and ¥~
is a quasinet of analytic domains in X. In particular, the homomorphism considered is
an isomorphism when X is paracompact. If X is Hausdorff, we use the analogous spectral
sequences (x) and (‘*) for a covering ¥~ of X by open paracompact subsets. If X is
arbitrary, we use the same reasoning for a covering of X by open Hausdorff subsets. m

4.4. Quasiconstructible sheaves

Let (X, S) be a k-germ. A sheaf F on (X, S) is said to be locally constant if there
exists an étale covering {(U;, T;) — (X, S)};c; such that the restriction Fy, 5, of F
to every (U,, T,) is a constant sheaf. A locally constant sheaf F is said to be finite if all
the above sheaves F g, r, are defined by finite sets. There is a one-to-one correspondence
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between the set of isomorphism classes of finite locally constant sheaves on (X, S) such
that their stalks consist of n elements and the set H'(X, Z,), where X, is the symmetric
group of degree n. If F is finite locally constant, then for any sheaf F’ on (X, S) and any
point x €S one has #om(F, F'), > #om(F,, F,). Furthermore, the full subcategory
of 8§(X, S) consisting of finite locally constant abelian sheaves is abelian and preserved
under extensions. (Everything above holds in any topos.) We remark that if
9: (Y, T) - (X,8) is a quasi-immersion of germs over %, then the categories of finite
locally constant sheaves on (Y, T) and (X, ¢(Y)) are equivalent.

4.4.1. Proposition. — Let (X, S) be a paracompact k-germ, and suppose that S is locally

closed in X. Then any finite locally constant F on (X, S) comes from a finite locally constant sheaf
on an open neighborhood of S in X.

Proof. — For an integer z > 0, let S, denote the set of all points ¥ € S such that the
stalk F, consists of » elements. Then the sets S, are disjoint and open in S, and therefore
the k-germs (X, S,) are also paracompact. Replacing S by S,, we may assume that
all stalks of F consist of n elements. In this case the required statement follows from
Proposition 4.3.5 (the case (3)). m

4.4.2. Definition. — A sheaf F on a k-germ (X, S) is said to be guasiconstructible
if there is a finite decreasing sequence of closed subsets S =§,23§,2...28§,28,,, =0
such that for all 0< i< n the sheaves Fig 4.5, are finite locally constant.

It is clear that the inverse image of a quasiconstructible sheaf under a morphism
of germs over % is quasiconstructible.

4.4.3. Proposition. — The full subcategory of S(X,S) consisting of quasiconstructible
sheaves is abelian and preserved under extensions. Furthermore, any quotient sheaf (and therefore
any subsheaf) of a quasiconstructible sheaf is quasiconstructible.

Progf. — The first statement follows from the corresponding properties of finite
locally constant sheaves. To verify the second statement, it suffices to show that if
a:F — G is an epimorphism of abelian sheaves on (X, S) and F is finite locally constant,
then G is quasiconstructible. It suffices to assume that F is locally isomorphic in the étale
topology to (Z/p" Z)x g, where p is a prime integer. The set T of the points x € S such
that « induces an isomorphism F, > G, is closed in S. Over the germ (X, S\T), « goes
through the quotient sheaf F/p"~!F. By induction there is a decreasing sequence of
closed subsets S\T =$,28;D...28,,D8,,,, =0 such that the sheaves Gx g \g'
are finite locally constant. We get a decreasing sequence of closed subsets

S =8,38,2...28,,,28...=0,

+1)

where S, =8/ UT for 0< i< m+ 1. Since S\S;,, =S/\S;,, for 0<i<m and
Sni1 =T, the sheaves G gis,,, are finite locally constant. m
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Here is an example of a quasiconstructible sheaf. Let T be a locally closed subset
of S, and denote by j the canonical morphism of %-germs (X, T) — (X, S). Then for
any sheaf G on (X, T) one can define the following subsheaf of j, G of j, G (this is a parti-
cular case of a construction from § 5.1). If (X', §’) Z (X, S)) € Et(X, S), then j, G(X’, S')
consists of all elements of G(X', f~!(T)) whose support is closed in S'. It is clear that
(U1 G)x,m = G and (j, G)x g\ = 0. Therefore if the sheaf G is finite locally constant,

then the sheaf j, G is quasiconstructible. Moreover, if G is quasiconstructible, then
so is j, G.

4.4.4. Proposition. — Any quasiconstructible abelian sheaf ¥ on (X, S) has a finite
Sfiltration whose subsequent quotients are of the form j, G, where j is the morphism of k-germs

(X, T) = (X, S) defined by a locally closed subset T C S and G is a finite locally constant abelian
sheaf on (X, T).

Proof. — Let S=5§4238,23...28,28,,;, =0 be a decreasing sequence of
closed subsets such that the sheaves Fx 4.\, , are finite locally constant. The set
T = S\S; is open in S, and the canonical morphism j: (X, T) - (X, S) induces a
monomorphism of sheaves j, F g 1, — F. The required statement is obtained by applying
the induction to the pullback of the quotient sheaf on the germ (X, S,). m

4.4.5. Proposition. — Any abelian torsion sheaf F on (X, S) is a filtered inductive limit
of quasiconstructible sheaves.

4.4.6. Lemma. — Let ¢ : Y — X be a finite étale morphism of k-analytic spaces. Then
Jor any finite locally constant sheaf F on Y the skeaf ¢, F is finite locally constant.

Progf. — We may assume that X is connected. If V is a connected affinoid domain
in X, then the rank of the finite morphism of k-affinoid spaces ¢~*(V) — V does not
depend on V. Let rk(p) denote this rank. We prove the statement by induction on rk(g).
If rk(¢) = 1, then ¢ is an isomorphism, and the statement is trivial. In the general case
we consider ¢ as an étale covering of X and reduce the situation to the morphism
Y X5 Y — X':=Y. The latter morphism has a section ¢ which is an open immeérsion.
Therefore, Y Xz Y = o(X’) Il Y. Replacing X’ by a connected component, we reduce
the situation to the morphism ¢’ : Y’ — X’ whose rank is less than rk(p). m

Proof of Proposition 4.4.5. — To simplify notation, we consider only the case of
a k-analytic space X (instead of the k-germ (X, 8)). If { G, };c is a finite family of
quasiconstructible subsheaves of F, then the sheaf G := Im(&D, G, - F) is also quasi-
constructible (Proposition 4.4.3). Therefore it suffices to show that for any point x € S
and any element f€F, there exists a quasiconstructible subsheaf G CF with feG,.
Shrinking X, we may assume that there is a finite étale surjective morphism ¢ : U - X
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such that f comes from a torsion element of F(U). Let nf = 0,7 > 1, and let (Z/nZ)y — F|,
be the homomorphism that takes 1 to f. It induces a homomorphism ¢,(Z/nZ)y — F.
By Lemma 4.4.6, the first sheaf is finite locally constant, and therefore, by Propo-
sition 4.4.3, its image in F is quasiconstructible. The required statement follows. m

§ 5. Cohomology with compact support

5.1. Cohomology with support

A family @ of closed subsets of a topological space S is said to be a_family of supports
if it is preserved under finite unions and contains all closed subsets of any set from ®.
The family of supports @ is said to be paracompactifying if any A e® is paracompact
and has a neighborhood B € ®. Furthermore, for a continuous map ¢ : T — S and families
of supports ® and ¥ in S and T, respectively, we denote by ®¥ the family supports in T

which consists of all closed subsets A C T such that A € ¥ and ¢(A) € ®. For example,
if ¥ is the family of all closed subsets of T, then ®¥ = ¢~ }(®), where ¢~ (®) consists
of all closed subsets of the sets ¢~ !(B) for B € ®.

5.1.1. Example. — Let S be a Hausdorff topological space. Then the family Cg
of all compact subsets of S is a family of supports. If S is locally compact, then Cj is
paracompactifying. More generally, let ¢ : T — S be a Hausdorff continuous map and
assume that each point of S has a compact neighborhood. Then the family G, of all
closed subsets A C T such that the induced map A — S is compact is a family of supports.
If S is paracompact and T is locally compact, then the family G, is paracompactifying.

Let (X, S) be a k-germ, and let @ be a family of supports in S. Then one can define
the following left exact functor I'y: S(X, S) — 7b:

Ty(F) = {s e F(X, S) | Supp(s) e ® }.

The values of its right derived functors are denoted by H3((X, S), F), n > 0. For example,
if @ is the family of all closed subsets of S, then we get the groups H*((X, S), F). If ® is
the family of all closed subsets of a fixed closed subset = C S, we get the cokomology groups
with support in T denoted by HE((X, S), F). If S is Hausdorff and ® = Cg, then we get
the cohomology groups with compact support H}((X, S), F). We remark that for any family
of supports ® in S and any F € §(X, S) there is a spectral sequence

HG (S, R =, (F)) = Hg" (X, 8), F),

where = is the morphism of sites (X, S), — S.
Let now ¢ : (Y, T) — (X, S) be a morphism of germs over . For

((U,R) > (X, 8)) e Et(X, S)
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and a morphism (V, P) > (U, R) in Et(X,S) we introduce notations for germs and
morphisms by the following diagram with cartesian squares '

®

(Y, T) > (X, S5)

1 !

(Y,, T,) > (U,R)

b b

(Y, Tp) 25 (V,P)

5.1.2. Definition. — A o-family of supports is a system @ of families of supports ®( 1)
in T, for all ((U, R) 4 (X, 8)) € Et(X, S) such that it satisfies the following conditions:

(1) for any morphism (V, P) > (U, R) in Et(X, S), one has &1 D)) CD(f2);
- (2) if for a closed subset A CT, there exists a covering {(V;, P) 4 (U,R) }iex
in Et(X,S) such that &io(A) e®(fg) for all iel, then A e®(f).

(i) The ¢-family of supports ® is said to be paracompactifying if, for any
((U, R) e (X, S)) e Et(X, S), each point of R has a neighborhood (V,P)-> (U, R)
in Et(X,S) such that the family of supports ®(fz) is paracompactifying.

For a family of supports ® in S and a ¢-family of supports ¥, we denote by O¥
the family of supports ®¥(id) in T. Let now ¢ : (Z,P) - (Y, T) be a second mor-
phism, and let @ (resp. ¥) be a ¢-family (resp. ¢-family) of supports. For
(U, R) > (X, 8)) e Et(X, 8), we set (BF) (f) = O(f) ¥(,). Then ®F = {(®¥) (£)}
is a @{-family of supports. Furthermore, if ® is a ¢-family of supports and

((U,R) > (X, 8)) e Ey(X, S),

then, for any A e ®( f), each point # € R has an open neighborhood # in R such that
the closure of the set f,(A N ¢; (%)) belongs to ®(id).

5.1.3. Example. — Let ¢: (Y, T) — (X, S) be a morphism of germs over & such

that the induced map T — S is Hausdorff. For ((U, R) 5e (X, 8)) e Et(X, S), we set
%o(f) = Cy. Then €, ={ €, f)}is a ¢-family of supports. If S and T are locally
closed in X and Y, respectively, then the family €, is paracompactifying. Furthermore,
if S is Hausdorff, then ¥ ¢, = C;. If §: (Z,P) - (Y, T) is a second morphism of
germs such that the induced map P — T is also Hausdorff, then %, €, = %,

A ¢-family of supports ® defines a left exact functor ¢4 : S(Y, T) - 8(X, S) as

follows. If F € (Y, T) and ((U,R) > (X, 8)) e Et(X, S), then

(90 F) (U, R) ={s e F(Y,, T)) | Supp(s) e ®(f)}.
13
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For example, if @ is the family of all closed subsets, then we get the functor ¢,. If the map
T — S is Hausdorff and ® = %, then we get a left exact functor S(Y, T) — S(X, S)
which is denoted by ¢,. Furthermore, if ¥ is a family of supports in S, then there is an
isomorphism of functors I'y o @g = I'yg. If ¢ : (Z, P) - (Y, T) is a second morphism
of germs and ¥ is a {-family of supports, then there is an isomorphism of functors
P © by = (P¥) -

Finally, let (X, S) be a k-germ, and let ¢ be the canonical morphism of k-germs
(X, R) - (X, S) defined by a closed subset RCS. Then one can define a left exact
functor

i':8(X, S) - S(X, R)

as follows. Let j denote the canonical morphism (X, T) — (X, S), where T = S\R,
and let F € $(X, S). The stalks of the sheaf F’ = Ker(F —j,j*F) are equal to zero
outside R. By Proposition 4.3.4 (i), F' 5 i, (i* F'). We set ¢! F = ¢* F’. Since there is
an exact sequence 0 —1,(i' F) > F —j,(j*F), the functor 7' is left exact. Its right
derived functors are denoted by s#%((X, S), F). It is easy to see that the functor ' is
right adjoint to the functor 7,. It follows that the functor 7' takes injectives to injectives.

5.2. Properties of cohomology with support

5.2.1. Proposition. — Let ¢ : (Y, T) — (X, S) be a morphism of germs over k, and let ®
be a g-family of supports. Then for any F € S(Y, T) and any n > O the sheaf R"™ oo (F) is associated

with the presheaf (U, R) > (X, S)) — Hz,((Y,, T,), F).

Progof. — Let P*F denote the presheaf considered. We have an exact d-functor
{P*},50:8(Y,T) - P(X,S) (see [Gro], § 2.1). If S" F denotes the sheaf associated
with the presheaf P* F, then we get an exact d-functor {S"},5,:S(Y, T) - §(X, S).
Since @g = S’ and { R" 94 },, 5, is a universal d-functor that extends ¢4, there is a morphism
of d-functors R” ¢, — 8", n> 0. It is an isomorphism because the d-functor { 8"}, ,
is exact, and P"F = 0 (and therefore S*"F = 0) for any injective sheaf F € $(Y, T)
andz> 1. m

5.2.2. Theorem (Leray spectral sequence). — Let ¢ : (Y, T) — (X, S) be a morphism
of germs over k. Let ® be a family of supports in S, and let V' be a o-family of supporis. Suppose
that the family ® is paracompactifying, or that ¥ is the family of all closed subsets of T. Then_for
any abelian sheaf ¥ on (Y, T) there is a spectral sequence

Ej*=H3((X, 8), R? 9 (F)) = Hge*((Y, T), F).
Proof. — Since T'y(py F) = I'ye(F), to apply Theorem 2.4.1 from [Gro], it suffices

to verify that the functor ¢y sends injective sheaves to I'g-acyclic sheaves. If ¥ is the family
of all closed subsets of T, then this is evident because ¢y = ¢, sends injectives to injectives.
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5.2.3. Lemma. — If F is an injective sheaf on (Y, T), then the stalk (¢ F), of oy F at
a point x €8S is a flabby G,p,;-module.

Proof. — Since our statement is local, we can shrink X and assume that it is Haus-
dorff. For a subset Q C T we denote by Z, the analytic space over k¥ which is a disjoint
union of the spaces (5 ( y)) over all points y € Q. The category 8$(Z,) is equivalent
to the category of families { M( )}, o of discrete G,,,-modules M( ). Let ¢, denote
the canonical morphism Z, — (Y, T) of germs over k. Furthermore, for every point
» € T we take an embedding of F, in an injective G,,,-module M(y). Let M, denote
the sheaf on §(Z,) which corresponds to the family { M( y)}, c o, and set Ng = ¢, (M,).
It is clear that the sheaves My and N, are injective, and there is a canonical embedding
of sheaves F < N;. Since F and N, are injective, F is a direct summand of N;, and
therefore it suffices to verify our statement for the sheaf N.

We claim that the canonical embeddings of sheaves N, — Ny induce an isomorphism

li_n; ?.(Ng) = oe(Ny).
Q € ¥Y(d)
Indeed, let s € (pg Ny) (U, R), where ((U,R) -3 (X,S)) is 2 neighborhood of the
point x in Et(X,S), i.e., s e Ny(Y,, T,) and Supp(s) € ¥'(f). For a point z e R we
take an open neighborhood % such that the closure of f,(Supp(s) N ¢; (%)) in T belongs
to ¥. Denoting this closure by Q, we see that the restriction of s to ¢; (%, R N %)
comes from Ng(¢; (%, R N %)).

The lemma now follows from the fact that the filtered inductive limit of flabby
G,pymodules is a flabby G, ,-module. m

Suppose that the family @ is paracompactifying, and let F be an injective sheaf
on (Y, T). From Lemma 5.2.3 and Proposition 4.2.4 it follows that R? =, (¢y F) = 0
for all ¢ > 1, where = is the morphism of sites (X, S),, = S. From the spectral sequence

HE(S, R, (9¢ F)) = H3" (X, 8), 9o F)

it follows that H3((X, S), ¢y F) = H(S, =, (¢¢ F)). Since the family ® is paracompac-
tifying, the restriction of the sheaf ¢4 (F) to the usual topology of S is I'y-acyclic, by
Lemma 3.7.1 from [Gro]. The theorem is proved. m

Applying Theorem 5.2.2 and Proposition 5.2.1, we get the following

5.2.4. Corollary. — Let (Z,R) i (Y, T) 2 (X, S) be morphisms of germs over k.
Let @ be a o-family of supports, and let ¥ be a Y-family of supports. Suppose that the family @ is
paracompactifying, or that V' is the family of all closed subsets of R. Then for any abelian sheaf F
on (Z, R) there is a spectral sequence

R” g(R? 4 (F)) = R?*(od)gw (F). =

Let j: (X, T) - (X, S) be the morphism of k-germs defined by a locally closed
subset T C S. The functor j, is exact because the stalk (j, F), coincides with F, if x € T
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and is equal to zero if x ¢ T. If T is closed in S, then j, = j,. If T is open in S, then
the functor j, is left adjoint to j*. We remark that for any family of supports ® in S, one
has OF, = Oy :=®,.

5.2.5. Corollary. — Let j: (X, T) — (X, S) be the morphism of k-germs defined by a
locally closed subset 'T C S, and let ® be a paracompactifying family of supports in S. Then for any
abelian sheaf ¥ on (X, T) and any q > O there is a canonical isomorphism

Hy((X, 8),5, F) 5 H, (X, T), F). =

If ¥ is the family of all closed subsets of T, then ®¥ = ® N T, where
OPNT={ANnT|Aecd}

5.2.6. Proposition. — Let (X, S) be a k-germ, F an abelian sheaf on (X, S), @ a family
of supports in S, T an open subset of S, and R = S\T.
(1) There is an exact sequence
. > qu])_l((Xa S)3 F) g H?D?\IT((X> T): F(X,T)) g
- H?OR((Xa S)> F) - H&((X, S)> F) - H&nT((X, T)> F(X,T)) > e

(1) If @ is paracompactifying, then there is an exact sequence
o > HETH((X, 8), F) > Hg '((X, R), Fix, g) —
~>Hg, (X, T), Fix,m) > Hy((X, 8), F) > Hg (X, R), Fix g) - ...
Progof. — Consider the following morphisms of %-germs
(X, T) S (X, 8) < (X, R).
(ii) The long exact sequence is obtained from the following exact sequence of

sheaves on (X, S)

0>y Fyq > F >4 Fxg >0,

using the isomorphisms
H((X, 8),4: Fix,m) = Hoo((X, T), Fix,m)s
HG((X, 8), 2, Fix ») = Hg. (X, R), Fix g))-

(1) Recall that for any abelian category &/ the category £ (&) of covariant left
exact functors &/ — &b is abelian (see, for example, [Mit]). Namely, a morphism of
functors F — G is surjective if for any A € &/ and an element o € G(A) there exist a
monomorphism A — B and an element 8 € F(B) such that the images of the elements «
and B in G(B) coincide. We claim that there is the following short exact sequence of
left exact functors on $(X, S)

0>Ty, >Tp >Tgnrpos —0.
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For this we use the construction from the proof of Lemma 5.2.3. Let F — N be the
monomorphism constructed there. It suffices to show that the canonical mapping

IFy(Ng) = Iy An(Ng I(X,T))

is surjective. By the proof of Lemma 5.2.3, the first (resp. second) group coincides
with the inductive limit over A € ® of the groups I',(Ng) (resp. T A,.‘T(NSI(X’T,)). But
['y(Ng) = Mg(A), Ty n(Ng ‘(x,’r)) = My(A N'T), and the mapping Mg(A) —~ Mg(A N T)
is evidently surjective.

The required exact sequence is induced by the above short exact sequence. m

5.2.7. Corollary. — Suppose that (X, S) is a k-germ, R 15 a closed subset of S, T = S\R,
1:(X,R) > (X,8) and j: (X, T) - (X, S) are the canonical morphisms, and F € §(X, S).
Then

(i) there is an exact sequence

0—->i(@'F) >F -4, j*F -, #L(X,S), F) -0;
(ii) for any q = 1 there is a canonical isomorphism

R (5" F) 3 #%7((X, 8), F).

Proof. — Let ((U, Q) 54 (X, S)) € Et(X, S). Applying the exact sequence 5.2.6 (i)
to the k-germs (U, Q), (U, f~(R)), (U,f*(T)), and to the family of all closed subsets
of S, we get a long exact sequence of presheaves on (X, S). It induces a long exact
sequence of the associated sheaves. It remains to remark that the sheaf associated with
the presheaf (U, Q) — H((U, Q), F), ¢ > 1, is equal to zero, and the sheaf associated
with the presheaf (U, Q) — Hi_,5,((U, Q), F), ¢ > 0, coincides with z, #°§((X, S), F). m

5.2.8. Proposition. — Let (X, S) be a k-germ, and let ® be a paracompactifying family
of supports in S. Then for any abelian sheaf F on (X, S) and any q > O there is a canonical iso-
morphism

lim H,((X, T), Foe,m) > HY((X, ), F),

where the limit is taken over the family of all open subsets T C S whose closure belong to ®.

Proogf. — The assertion is evidently true for ¢ = 0. The general case is obtained
using Proposition 3.10.1 from [Gro]. m

5.2.9. Proposition. — Let (X, S) be a k-germ with Hausdorff X and locally closed S,
and let ¥ be an abelian sheaf on (X, S) whick is a filtered inductive limit of abelian sheaves,
ie., F =lim F,. Then for any q > O there is a canonical isomorphism

lim HY((X, §), F)) 5 H{((X, 8), F).
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Proof. — The statement is evidently true for ¢ = 0. Since an inductive system of
sheaves has a resolution by inductive systems of injective sheaves, it suffices to verify
that if all the sheaves F; are injective, then H%((X, S), F) = 0 for all ¢ > 1. But this
follows from Proposition 4.2.4 and the corresponding fact for the usual cohomology
with compact supports (see [God], I1.4.12.1). m

5.3. The stalks of the sheaf R7¢, F

5.8.1. Theorem (Weak Base Change Theorem). — Let ¢:Y — X be a Hausdorff

morphism of k-analytic spaces, and let F € S(Y) and x € X. We set Y; = Y, Oy, H#(%)* and
denote by F, (resp. F;) the inverse image of F on Y, (resp. Y;). Then for any q > O there is an
isomorphism Gp,,-modules

(R? ¢, F), > HY(Y;, F3).

Proof. — Since our statement is local, we can decrease X and assume that X and Y
are Hausdorff.

5.3.2. Lemma. — There is an isomorphism (¢, F), (€ (x)) > HYY,, F,).

Proof. — From Proposition 4.2.2 it follows that

(¢, F), (5€(x)) = lim {s e F(¢™'(%))| the map Supp(s) - % is compact }.

UDu

Furthermore, since any compact subset of Y has a basis of paracompact open neigh-
borhoods, from Propositions 4.3.4 and 4.3.5 it follows that

H((Y,, F,) = lim {seF(#")| the set Supp(s) N ¢~ *(x) is compact }.
W DoY)

Therefore our statement follows from the well-known topological fact. m

5.3.3. Corollary. — One has
(¢, F), = lim HY(Y, 8y, K, F,),

K/ #(x)
where K runs through finite extensions of S (x) in ' (x)°. m
5.3.4. Lemma. — Let X be a Hausdorff k-analytic space, and let F € S(X). We set
X' = X ®F* and denote by F' the inverse image of F on X'. Then

lim HY(X ® K, F) 3 HY(X', F’),
ik

where X runs through finite extensions of k in k.
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Progf. — Let x" € X". For a finite extension K of % in k* we denote by xg the image
of #' in X ® K. We set x = #, and fix an embedding of fields 5#(x)* < #(x')* over the
embedding 5 (x) — 5#(x"). Since #’(x) k* is everywhere dense in 5 (x")%, G,y > Gpays -
Therefore there is an exact sequence of Galois groups

0 = Gy > Gy = G(H(x) B[ (x)) — 0.

We remark that G(5#(x) k°/#°(x)) is a closed subgroup of G,. It follows that
F (#(x)) = lim F,(# (xg)).
K/k

=1
—>
/

We now claim that for any open neighborhood %’ of x’ there exist a finite extension K
of k£ in &* and an open neighborhood % of the point xx such that the preimage of % in X'
is contained in %’. Indeed, since the point x has a neighborhood which is a finite union
of affinoid domains, the situation is reduced to the case when X = (&) is k-affinoid.
Shrinking %', we may assume that

U ={yeX' || fDN<a, &> b, 1<i<nl<j<m},

where f;, g, € & ® K’ for some finite extension K’ of % in 2%, Let K be the maximal
subextension of K’ separable over k. If p = char(k) > 0, then (K’')? C K for some > 0,

and therefore replacing f, g, @, b; by f”, g%, a”, b?, respectively, we may assume
that f;, g, € & ® K. Then the same inequalities define an open neighborhood % of xg
in X® K whose preimage in X’ is %'

Finally, let s e HY(X’, F’). Then for any point x’ € Supp(s) there exist a finite
subextension #C K C#* and an open neighborhood # of the point xg such that the
restriction of s to the preimage of % is induced by an element of H°(%, F). Since Supp(s)
is compact, we can find a finite extension K of %z in &° such that s is induced by an element

of HHX®K,F). m

5.8.5. Corollary. — In the situation of Lemma 5.3 .4, for any q > O there is a canonical
isomorphism '
lim H(X ® K, F) 3 H(X', F).
Kk
Progf. — 1t suffices to show that if F is an injective sheaf on X, then H!(X', F') =0
for all ¢ > 1. i
First of all, for any point x' € X', F, is a flabby G,g(x,,-module. Indeed, if x is
the image of ' in X, then F, is a flabby G, ,-module. It follows that F, is a flabby
H-module for any closed subgroup HCG,,,. Since G, is a closed subgroup of G,
and F,, = F,, F, is a flabby G, -module.
Consider now the morphism of sites X, — | X’ |. From the previous fact it follows
that R?=, F' = 0 for all ¢ > 1, and therefore H(X', F’) = H{(| X' |, =, F’). To verify
that the latter group is trivial, it suffices to show that for any compact subset ¥’ C X’
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and any element 5" € F'(¥’) there exists an element ¢’ € F'(X’) which induces s’. By
the reasoning from the proof of Lemma 5.3.4, we can find a finite extension K' of
in 2 and an element s € F(Z), where X is the image of £’ in X ® K, which give rise to s'.
Since F is injective, there exists an element ¢ € F(X ® K) that induces s, and the required
fact follows. m ,

The case ¢ = 0 of our theorem follows from Corollary 5.3.3 and Lemma 5.3.4.
So it suffices to show that if F is an injective sheaf on Y, then H{(Y;, F;) = 0 for all
¢> 1 and x € X. By Corollary 5.3.5, it suffices to show that H(Y,, F) = 0. This is
proved, using the reasoning from the proof of Corollary 5.3.5. m

We say that a morphism of analytic spaces over %, f: X' — X is resiricted if for
any pair of points #' € X’ and ¥ € X with f(x’) = x the canonical embedding of fields
H(x) = H(x') extends to an embedding #(x)* — H#°(x')® whose image is everywhere
dense. For example, quasi-immersions and morphisms of the form X & k* — X are
restricted.

5.3.6. Corollary. — Let ¢:Y — X be a Hausdorff morphism of k-analytic spaces, and
let f: X' — X be a restricted morphism of analytic spaces over k, which give rise to a cartesian
diagram

Yy 5 X
I

Yy % X
Then for any abelian sheaf ¥ on Y and any q > 0 there is a canonical isomorphism
S' R, F) SRiq(f"F). m
The following is a consequence of Corollary 5.3.5.

5.8.7. Corollary (Hochschild-Serre Spectml Sequence). — Let X be a Hausdorff k-analytic
space, and let ¥ € S(X). We set X' = X ®k® and denote by F' the inverse image of F on X'.
Then there 1s a spectral sequence

Er¢=H?(G,, HY(X', F')) = H*+¢X, F). m

5.3.8. Corollary. — Let ¢ : Y — X be a Hausdorff morphism of k-analytic spaces, and
let F be an abelian torsion sheaf on Y. Then R® @, F = 0 for all ¢ > 2d, where d is the dimension

of o

Progf. — By Theorem 5.3.1, it suffices to show that if the field % is algebraically
closed, and X is a Hausdorff k-analytic space of dimension d, then HY(X, F) = 0 for
all ¢ > 2d. By Proposition 5.2.8 and Corollary 5.2.5, one has

HY(X, F) = M HY(X, @), (j,(Fla))x, &)

ch
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where % runs through open subsets with compact closure, j is the canonical embedding
% < X. By Proposition 4.3.5, the latter group coincides with the inductive limit of
the groups HY(7 j, F[q,) over all open paracompact neighborhoods ¥~ of the compact
set %. The required fact follows from Theorem 4.2.6. m ‘ '

Let n be a positive integer, and let ¢ : Y — X be a Hausdorff morphism of finite
dimension. By Corollary 5.3.8, the derived functor Re,: D*(Y, Z/nZ) — D*(X, Z/nZ)
takes D®(Y, Z/nZ) to D¥(X, Z[nZ) and extends to an exact functor

Re, : D(Y, Z/nZ) — D(X, Z/nZ)
which takes D7(Y, Z/rZ) to D~ (X, Z/nZ).

5.3.9. Theorem. — Suppose that F* € D~ (X, Z[nZ) and G" € D~ (Y, Z/nZ) or that
F* e D¥(X, Z/nZ) has finite Tor-dimension and G* € D(Y, Z[nZ). Then there is a canonical
1somorphism

F & Rg,(G*) 3 Re, (¢"(F) 6 G).

Proof. — First of all, for arbitrary abelian sheaves F on X and G on Y there is a
canonical homomorphism F ® ¢,(G) — ¢,(¢*(F) ® G). From Theorem 5.3.1 it follows
easily that it is an isomorphism. We claim that if F is flat and G is ¢,-acyclic, then the
sheaf ¢*(F) ® G is also ¢,-acyclic. Indeed, by Theorem 5.3.1, we may assume that
X = #(k), where k is algebraically closed. In this case F is a constant sheaf associated
with a flat Z/nZ-module M. If M is free of finite rank, then for any ¢ > 1

HY(Y, ¢*(F) ® G) = H(Y, My ® G) = HY(Y, G)® M = 0.

It follows that the same is true if M is projective of finite rank. Our claim now follows
from the facts that any flat module is a filtered inductive limit of projective modules
of finite rank, and the functor G — H{Y, G) commutes with filtered inductive limits
(Proposition 5.2.9).

In the situation of the theorem we take a flat resolution P* — F* of F* and a ¢,-acyclic
resolution G* —I* of G*. In the second case we may assume that P° is bounded.
Then ¢*(P*) — ¢*(F*) is a flat resolution of ¢*(F*). By the previous claim, the complex
¢*(P*) ®I" is ¢,-acyclic, and therefore

L ~ * . .
F'@Re,(G) = P'®,(I') = ¢,(¢"(P) ® I')
. L .
= Ro,(¢"(F) © G°).
The required statement follows. m

5.3.10. Corollary. — If G* € D*(Y, Z[nZ) is of finite Tor-dimension, then Re,(G")
is also of finite Tor-dimension, and for any ¥* € D(X, Z/nZ) there is a canonical isomorphism

F* ® Ro,(G*) 3 Ry, (¢(F) © G°).

14
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Proof. — Suppose that H"“(G’éG‘) =0 for all i>m and G' eS(Y, Z/nZ).
It follows that H™%(¢*(F) GE)G) =0 and therefore R™* ¢,(¢*(F) (i)G') =0 for all

1> m and F € S8(X, Z/nZ). By Theorem 4.3.9, H““(FQI;)ch,(G')) = 0. The second
assertion follows from this. m

If n is prime to char(k), we define for m € Z a sheaf pJ  as follows. If m > 0,
then p7x = pd%. If m<0, then p"y = (p, %), where F¥ = #om(F, Z/nZ). For
F* e D(X, Z/nZ) we set F'(m) = F* & un x- Since uy x is a locally free Z[nZ-module,
F*(m) = F* ® uy . One has F*(m) (m') = F'(m + m') and ¢*(F*(m)) = (¢ F*) (m).

5.3.11. Corollary. — Suppose that n is prime to char(k). Then for F* € D(X, Z[nZ),
G* e D(Y, Z/nZ) and m € Z there are canonical isomorphisms

Re,(G'(m) 3 (Re,G") (m) and Re,(o" F'(m) 3 F O Ro,(uny). m

5.4. The trace mapping for flat quasifinite morphisms

In this subsection, for every separated flat quasifinite morphism ¢:Y — X of
analytic spaces over £ and every abelian sheaf F on X, we construct a irace mapping

Tr,: ¢, ¢*(F) - F.
Suppose that such mappings are already constructed. We say that Tr, are compa-
tible with base change if for any separated flat quasifinite morphism of %2-analytic spaces

¢:Y — X and any morphism f: X’ — X of analytic spaces over £ which give rise to
a cartesian diagram

vy %, X

b

y % X
the following diagram is commutative
99 (f'F) = o f"'F = f*(p 9" F)
mN
fF

where Tr, is the evident homomorphism induced by Tr,: ¢, ¢*F —F (here we use
the canonical isomorphism f* ¢, G = ¢, f™ G, G € §(Y), which is easily obtained from
the proof of Corollary 4.3.2).
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Furthermore, we say that the Tr, are compatible with composition if for any separated
flat quasifinite morphisms Z L Y35 X the following diagram is commutative

(od): (¢9)* F = o,(4, ¢") ¢(F)

th¢

mn 9 (F)

lT"cp

F
where Tr, is the evident homomorphism induced by Tr, : ¢, ¢*(¢* F) — ¢* F.-

5.4.1. Theorem. — To every separated flat quasifinite morphism ¢ : Y — X and every
abelian sheaf on X one can assign a trace mapping

Tr, : ¢, ¢*(F) - F.

These mappings have the following properties and are uniquely determined by them:
a) the Tr, are functional on F;
b) the Tr, are compatible with base change;
c) the Tr, are compatible with composition;
d) if ¢ is finite of constant rank d, then the composition homomorphism -

Tr,
F— ¢, ¢'(F) = ¢, ¢'(F) —>F
is the multiplication by d.

Proof. — 1) Suppose that X = .#(K), where K is a non-Archimedean field over .
Then Y = #(L), where L is a finite product II; . L; of finite local Artinien K-algebras.
Let K, be the maximal separable extension of K in L,. We set Y, =.#(L) and
Y, = #(K,). The categories S(Y;) and S(Y;) are canonically equivalent. Let ¢; denote
the morphism Y; — X. From 4)-d) it follows that the following equality should hold

Tr, = e?x [Li: K] Tr,,.
If now L is a finite separable extension of K, then F can be regarded as a Gg-module,
and g, ¢*(F) is the induced module Ind$:(F) which is the set of all continuous maps
f:Gg —F such that f{hx) = hf(x) for h e G, with the action (gf) (x) =f(xg) for
g € Gg. In this case from 5) it follows that Tr, should coincide with the homomorphism
of Gg-modules

Ind:(F) > F:f—> X af(x7").

x € Gr/GL

We remark that if  is arbitrary and some mapping T : @, ¢*(F) — F induces on
stalks the above homomorphisms, then T should coincide with Tr,.
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2) Suppoée that ¢ is finite. For (U L X) e Et(X), let { V, }ie1 be the connected
components of Y, =Y Xy U. Then the induced morphisms ¢;:V, - U are finite.

We set P(U) = @iel F(U). The correspondence U + P(U) defines an abelian presheaf
on X. Furthermore, the canonical homomorphisms

P(U) = Dier F(U) > Diexlo, o F) (U) = (9. 9" F) (U)

define a homomorphism of presheaves P — ¢, ¢* F. We claim that it induces an iso-
morphism of sheaves aP 5 o, ¢* F. Indeed, it suffices to verify that it induces an iso-
morphism on stalks, but this is evident.

Let now d; be the rank of ¢, (recall that V; is connected). For

(S)ier € 69“_—‘1 F(U) = P(U)

we set
Ty((s)ier) = ‘,g'l d;s; e F(U).

It is easy to see that the mappings Ty define a homomorphism of presheaves P — F,
and therefore a mapping ¢, ¢*(F) — F. Considering its stalks, we see that it should
coincide with Tr,. ‘

3) If ¢ is an open embedding, then the functor ¢, is left adjoint to ¢*. It is clear
that Tr, should coincide with the adjunction mapping ¢, ¢*(F) —F. More generally,
suppose that ¢ can be represented as a composition

Yy Sxd X,

where j and ;' are open embeddings and ¢’ is finite. Then we define Tr, as the unique
mapping which satisfies ¢). Considering the stalks, we see that Tr, does not depend on j,
J' and ¢'. »

4) Let ¢ be arbitrary. Take an open covering { ¥/}, of Y such that ¢ induces
finite morphisms ¥; — ¢(%;). We denote by ¢, the morphism ¥; - X and by v,

the canonical embedding ¥; <> Y. There is an exact sequence of sheaves on Y

®i, jer Vu,((‘P* F) lv,-,-) g @iex\'u((q’* F) l«r,-) o' F -0,

Y] J

where ¥, =%;Nn"Y,; and v; is the canonical embedding ¥;;< Y. Since the
functor ¢, is exact, there is an exact sequence :

®£,1’EI Pij, oi;(F) — ®iel. @i 9;(F) — o, ¢*(F) -0,
where ¢;; are the. induced morphisms ¥;; — X. From 3) it follows that the mapping

@iEITrCP : @iél ¢ 9;(F) = F

i
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is zero on the image of EBHGI @;;, 9i;(F). Therefore it induces a mapping

Tr, : ¢, ¢*(F) — F. Considering its stalks, we see that it does not depend on the choice
of the covering. Moreover, the mapping constructed has all the properties 2)-d). m

All the mappings which are induced by the trace mapping Tr, will also be denoted
by Tr,. For example, the induced homomorphisms

HY(Y, ¢" F) = HY(X, ¢, ¢(F)) - H{(X, F)

are examples of such mappings.

5.4.2. Remarks. — (i) Let ¢:Y — X be a flat finite morphism. Then ¢, (0y)
is a locally free sheaf of Ox-algebras. Therefore one can define in a standard way the
norm homomorphism ’

N:e.(0y) - 0.

This homomorphism extends naturally to a homomorphism of sheaves on the étale
site of X

N: <P*(G'm, Y) g Gm,X‘

From Theorem 5.4.1 it follows easily that, for any #n > 1 prime to char(k), there is a
commutative diagram of abelian sheaves on X

0 — cp*(“‘n,Y) - (Pt(Gm,Y) - (P*(Gm,Y) — 0

o 5 .

0 P‘n,X Gm,X — Gm,X - O

(ii) If ¢ : Y — X is an étale morphism, then ¢, is left adjoint to the functor ¢*.
In this case the trace mapping Tr, coincides with the adjunction mapping ¢, ¢*(F) — F.

§ 6. Calculation of cohomology for curves

6.1. The Comparison Theorem for projective curves

Recall that a scheme & over % is called compactifiable if there exists an open immersion

J &> Z of in a proper scheme Z over k. For such a scheme & and an abelian
sheaf # on & one defines the étale cohomology groups with compact support as follows:

HY(Z, ) = H'(Z, j, &)
(this definition does not depend on the choice of j). Recall also that, by Nagata’s Theorem,

any separated scheme of finite type over & is compactifiable. The following statement
is the starting point for the induction in the proof of the Comparison Theorem for
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Cohomology with Compact Support 7.1.1 (The proof of the latter theorem may be
read immediately after the proof of 6.1.1.)

- 8.1.1. Theorem. — Let & be a separated algebraic curve of finite type over k, and let F
be an abelian torsion sheaf on &. Then for any q > O there is a canonical isomorphism
HYZ, F) 3 H(Z™, F*=).

Proof. — Denote the homomorphism considered by 6% First we want to reduce
the situation to the case when % is algebraically closed, & is projective, and & is finite
constant.

l)’ We may assume that % is projective. — Indeed, if j : & < & is an open embedding
in a projective curve, then HY(%, #) = H"(.%’T,j, F), HY (&>, F*) = H“(.%_‘“,j,"“ F)
and (j, F)= S Foo,

2) We may assume that F is constructible. — This is because any abelian torsion sheaf
on & is a filtered inductive limit of constructible sheaves and the cohomology of %
and £® commutes with filtered inductive limits (Proposition 5.2.9). ‘

3) We may assume that F is finite constant. — Indeed, assume that 6¢ are isomorphisms
for such sheaves. Then 0? are isomorphisms for any sheaf of the form % = ¢, ((Z[nZ)g)
for some finite morphism ¢ : % — % because in this case HYZ, #) = HY(%, Z/nZ)
and HYZ*, F*) = HY(%*, Z/nZ) (Corollary 4.3.2). Furthermore, an arbitrary
constructible sheaf & can be embedded in a finite direct sum of sheaves of the above
form. It follows that there is an exact sequence 0 - % — %° — %' — ... such that 6¢
are isomorphisms for each &%, i > 0. Therefore 6° are isomorphisms for Z.

4) Wemay assume that kis algebraically closed. — Indeed, let ' = Z ®k*and "' = F ®k°,
and let &' and &' denote the pullbacks of # on %’ and %', respectively. Then
HY(Z', F') S HY(Z", F"') because the fields #* and ° are separably closed. Since
Zn =g ® k%, the required fact follows from the homomorphism of Hochschield-
Serre spectral sequences

H?(G,, HY(Z", #')) ——> HP+YZ, F)

! !

H?(G,, HY(Z'™, F''*)) == Hr+t9(Z*, F*)

We remark that since the cohomological dimension of & and Z™ is at most two,
then the 6? are isomorphisms for ¢ > 2.

If & = (Zp" Z),, where p = char(k), then the Artin-Schreier exact sequences
for & and 2™, the coincidence of the étale cohomology with the usual cohomology for
coherent sheaves (Theorem 4.2.7) and GAGA ([Ber], 3.4.10) imply that the 6? are
isomorphisms.

Suppose that # = (Z[nZ),, where n is prime to char(k). This sheaf is isomorphic
to ., o- Then 6°is an isomorphism because 7y(Z) = mo(Z™"), by [Ber], 3.4.8 and 3.5.1.
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Furthermore, the Kummer exact sequences for Z and 2™, the Hilbert Theorem 90
(Proposition 4.1.10) and GAGA imply that 6! is an isomorphism and that for the veri-
fication of the fact that 62 is an isomorphism it suffices to show that the n-torsion of the
group H2(Z2™, G,) is trivial. This follows from the following lemma.

6.1.2. Lemma. — Suppose that k is algebraically closed. Let X be a paracompact good
one-dimensional k-analytic space. Then the torsion of the group H2(X, G,) is p-torsion, where
p = char(k). If char(k) = 0, then H%(X, G,) = 0.

Proof. — The spectral sequence of the morphism of sites n: X, —|X|,
Lemma 4.2.8 and Proposition 1.2.18 imply that H*(X, G,) = H(| X |, R* %, G, x).
Thus, to prove the lemma it suffices to show that the sheaf R® n, G, x is p-torsion. By
Proposition 4.2.4 and Lemma 4.2.8, for a point x € X one has

(Rz Ty Gm,x)a; = HZ(Gx(z)’ (@gg,z)*)'

The latter is the Brauer group of the local Henselian ring 0 , and is isomorphic to the
Brauer group of k(x) (see [Gro2]). It is equal to zero, by Theorem 2.5.1. m

The following fact is a corollary of Lemma 6.1.2. It will be used in § 6.2 and
§ 6.3 and will be proved in § 6.4 for arbitrary one-dimensional affinoid spaces and for

~

integers n prime to char(Z).

6.1.3. Corollary. — Suppose that k is algebraically closed. Let X be an affinoid domain in
the analytification Z™ of a projective curve &. Then for any integer n prime to char(k) one has
HY(X, ) = 0.

Progf. — The group H2(X, p,) does not change if we replace X by its inverse
image in the normalization of the reduction of . Therefore we may assume that Z is
smooth connected and X is connected. By Lemma 6. 1.2 and the Kummer exact sequence,
one has H%*(X, p,) = Pic(X)/n Pic(X). We claim that the group Pic(X) is divisible.
Since X is connected, there exists a point x € (k) = £**(k) which does not belong
to X. Then &’ = &' \{ x } is an irreducible affine curve, and it is known that the group
Pic(Z") is divisible. Therefore it suffices to show that the canonical map Pic(Z”) — Pic(X)
is surjective. One has

Pic(Z") = Div(Z")/Divy(Z"),
where Div(Z”) (resp. Divy(Z”)) is the group of divisors (resp. principal divisors) on Z”.

Similarly, if % = Spec(&/), where X = .#(&/), then Pic(X) = Pic(%), by Kiehl’s
Theorem, and one has

Pic(#) = Div(%)/Div,(¥).

Our claim follows from the evident fact that the canonical map Div(Z") — Div(%)
is surjective. m
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6.2. The trace mapping for curves

For brevity a separated k-analytic space of pure dimension one will be called a
k-analytic curve.

6.2.1. Theorem. — Suppose that k is algebraically closed, and let n be an integer prime
to char(k). Then one can assign to every smooth k-analytic curve X a trace mapping

Try : H3(X, p,) = Z/nZ.

These mappings have the following properties and are uniquely determined by them:
a) for any flat quasifinite morphism ¢ :Y — X the following diagram is commutative

HI(Y, p,) —> HE(X,p,)

Tfy\A 4 {fx

Z/nZ

'b) Trp is the canonical mapping H2(P, w,) = ZnZ whick is induced by the degree homo-
morphism deg : Pic(P') 3 Z.

Furthermore, the Try are compatible with algebraically closed extensions of the ground field
and ‘are surjective. If n is prime to char(k) and X is connected, then Try is an isomorphism.

Proof. — Let A be the closed annulus A(a;r,7) ={xcA'||(T —a)(x)| =71},
and let f = 2° __ (T — a)’ € O(A).

6.2.2. Lemma. — fe O(A)* if and only if there exists m with |a, |r™> |a; |1 for
all @+ m. ' ~

Proof. — If r ¢ | k* |, then O(A) is a field, and our statement is evident. Suppose
that r €| %*|. In this case we may assume that r =1, ||f|| =1 and & = 0. Since

|/~*]] =1, then the element £ ek [T 1] is invertible. It follows that f = o«T™ for

*T
some o e;, m € Z, and we are done. m

The complement of A in P1is a disjoint union of the opendiscs D(a, r) and P*\ E(aq, r)
which are called the complementary open discs of A. Let D be one of these discs.. For
feO(A)* we set degp(f) = m, if D = D(a,7), and degy(f) = —m, if D = P*\E(q, 1),
where m is from Lemma 6.2.2. We get a homomorphism

deg, : O(A)" — Z.

The notation can be motivated as follows. There is a rational function g with
[|f— gl < ||f]]. For such a g one has g € @®(A)*, and therefore the divisor (g) is concen-
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trated outside A. If (g);, denotes the part of the divisor which is concentrated on D,
then degy(f) = deg(g),. We remark that if D’ is the second complementary disc,
then degp(f) + degy (f) = 0.

6.2.3. Lemma. — Let f € O(A). Then f(A) is an annulus if and only if there exists b € k*
such that f — b € O(A)* and degy(f — b) + 0.

Proof. — Assume that f(A) = A(b; R, R). Then the function f — & is invertible
and, by Lemma 6.2.2, one has f — b = a,(T — a)™ (1 + ), where ¢ € O(A) with
lle]] <land R=]a,|r"=||f—b]|l. f m=0, then f — b = q,(1 + ¢) and that is
impossible because in this case f(A) C D(4, R). Conversely, if f = b + a,,(T — a)™ (1 + o),
where || || <1 and m % 0, then f(A) = A(b,|a,|r™). m

Let f € O(A) and assume that A’ = f(A) is an annulus. For a complementary open
disc D of A we denote by f(D) the complementary open disc of A’ which is of the same
type as D if m > O (resp. of the opposite type if m < 0), where m is from Lemma 6.2.2.
(We say that two open discs in P? are of the same type if they contain or do not contain
the infinity simultaneously.) For example, if f comes from O(E), where E =D U A
then f(D) is the usual image of D under f. We remark that the induced morphism
Sf:A - A’ is flat and finite. Let N be the norm homomorphism O(A)* — O(A')*.

6.2.4. Lemma. — For any g € O(A)* one has
deg,m)(N(g)) = degp(g)-

Proof. — Since both sides of the equality do not change under extensions of the
ground field, we may assume that r = 1 and || f|| = 1. Of course, we may also assume
that a = b = 0 and || g || = 1. The morphism finduces a flat finite morphism of reduc-

tions f: A = Spec (Z [T, %]) —~ A’ = Spec ('/; [T', TI,—,]), and the following diagram
is commutative

0A)” > 0A)”

,l

> O&)"

I
oAy =

P

If degp(g) = 0, then g is constant on A. This implies that N(g) = N(g) is constant
on AX’, and therefore deg,,(N(g)) = 0. Since both sides of the equality are additive
with respect to g, we may assume that ¢ = T. One has T’ = a,, T"(1 4 ¢), where

L
la,|=1, ||¢||<1 and m £ 0. If m> 0, then f(D) =D and N(T) =ga,*'T". If

m< 0, then f(D) is the second complementary disc and N(T) = &, ' T'"'. In both
cases we have the required equality. m

15
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Let v, denote the composition of the following surjective homomorphisms
‘ Trp1
O(A)" — HY(A, u,) — H{(D, u,) — H (P, p,) => Z/nZ.
The first homomorphism is obtained from the Kummer exact sequence (it is surjective
because Pic(A) = 0). The second one is obtained from the cohomological exact
sequence associated with the embeddings D < E = D U A < A (it is surjective because
H*(E, u,) = 0, by Corollary 6.1.3). The third one is surjective because H*(P*\ D, .,) = 0.
We remark that if # is prime to char(k), then O(A)*/0(A)*" = Z/[nZ.

6.2.5. Lemma. — For any g € O(A)* one has
Yp(8) = — degp(g) (mod n).

Progf. — It suffices to consider the case D = D(a, r). First we claim that it suffices
to verify the equality only for the function g = T — 4. Indeed, take a rational function £
with sufficiently small || g — k|| so that g = k(mod O(A)*") and degp(g) = degp(k).
Then yp(g) = yp(k), and therefore we may assume that g is a rational function. Since
vp(g) and degp(g) are additive with respect to g, it suffices to assume that g = T — « for
some « € k. If « ¢ D, then g comes from @(E)*. Therefore the image of T — « in H'(A, p,)
comes from H'(E, p,) in the exact sequence H'(E, p,) — H'(A, u,) - H%(D, u,) asso-

ciated with the embeddings D & E < A. It follows that yYp(T — «) = 0. Thus, we may
assume that ¢ = T — 4. We remark that this function belongs to 05(A)* = H°(A, i* G, ).
Consider the commutative diagram

0 0 0
! J

0 — Bn,p = Up,g — Z, Pp,a —> 0
! !

0 — ;j,Gyp — Gy g — 4"Gyg — 0
! !

0 — j! Gm,D -_— Gm,E —> iti*Gm,E — 0

! ! !

0 0 0

whose columns are Kummer exact sequences. It induces the anticommutative diagram
8

Ou(A) > Hy(D, Gy)

l !

H'(A, p,) — H(D, u,)
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Therefore it suffices to verify that the image of the element 3(T — a) in
Pic(PY) = HY(PY, G)

has degree one. ‘

The group H}(D, G,) has the following two descriptions. It is the group of equi-
valences classes of pairs (L, ¢), where L is an invertible sheaf on E (resp. P!) and ¢ is
an isomorphism Oy — L in a neighborhood of A (resp. an isomorphism Op — L in

a neighborhood of P'\D). If % € Ox(A)*, then §(k) = (O, 0E—':> 0g). On the other
hand one has a commutative diagram

HY(D, 9iny) — HY(D, G,)

! !

HY(P, Zivy) —> H'(P', Gy

where Div;, and Divy, are the sheaves of Cartier divisors. If d = Xin,(a;) € HY(D, Divy),
then v(d) = (Ogx(d), O — Ogx(d)) (the latter is an isomorphism in a neighborhood of A

which does not meet the support of d). Thus we have §(T — a) = (O, Oy ikt 0z) and
v(a) = (Og(a), Og — Og(a)). These pairs are equivalent because there is a commutative
diagram

T—a
E ? 0E

1
g —> 0Og(a)

The lemma is proved. m

Let now B be the open annulus B(a;7, R) ={x €Al |r< |(T —a) (x)| <R}
We set A = A(a;7, R), A, = A(a; R, R) and A, = A(a; 1, r). Let y5 denote the compo-
sition of the following surjective homomorphisms

O(A) ® 0(A) — Hi(Ay, ) O A, p) > HB, )

— H2(PY, p,) = Z[nZ.
The first homomorphism is obtained from the Kummer exact sequence. The second
one is obtained from the cohomological exact sequence associated with the embeddings
B A<« A, ITA, (it is surjective because H2(A, p,) = 0, by Corollary 6.1.3). The

third one is surjective because H2(P!\B, u,) = 0. We also set D, = D(a, R) and
D, = P*\E(a, 7). One has B = D, N D,.

6.2.6. Lemma. — For (gy, g») € O(A,)* ® O(Ay,)* one has
Y8(815 &) = — deng(gl) - dcgnz(gz) (mod n).
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Proof. — We set E; = E(q, R), E; = P1\D(q, 1), Al = E,\E(q, r), and
D,\D(a, r).
For i = 1,2 one has a commutative diagram of embeddings

|1 I

B ¢ A« A

Lo |

D, < E «—— A
It induces a commutative diagram of homomorphisms

O(A)* @ O(A,)" — HY(A,, p,) @ HY(Ay, p,) — H(B,p,) — H(P,p,)

T T II |

Q(T A“1 ) Hi(B, p,) —> HZ(T fa)
|
> HY(A;, w,) H(D;, u,) — HA(P, u,)

The required statement now follows from Lemma 6.2.5. m
For an open subset X C A! we define

Trx = Trp o Tr;: HY(X, u,) - Z/nZ,
where j is the embedding X < P1,

6.2.7. Lemma. — Let X be an open disc or an open annulus in AL. Then for any nonconstant
Sunction f e O(X) the following diagram is commutative

HY(X, p,) —> HY(PY,p,)

T>\ A’Pl

Z/nZ

Proof. — Consider first the case X = D = D(a, 7). Then f= 22 ,4,(T — a).
Since the group H:(D, p.,) is an inductive limit of the groups H%(D(a, r'), p.,), it suffices
to verify the statement for D(a, ') instead of D, where 7’ is sufficiently close to 7. Therefore
we may assume that the function f satisfies the following conditions:

a) |a;|r" >0 for i - c0;

b) there exists m > 1 with | a, |r™> | a |7 for all ¢> 1 with ¢ & m.

The property a) means that S extends to the closed disc E = E(a, r), and 5) means
that, for A = A(a;r,7), A’ = f(A) is an annulus and D’ = f(D) is a complementary
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open disc of A’. Since the homomorphism @(A)* — H%*D, yu,) is surjective, it suffices
to verify the commutativity of the diagram

oA = 0A)

NS

Z/nZ
For g € O(A)* one has
Yo (N(g)) = — degp(N(g)) = — degp(g) = vp(g) (mod 7).

Consider now the case X = B = B(a;7,R). Then f= X2 __ a(T — a)’. As
above we may assume that f extends to the closed annulus A = A(a;r, R) and, if
A, =A(a;R,R) and A, = A(a;r, 1), then A] = f(A,) and A, = f(A,) are annuli. It
follows that one can find r<¢ < ... < <R, />0, such that for each 0<j< !/
there is m with |a, | > |q | ¢ for all te€)t,t, ;[ and i+ m (we set f{, =r and
t,.,=1R). Let x;, = p(E(a,¢;,)) and £ ={x,, ..., 5 }. Then the open set # = X\
is a disjoint union of the open annuli B, = B(a; ¢,,¢,,,), 0<j< /, and of an infinite
number of open discs. By Theorem 2.5.1, one has

H%((B, 2), p,) = D}, H¥(G,q» 1) = 0.

Therefore the embeddings % — B < (B, £) induce a surjection H*(%, p.,) — H%(B, u,).
Since the lemma is true for open discs, it suffices to verify it for the annuli B;.
Thus, we may assume in addition that for some m e€Z one has

f=0,(T—a" (1 + ),
where ¢ € O(A) and || ¢ ||z < 1. In particular, B’ = f(B) and A’ = f(A) are also annuli.
Furthermore, if D, = D(q, R) and D, = P'\E(q,r), then B’ =D; nD,, where
D; = f(D,). Since the homomorphism O(A,)*® O(A,)* -~ H%B, ,) is surjective, it
suffices to verify the commutativity of the diagram

0(A)' ® O(A,)" —> O(A)) @ O(A})*

'A //YB'

Z/nZ
For (g, g2) € O(A,)" ® O(A,)* one has

Yo (N(81), N(£2)) = vp;(N(g1)) + vy (N(g))
= YDl(gl) + Ynz(gz) = vp(&1, &2)-
The lemma is proved. m ‘
Suppose that X is an elementary k-analytic curve (see § 3.6), and let f be a non-
constant analytic function on it. It gives rise to a flat quasifinite morphism f: X — P
We set Try = Trp 0 Tr,: HY(X, p,) — Z/nZ.
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6.2.8. Corollary. — The mapping Try does not depend on the choice of f.

Proof. — Assume that X is not isomorphic to an open disc or an open annulus.
Then one can find a point x € X such that the open set % = X\{ x } is a disjoint union
of a finite number of open annuli and of an infinite number of open discs (see
Remark 3.6.3 (ii)). Since the homomorphism H2(%, u,) - H%(X, u,) is surjective,
the required statement follows from Lemma 6.2.7. m

Let now X be an arbitrary smooth k-analytic curve. By Proposition 3.6.1, we
can find an open covering { %, }, c; of X by elementary open subsets and, for each pair,
i,j €I, an open covering { %}, of % N %; also by elementary open subsets.
If v, and v;;; denote the open embeddings %; < X and %,; < X, then one has an
exact sequence

@i, il Vijl!(f"‘n,‘?l,'jl) g ®i vi!(“n,%;) g l"'n,X -0
which induces a commutative diagram with exact rows

@i, j,zHi(%m, By) —> @i Hi(%n Pn) —> Hi(X, Be) —> 0

l l lm

Z/nZ D, Z/nz Z/nZ 0

D

The right vertical arrow is the definition of Try. By Corollary 6.2.8, it does not depend
on the choice of the coverings. Thus, the trace mappings are defined. The verification
of the necessary properties of Try is now trivial. m

iy 3,1

6.2.9. Corollary. — If X = &™, where X is a separated smooth algebraic curve of finite
type over R, then the diagram

HYZ, p,) = HYX,uw,)

Tr_g\ Ax
Z/nZ

is commutative. M

6.2.10. Remark. — The last statement of the theorem is not true without the

~

assumption that n is prime to char(Z). For example, assume that char(k) =0 and

p = char(k) > 0, and let X = D be the open unit disc in Al. Then the embeddings
D~ P« E = P!\D induce an exact sequence

0 —~H'(E, p,) ~HYD, p,) > H(P', ) 0.

The group HYE, p,) is huge, its cardinality is at least the cardinality of 3 (see
Remark 6.4.2). :
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6.3. Tame étale coverings of curves

In this subsection the ground field % is assumed to be algebraically closed, and the
characteristic of the residue field % of % is denoted by p.

Let ¢ : Y — X be an étale morphism. The geomeiric ramification index of ¢ at a point
y €Y is the number

() =[#0) 1 #(x)],

where ¥ = ¢( »). The morphism ¢ is said to be tame at y if v ( ») is not divisible by p.
It is said to be tame if it is tame at all points of Y. We remark that if X (and therefore Y)
is good, then, by Proposition 2.4.1, one has v () = [k() : k(x)].

6.3.1. Remarks. — (i) It follows from the definition that if y belongs to an analytic
subdomain X’ C X, then v,(») = v, (), where ¢’ is the induced morphism ¢~ *(X') - X'.
We note also that if ¢ is tame at y, then

NN P
vo(2) = [ () : A ] [ ()| :|#(%) ]

(Proposition 2.4.7 and Lemma 2.4.8).

(ii) If ¢ is an étale Galois covering with Galois group G, then v,(y) is equal to
the order of the stabilizer of y in G. In particular, if the order of G is not divisible by p,
then ¢ is tame.

(iii) Suppose that X is connected and ¢ is finite. Then the sheaf ¢,(0y) is a locally
free Ox-module. Its rank is said to be the degree deg(p) of ¢. In this case for any x € X
one has

deg(p) = 2 ().

v E o Laz)

(iv) The use of the word ¢ geometric” can be explained as follows. Suppose
that the set of 2-points X (%) is everywhere dense in X (this is so, for example, if the valua-
tion of % is nontrivial and X is strictly k-analytic). Then v (y) is equal to the maximal
integer n such that for any open neighborhood ¥~ of y there exists a point ¥ € X having
at least n inverse images in ¥~

6.3.2. Theorem. — Any tame finite étale Galois covering of the one-dimensional disc is
trivial.

Proof. — If the valuation of % is trivial, the statement is easily verified. So we
assume that the valuation of % is nontrivial.

Let ¢: Y -X =E(0,7) be a tame finite étale Galois covering. We assume
that Y is connected and the number n = deg(p) is bigger than one. Since X is simply
connected (and even contractible), it suffices to show that any point x € X has exactly
n inverse images. Suppose that this is not so, and let = denote the set of points x € X
having at most » — 1 inverse images. It is clear that = is closed. We now use the classi-
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fication of points of E(0, 7) from [Ber], 1.4.4 (see § 3.6). If a point « is of type (1) or (4),

then the field .92;(3;) =7 is algebraically closed, and the group |#(x)*|=|k*| is
divisible. From Remark 6.3.1 (i) it follows that x ¢ =. Hence, £ may consists only of
points of types (2) or (3).

Consider the following partial ordering on X:x<y if |f(x)| < |f(y)] for all
S €k[T]. The restriction of this ordering to X satisfies the conditions of Zorn’s Lemma,
and therefore there exists a minimal point x € . Let x = p(E(a, r')) for some a €%
and ' > 0. Since E(q, ') ={ " € X | 2’ < x }, we may replace X by E(a, ') and assume
that x is the maximal point of X and = = {x}.

We claim that the preimage of x in Y consists of one point. Indeed, the set X\{x}
is a disjoint union of open discs. Let D be such an open disc. Since D is simply connected,
¢~ (D) is a disjoint union II?_, D;, where all D, are isomorphic to D. For the closure D,
of D, in Y one has D, =D, uU{y} (see Remark 6.3.4 (i)). It is clear that

o }x) ={»1, ..., }. Since Y is arcwise connected, it follows that y; = ... =y, = ».
One has

n=1[H():Hx)] =[#0):HX][H0)|:|# )]
Suppose first that x is of type (3), i.e., 7 ¢ | #* |. In this case X = D U {x}, where
D = D(a, r), and the group |#(x)* | is generated by | k* | and 7. Since #(x) = %, we
have [| 5 (»)*|:|#(x)*|] = n. We now remark that the group | #(y)*| is generated

by the values of the spectral norm on #, where Y = .#(%), because y is the maximal
point of Y. But for any fe # one has

o(f) = sup [F))],

v Ee~LD)
and we know that ¢~ (D) is a disjoint union of n copies of D = D(a, r). Since a non-
zero analytic function on Y has at most a finite number of zeroes, it follows that the
number in the right hand side of the equality belongs to the group generated by | %* |
and r. This contradicts to the equality [|#(y)* |:|#(x)*|] = n.
Suppose now that x is of type (2), i.e., 7 € | k" |. We then may assume that r = 1.

In this case X = Spec(.sz; ), where & = k{ T }, is the affine line over ;, and #(x) = 'I;(T).
e L PN

By Remark 6.3.1 (i), [#(y) : #(x)] = n. The field 5#( ) is the field of rational func-
tions of the affine curve ¥ = Spec(.@) (see [Ber], 2.4.4). We claim that the induced
morphism § : ¥ — X is étale. For this it suffices to show that the any ;—point e )"('(’I\e/)
has exactly n inverse images in ?(E) Let © (resp. ') denote the reduction map X — X
(resp. Y — Y). Then =~ (%) is the unit open disc D, and ¢~ (D) is a disjoint union of
n copies of D. But ¢~ 1(D) = =n'~!(§~(¥)). By a result of Bosch ([Bos]), all the sets ='~*(¥),
where 5 e Y (k), are connected. It follows that % has exactly n inverse images. Thus we

get a nontrivial finite étale Galois covering of the affine line over 2 whose degree is prime
to p. This is impossible. m '
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6.3.3. Corollary. — Any finite étale Galois covering of the one-dimensional disc, whose
degree is prime to p, is trivial. m

6.3.4. Remarks. — (i) The following fact was used in the proof of 6.3.2 and will
be used in the proof of 6.3.9. Let % be an open subset of a k-affinoid space X, and
assume that there is an isomorphism ¢: % 3D = D(0,7) C A, Then % = % U{x},
where x ¢ X(k), and for any open neighborhood ¥~ of the point x the set ¢(Z N ¥")
contains the annulus B(7’, r) = D\ E(q, r) for some 0 < 7’ < r. This fact easily follows
from the description of %z-analytic curves in [Ber], § 4, but here is its simple explanation.
Let x € Z\%. A basis of open neighborhoods of the point x is formed by the sets of the
form ¥ ={yeX||fi(»)|<a,|g;(»|>b;, 1<i<n 1<j<m} Butitfis a nonzero
analytic function on X, it has at most a finite number of zeroes on %. It follows that
the set o({y e ||f(»)| < a}) is a disjoint union of open discs in D, and the set
o{y e ||f(y)|> a}) is the complement of a disjoint union of closed discs in D. The
first set is relatively compact in D, and the second one contains the annulus B(r', 7)
for some 0 < 7’ < r. It follows that the set ¢(% N ¥") contains the annulus B(r’, r) for
some 0 < 7’ < r. The point ¥ does not belong to X(£) because a basis of open neigh-
borhoods of a %-point is formed by sets of the form {y € X || f()| < a}. The required
fact follows.

(ii) A morphism of k-analytic spaces ¢ : Y — X is said to be a covering if every
point x € X has an open neighborhood % such that ¢~ (%) is a disjoint union of non-
empty spaces ¥ such that the induced morphisms ¥, — % are finite. It is easy to

2

deduce from Theorem 6.3.2 and its proof that any tame étale Galois covering of the
one-dimensional disc is trivial.

For 0 <7< R < o we denote by A(r, R) the annulus {x e A’ | r< | T(x)| <R }.
Let ¢, denote the finite morphism A(r'", RV*) - A(r,R) : z+> z". If n is prime to
char(k), then ¢, is a finite étale Galois covering. A finite étale covering of A(r, R) is said
to be standard if it is isomorphic to ¢, for some n. If z is prime to p, then ¢, is tame.

6.3.5. Theorem. — Any tame finite étale Galois covering ¢ : Y — X = A(r, R) with
connected Y 1s standard.

Proof. — We set n = deg(p). Suppose first that r = R and set x = p(E(0, r)).
Ifr ¢ | &* |, then X = { x }, and our statement follows from Proposition 2.4.4. If r € | &* |,

1
we may assume that 7 = 1. In this case X = #(s/), where &/ = k{T, T:’ and the

reduction X is the complement to zero in the affine line over %. The set X\{x}is a
disjoint union of open unit discs. By Theorem 6.3.2, for such a disc D the space ¢~ (D)
is a disjoint union of n spaces isomorphic to D. Since Y is arcwise connected, we have
o 1(x) ={»} Let Y =.#(#). We claim that VT e #. Indeed, as in the proof of
Theorem 6.3.2 one shows that the induced morphism §:Y — X is étale and

16
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deg(3) = n. Therefore # = o [\”/'f' ], and there exists an element f € & with || f|| = 1
and || f* — T || < 1. The element f is invertible in & because T is invertible. We have
T—f"
T =/f" (1 + )
fn
Since || (T —f™)/[f"*|| <1 and p tn, /T € 4. From this it follows that ¢ is isomorphic
to o,.

In the general case we denote by m the product of all integers between 1 and n
which are prime to p, and set X’ = A(r¥/™, RV™). It suffices to show that there exists
a finite morphism ¢ : X’ —Y such that ¢ = ¢,,. For this we consider the induced
morphism ¢': Y =Y Xy X' - X’. Since X’ is simply connected (and even contrac-
tible), it suffices to show that v,(y') =1 for any point )’ €Y'. We set

¢ ={p(E(0,1)|r< t< R}CX.

If y ¢ (9, )" ' (£), then the required fact follows from Theorem 6.3.2 because X\ is a
disjoint union of open discs. Let x” = ¢’(»') and suppose that the point x = ¢, (*')
belongs to ¢, i.e., x = p(E(0, #)), r< t< R. By Remark 6.3.1 (i), v,.( ") does not change
if we replace X by the annulus A(%, #). But for such annuli the required fact is already
established. m

6.3.6. Corollary. — Let D be an open disc with center at zero, and set D* = D\ E(0, r),
where 0 < r < r(D). Then any tame finite étale Galots covering @* : Y* — D* extends to a finite
flat covering ¢ : Y — D, which is étale outside zero. m

6.3.7. Theorem (Riemann Existence Theorem).— Let & be an algebraic curve of locally finite
type over k. Then the functor % — %*® defines an equivalence between the category of finite étale
Galois coverings of X, whose degree is prime to p, and the category of similar coverings of Z*".

6.3.8. Remark. — If the valuation on % is trivial, then the Riemann Existence
Theorem is true for arbitrary schemes of locally finite type over % and for arbitrary finite
étale coverings. This follows from [Ber], 3.5.1 (iii).

Proof. — 1) The functor is fully faithful (this is true for schemes of arbitrary dimension
and for arbitrary finite étale coverings). Let #' — % and %" — & be finite étale cove-
rings of Z. We may assume that %’ is connected. Then the set Homg (%', #"') corres-
ponds bijectively to the set of connected components #; of %' X4 %" such that the
canonical morphism #%; — %’ is an isomorphism. The similar fact is true for the
set Homgan(#'?®, #''*"). Therefore the bijectivity of the map

Homgy (%', %"') — Homgan(¥'*®, &''*")
follows from [Ber], 3.4.6 (9) and 3.4.8 (iii).

2) The functor is essentially surjective. — We may assume that & is separated, reduced
and irreducible. If & is projective, the assertion follows from GAGA (see [Ber], 3.4.14).
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In the general case, let £ <> 2" be an open immersion of & in a projective curve &’
such that all the points %y, ..., x, from the complement to Z are smooth. Then we can
find sufficiently small open neighborhoods D; of x;, which are isomorphic to open discs
and disjoint. Let Y — 2™ be a tame finite étale covering of Z*. Applying Corol-
lary 6.3.6, we can construct a finite flat covering ¢’ : Y’ — Z"*®, By GAGA, ¢’ comes from
a finite flat covering ¢ : ¥’ — %". Hence ¢ comes from the covering ¢~ }(%) -~ Z. m

6.3.9. Theorem. — Let & be a projective curve over k, and let X be an affinoid subdomain
of Z* suck that F*™\X is a disjoint union Up_, D;, where eack D, is isomorphic to an open
disc. Pick points x, € D,(k), 1< i< n, and set &' = E\{ %y, ..., %, }. Then the functor
Y’ > Y™™ Xgan X defines an equivalence between the category of finite étale Galois coverings
of ', whose degree is prime to p, and the category of similar coverings of X.

6.3.10. Remark. — It is very likely that any pure one-dimensional reduced
k-affinoid space X can be identified with an affinoid subdomain of the analytification Z*"

of a projective curve & such that the condition of Theorem 6.3.9 holds. This is true
at least in the following cases:

1) the valuation on % is nontrivial, and X is a normal strictly k-affinoid space
(M. Van der Put [Put]);

2) the valuation on % is trivial, and X is irreducible and contains a point x for
which the field 5#(x) is bigger than 2 and has trivial valuation (see the proof of
Theorem 6.4.1).

Proof. — For a fixed i, take a point x € (k) which does not belong to D; (such
a point evidently exists). If f is a nonconstant rational function on Z regular outside x,
then the set {z € ** || f(2)| < a} is an affinoid domain in Z** and, for a sufficiently
large a, contains D,. Therefore we can apply Remark 6.3.4 (i) to D;. It follows
that D, = D, U { 7}, where 2z, e X\ X (%), and for a sufficiently small open neighborhood
of the point z; its intersection with D, is the annulus D,\E;, where E, is a closed disc
in D, with center at x;. (We remark that some of the points z, may coincide.) Let now
@ : Y — X be a finite étale Galois covering, whose degree is prime to p. By Corollary 3.4.2
applied to the points z;, ¢ can be extended to a finite étale Galois covering ¢’ : Y’ — X/,
where X’ = X u U?_,(D,\E,) and E, is a closed disc in D; with center at x,. From
Corollary 6.3.6 it follows that ¢’ extends to a finite étale Galois covering of Z"**. The
required statement now follows from Theorem 6.3.7. m

The following statement is a particular case of the Comparison Theorem 7.5.1
(it will not be used in the sequel).

6.3.11. Corollary. (Comparison Theorem for curves). — Let & be an algebraic curve
of locally finite type over k, and let F be an abelian constructible sheaf on & with torsion orders
prime to p. Then for any q > O there is a canonical isomorphism

HY(Z, ) S Ho(@™, F™),



124 VLADIMIR G. BERKOVICH

Proof. — Using the spectral sequences of an open affine covering { £ },c; of &
and of the corresponding open covering { 23"}, . ; of 2", we reduce the statement to
the case when % is affine of finite type over k. Furthermore, we may assume that &
is reduced. Finally, we may assume that & = (Z/nZ),, p kn (see the proof of
Theorem 6.1.1). The homomorphism considered is an isomorphism for ¢ = 0, because
(X)) = 7o(Z*™), and for ¢ = 1, by the Riemann Existence Theorem 6.3.7. Since
HY&, Z/nZ) = 0 for ¢ > 2, it remains to show that H*(Z™, Z/nZ) = 0. Let ¥ &> &
be an open embedding of & in a projective curve & such that Z\% ={x,, ..., #,, } are
smooth %-points. Then the k-analytic space £*" is a union of an increasing sequence of
affinoid domains X, i > 1, whose complements in Z* are disjoint unions of m open discs
with centers at the point x,, ..., x,. By Theorem 6.3.9, HY(Z, Z/2Z) > H'(X,, Z|nZ)
and, by Corollary 6.1.3, H*(X,, Z/nZ) = 0 for all i > 1. Therefore the required fact
follows from the following lemma which is an analog of Proposition 3.10.2 from [Gro]
(the field % is not assumed to be algebraically closed).

6.3.12. Lemma. — Let X be a paracompact k-analytic space, and suppose that X is a
unton of an increasing sequence of closed or open analytic domains X;, 1 > 1. Let F be an abelian
sheaf on X, and let g > 1. Assume that for each i > 1 the image of the group H*"Y(X,,,, F)
in H7Y(X,, F) under the restriction homomorphism coincides with the image of the group
H*YX,;, 5, F). Then there is a canonical isomorphism

He(X, F) 3 lim H(X,, F).

Proof. — First of all we remark that if J is an injective abelian sheaf on X and Y
is a closed or open analytic domain in X, then the pullback of J on Y is acyclic
and the homomorphism J(X) — J(Y) is surjective. Take an injective resolution of F,
0—+F—>J"—]J"'— ..., and consider, for ¢ > 1, the commutative diagram

0 — JX) — J(X) — JFX) — ...

l l l

0 — JU(X) — JMX) — X)) — ...

The first row gives the cohomology groups of X, and from the above remark it follows
that the second row gives the cohomology groups of X; and the vertical arrows are
surjections. That the homomorphism considered is surjective is easy. Suppose that
« € J4X) is such that du = 0 and the image of « in each H*X, F) is zero. We have
to construct an element B eJ¢'(X) with df = «. Since J*7}(X) = lim J*7}(X)),
it suffices to construct a system of elements B, € J*~(X,), ¢> 1, such that “lx1~ = dp,
and 5@+1|x.- = B;. Suppose that, for some i> 1, we already constructed elements
B;eJ (X)), 1<j<i, and B, €] N Xy, with Bz+1lxj =p; for j<i and
aly,, = dB;,,. Take an element B/, eJ'"'(X,,) with «| =dB/,,. Then the
element B/, ,|¢, — B/,, gives rise to an element of H*™'(X;,,, F). By hypothesis,
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we can find elements vy, , € J*"(X;,,) with dy,,, =0 and 3§, eJ*"3(X,) (we set
J ' = 0) such that '

Yi+2lx,~ = z”+2 X; B + d3,.

Furthermore, since the homomorphism J¢~*(X,, ,) — J*~*(X,) is surjective, there exists
an element §;,, € J*7*(X,,,) with 8&+21x; = 3;. Setting Bi, =By — Yiyo + 8,
and 8, ,, = B;,x;,,» We get «jx, , = dB;,, and Bi’+2|X = forallj<i+ 1. m

6.4. Cohomology of affinoid curves

In this subsection we continue to assume that % is algebraically closed, and we

~

set p = char(k).

6.4.1. Theorem. — Let X be a one-dimensional k-affinoid space, and let n be an integer
prime to p. Then

(1) the group HYX, Z|nZ) is finite for ¢ = 0, 1 and equal to zero for ¢ > 2;

(ii) for any algebraically closed non-Archimedean field K over & one has

HY(X, Z/nZ) > H(X ® K, Z/nZ), ¢ > 0.

Proof. — We may assume that X is pure one-dimensional, connected and
reduced. Furthermore, we may assume that X is normal. Indeed, let ¢:Y - X
be the normalization of X. Then there is an exact sequence of sheaves

0 - (Z/nZ)y — ¢, (Z/nZ)y —~F — 0,

where F is a sky-scraper sheaf. Since HY(X, ¢,(Z/nZ)y) = HU(Y, Z/nZ) for ¢ > 0,
HYX,F) =0 for ¢ > 1, and the group H°(X, F) is finite and does not change under
extensions of the ground field, it suffices to prove the theorem for Y instead of X.

Consider first the case when X can be identified with an affinoid subdomain of
the analytification 2*" of a projective curve & such that 2*\ X is a disjoint union U~ , D,
where all the D, are isomorphic to open discs. (For example, by the result of Van der
Put mentioned in Remark 6.3.10 this is the case when X is strictly %-affinoid.) The
curve Z is evidently connected. Therefore for any algebraically closed non-Archimedean
field K over % the curve & ® K is connected. It follows that X ® K is connected, and
hence

H(X,Z/nZ) 3> H (X ® K, Z[nZ) > Z|nZ.

Furthermore, pick points x €Dy(k), 1<i<m, and set 2’ =Z\{x,...,x,}.
Theorem 6.3.9 implies that
HY(X, Z/nZ) > H\(Z', Z|nZ).

From this it follows that the statements (i) and (ii) are true for ¢ = 1. They are true
for ¢ > 2, by Corollary 6.1.3.
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Consider now the general case. Let K be a bigger algebraically closed non-Archi-
medean field K over %, and let = denote the canonical morphism X’ = X® K — X,

To prove the theorem, it suffices to show that for any point x € X the following property
holds

(%) (v(Z[nZ)x), =0 and (R'm(Z/nZ)y), = 0.

We remark that if, for any étale morphism g:Y — X with g7(x) = {»}, the point y
has a basis of affinoid neighborhoods such that the theorem is true for them, then the
property (*) holds for the point x. For example, this is the case when the valuation on %
is nontrivial and X is strictly 2-affinoid. Furthermore, we remark that if Y is an affinoid
domain in X and x €Y, then (R%n,(Z/nZ)y.), > (R ny,(Z/nZ)y.),. Therefore the
validity of the property (*) does not change if we replace X by a smaller or a bigger
k-affinoid space.
There are the following two possibilities:

(1) %x)*l = |*[;

(2) #(x) =%, and the group |#(x)*| is generated by |£*| and a number
ré| k|

1) If x € X(k), then (%) evidently holds. Suppose that x ¢ X(%). Take an admis-
sible epimorphism

e:k{r T, ...t T, } >,

where X = (&), and set f; = ¢(T,). We assume that f; & 0.

Suppose first that the valuation on % is nontrivial. In this case we can find
numbers 7, €| k*| with |fi(x)|< 7 <7, 1<i<m. Then the Weierstrass domain
X(rim*fis -5 17  f,) is strictly k-affinoid and contains the point x. By the above
remark, the property (*) holds for the point x.

Suppose now that the valuation on k is trivial. Then the valuation on 5#(x) is
also trivial, and therefore | £;(x)| > 1. In particular, r, > 1 and the algebra o is finitely
generated over k. We replace X by the Weierstrass domain X(f;, ...,f,). If Z is the
projectivization of the affine curve Spec(&), then X is an affinoid domain in Z™** and
the complement of X is a finite disjoint union of open discs. Moreover, the point x has
a basis of affinoid neighborhoods of the same type. Finally, if g: Y — X is an étale mor-
phism with g='(x) = {y}, then the similar facts are true for the point y. By the above
remark, the property (*) holds for the point x.

2) Shrinking X, we can find f € & with | f(x)| = r. Consider the induced morphism
f:X — Al The image of the point x is the point y = p(E(0,7)) because r¢|k*|.
Since the fibres of X are discrete, we may shrink X and assume that f~*(y) ={+ }. But
Y = {}is an affinoid domain in A! (it is the annulus A(r, r)). Therefore { x } = f~*(y)
is an affinoid domain in X. Thus, replacing X by the reduction of { x }, we get a morphism
f: X ={x}—>Y ={y} The field #(x) is a zero-dimensional 5#( y)-affinoid algebra.
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It follows that the extension 5#(x)/3( y) is finite, and therefore f is a finite morphism.
One has #(y) ={Z> _o,aT'||a|r >0asi >} and |#(y) | = |# (%) |

Suppose first that the valuation on £ is trivial. Then | 5#( »)* | is a discrete subgroup
of R?, , and from this it follows that J#( y) = #(x). This means that f is an isomorphism
X 5 A(r, r). Moreover, any finite étale covering of X is of the same type. Therefore
the property (%) holds for the point x.

Suppose now that the valuation on £ is nontrivial. Then the extension #(x)[5#( y)
is separable. Indeed, suppose that ¢ = X> _, 4, T' e#(y) and ¢V? e #(x)\H# ().
We may assume that 4; = 0 for ¢ divisible by p. Then | ¢ | = | @, | 7" for some n prime
to p. We get | 9Y? | = (|a, | )" ¢ |#(x)*| = | #(»)*|. Thus, f: X - Y is a finite étale
morphism. By Corollary 3.4.2, f extends to a finite étale morphism f: X —Y = A(7’, ")
for some 7' < r < ¢” with 7/, 7" €| k*|. Since Y is strictly k-affinoid, then so is X, and
we are done. B

6.4.2. Remark. — Both statements of Theorem 6.4.1 are not true without the

~

assumption that n is prime to char(#). For example, assume that char(k) = 0 and

~

p = char(k) > 0, and let X be the closed unit disc in A’. Since Pic(X) = 0, the Kummer
exact sequence implies that

H'(X, p,) = R{T}R{T}"

One has E{T} ={fek{T}|||f—SO)|<||fll} Therefore the correspondence
S f'(0)[f(0) gives a surjective homomorphism from Z{T}* to the maximal ideal %%
of the ring of integers %°. It induces a surjective homomorphism

H(X, p,) — K9/pho,
If now K is an algebraically closed non-Archimedean field over & for which K%/pK?00
is bigger than k%/pk®, then the group H}(X ® K, 1.,) does not coincide with HY(X, w,).

By the way, in Drinfeld’s calculation of the group HY(X, w,) for a standard affinoid

domain in A* ([Dr], 10.1) one also should assume that 7 is prime to char(k), otherwise
the result stated is not true. (The same is repeated in [FrPu], V. 3.7.)

§ 7. Main Theorems

7.1. The Comparison Theorem for Cohomology with Compact Support

Recall that a morphism of schemes ¢ : % — & is called compactifiable if there is
a commutative diagram

@y s @

N4
x
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where ¢ is a proper morphism and j is an open immersion. For a sheaf ¥ on # one
defines

Ri¢, & = R%9.(j, 9).

By Nagata’s Theorem, any separated morphism of finite type is compactifiable.

T.1.1. Theorem. — Let & be a compactifiable scheme over k, and let F be an abelian
torsion sheaf on . Then for any q > O there is a canonical isomorphism

HY(Z, F) 3 Hya™, F).

Proof. — Let ¢ : % — Z be a compactifiable morphism between schemes of locally
finite type over Spec(%/), where & is a k-affinoid algebra (the situation is slightly more
general for a further use). For a point x € Z we denote by %, the fibre of ¢ at x and
set #; = ¥, @ k(x)*®, and for an abelian torsion sheaf ¥ on %, we denote by %, and ¥;
the pullbacks of  on %, and %3, respectively. By the Base Change Theorem for Coho-
mology with Compact Support for schemes, one has

(R e, ¥)z = Hi(%;, %3).

Furthermore, for a point x € Z** over x, we fix an embedding of fields k(x)* < J#(x)".
It gives rise to an isomorphism

T

(U3 Opuys H (x)%)™ = v

Since the cohomology with compact support of schemes are preserved under separably
closed extensions of the ground field, one has

HY(®;, 95) 5 HY(¥; O # (9", ).
Finally, the Weak Base Change Theorem 5.3.1 tells that
R? i(9™), = HY(ZF, 97).
We use the above remarks to establish the following two facts.

7.1.2. Lemma. — In the above situation assume that the dimension of ¢ is at most one.
Then for any q > 0 one has

(Rtq, @)= 3 Re g 9.

Furthermore, if in addition & and % are compactifiable over k and the theorem is true for &, then
it is also true for ¥.
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Progf. — The first statement follows from Theorem 6.1.1 and the above remarks,
and the homomorphism of Leray spectral sequences

HY(Z, R, &) — H;"Y(%, 9)

l !

HZ (2™, R ¢} ) == H7* (¥, 9*)
shows that the second statement is also true. m

7.1.3. Lemma. — In the above situation assume that the morphism o is finite and surjective.
Then if & and ¥ are compactifiable over k and the theorem is true for %, then it is also true for X .

Progf. — Let & be an abelian torsion sheaf on &. Since ¢ is finite and surjective,
the canonical homomorphism % — ¢,(¢* &) is injective. Furthermore, by Corol-
lary 4.3.2, for an abelian sheaf ¥ on % one has HY(Z™, ¢ @) 3 HY(%®, @),
In particular, the hypothesis implies that the theorem is true for all sheaves of the
form ¢, 4. Thus, one can construct a resolution of #, 0 -~ F — F°0 - F1 |
such that the theorem is true for all #*. The homomorphism of spectral sequences

HY(HY(Z, #7)) —— HTY(Z, &)

l !

He(HY(2™, ) — HZT (@™, )

ey

shows that the theorem is also true for %. m

We are now ready to prove the theorem.

1) The theorem is true for the direct product (P')", where P' is a the projective line over k.
— This follows from Lemma 7.1.2.

2) The theorem is true for the projective space P™ over k. — Indeed, there exists a finite
surjective morphism (P')* — P", and we can use Lemma 7.1.3.

3) The theorem is true for any projective scheme over k. — This follows from Lemma 7.1.2.

4) The theorem is true for any affine scheme of finite type over k. — This is so because
such a scheme is isomorphic to an open subscheme of a projective scheme.

5) The theorem is true for any proper scheme over k. — For a proper scheme Z we can
find an open everywhere dense affine subscheme %, and so the dimension of the closed
subscheme % = Z'\ % is strictly less than the dimension of Z. Therefore the statement
is obtained by induction using the exact cohomological sequences associated with the
embeddings ¥ <« Z < ¥ and %™ < Z* < @*" and the five-lemma.

6) The theorem is true for any compactifiable scheme. — This is already clear. m

7.1.4. Corollary. — Let ¢ :% — X be a compactifiable morphism between schemes of
locally finite type over Spec(Z), where o is a k-affinoid algebra, and let G be an abelian torsion
sheaf on %. Then for any q > O there is a canonical isomorphism

(R?q, @)™ > R g™ g,

17



130 VLADIMIR G. BERKOVICH

Progof. — The statement is obtained from Theorem 7.1.1, using the remarks from
the beginning of its proof. m _

Let ¢: Y — X be a morphism of k-analytic spaces, and let G be a sheaf on Y.
We say that the pair (¢, G) is quasialgebraic if, for each point » € X, one has Y, = &
and G, = @, where Z is a compactifiable scheme over the field #(x) and ¥ is a
sheaf on Z. For example, for the canonical projection pr: Y = X x #* — X, where %
is a compactifiable scheme over %, the pair (pr, u, y) is quasialgebraic.

7.1.5. Corollary. — Let ¢ : Y — X be a Hausdorff morphism of k-analytic spaces, and
let f: X' — X be a morphism of analytic spaces over k, which give rise to a cartesian diagram

Yy 2. X

b

Y'LX'

Furthermore, let G be an abelian torsion sheaf on Y and assume that the pair (¢, G) is quasialgebraic.
Then for any q> 0 there is a canonical isomorphism

SR, G) 5 Rq(f"G).

Proof. — Let x € X and x’ € X’ be a pair of points with ¥ = f(x’). By hypothesis,
one can find a compactifiable scheme Z over #(x) and a sheaf ¥ on & with Y, = &
and G, = 9. One has Y, = (Z ®,,, H# (x"))*. The statement follows from the Weak
Base Change Theorem 5.3.1, Theorem 7.1.1 and the fact that the cohomology with
compact support of schemes are preserved under separably closed extensions of the

ground field. m

7.2. The trace mapping

In this subsection we fix an integer » which is prime to the characteristic of the field .

Our goal is to extend the construction of the trace mapping from § 5.4 and § 6.2
to any separated smooth morphism ¢ : Y — X of pure dimension d, i.e., to construct a
canonical homomorphism of sheaves

Tr, : R* ¢, (5, v) — (Z/nZ)x.
As in the Theorems 5.4.1 and 6.2.1, we will characterize the trace mapping by certain
properties.

Let ¢: Y — X be a Hausdorff morphism of %-analytic spaces, and let f: X' - X
be a morphism of analytic spaces over k. They give rise to a cartesian diagram

Yy 5 X

¢

Yy % X
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Suppose we are given two mappings «:R* o (uf y) - (Z/nZ)x and
o' : R* i(p7, v) — (Z[nZ)x..

We say that « and «' are compatible with base change if the following diagram is
commutative

Fr(R* o(us,v)) — R¥qi(u y)

lf‘(a) la'

~

S (ZZ)x) —— (Z[nZ)x.

Here the upper arrow is the base change morphism, and the lower isomorphism is the
canonical one.
Furthermore, let ¢ : Y — X and ¢ : Z — Y be Hausdorff morphisms whose dimen-

sions are at most d and e, respectively. Suppose we are given three homomorphisms
«: R 9,4} yv) > (Z/nZ)x, B: R* y(u; ) — (Z/nZ)y and

v R¥F90d), (u27) — (Z/nZ)y.

Using the Leray spectral sequence 5.2.2 and Corollary 5.3.8, we get an isomorphism
R+ (o), (uh'7) = R g, (R* ¢, (ug ).

Corollary 5.3.11 gives an isomorphism
R ¢, (un7) = R* ¢y(u7,2) ® w7 v

We get a mapping

R¥*9(od), (uh) 5 R¥ ¢, (R* ¢, (us 2) ® uf v)
- R* ‘Pr(f’-z, y) = (Z/nZ)x

The composition mapping is denoted by « o . We remark that if « and 8 are isomor-
phisms (resp. epimorphisms), then « o 8 is also an isomorphism (resp. epimorphism).
We say that the mappings «, B and y are compatible with composition if y = « o f.
Note that the operation o is transitive.

7.2.1. Theorem. — One can assign to every separated smooth morphism ¢ : Y — X of
pure dimension d a trace mapping

Tr,: R* 9,(uj, v) > (Z/nZ)x.

These mappings have the following properties and are uniquely determined by them:

a) Tr, are compatible with base change;
b) Tr, are compatible with composition;
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¢) if d=0 (ie., ¢ is étale), then Tr, is the trace mapping o, (Z/nZ)y — (Z[nZ)y
Srom § 5.4;

d) if X = M(k), k is algebraically closed and d = 1, then Tr, is the trace mapping
Try : HA(Y, w,) = Z/nZ from § 6.2.

Furthermore, if the fibres of ¢ are nonempty, then Tr, is an epimorphism. If in addition

the geometric fibres of @ are nomemply and connected and n is prime to char(k), then Tr, is an
1somorphism.

Proof. — First of all, let ¢ be the morphism =n%: A% —.#(k). It is the ana-
lytification of the morphism of schemes ¢ : A% — Spec(k). One has a trace mapping
Try, : R® §,(uh 1d) > (Z[nZ)g eeqy) (Which is an isomorphism). Its analytification (Corol-
lary 7.1.4) gives rise to a trace mapping Tru: R nd(yl o) — (Z/nZ),,, (which
is also an isomorphism). Furthermore, if ¢ is the morphism =% :A% = X x A? > X,
then we define Tr,¢ as the base change of Tr, (Corollary 7.1.5).

7.2.2. Lemma. — Let ¢ : Y — X be a separated smooth morphism which can be repre-
sented as a composition of an étale morphism f:Y — A% with the projection n% : A% — X. Then
the mapping

Tr, = Trud o Tr;: R* ¢, (u5, y) — (Z/nZ)x
does not depend on the representation.

Proof. — We may increase the field £ and assume that its valuation is nontrivial.
If d =1, the statement is obtained from the case of curves (Theorem 6.2.1), using
the Weak Base Change Theorem 5.3.1. Suppose that d > 2. The Weak Base Change
Theorem 5. 3.1 reduces the situation to the case when we are given a separated connected
smooth k-analytic space X for algebraically closed 2 and elements f, ..., f; € 0(X)
such that the morphism f: X — A? that they define is étale. We have to verify that the
mapping

Trifv - = Tryao Tr,: H#(X, ) — H*(A4 p3) - Z[nZ

does not depend on the choice of the elements f;, ..., f;.

First of all, this mapping is independent of the ordering of the elements f;, ..., f;
since the group GL,(k) acts trivially on H2(AY pd) = H%(AY, ul).

Let g, ..., g, be another system of elements in @(X) for which the corresponding
morphism g: X — A? is étale. Take an arbitrary point x € X(k) (such a point exists
because the field % is algebraically closed, and its valuation is nontrivial). Replacing f;
by f; — fi(x) and g, by g, — g(x), we may assume that the elements f;, ..., f;, &1, - - -» &
are contained in the maximal ideal m, of the local ring Ox ,. But then (f;,....f)
and (g, ..., g, are regular systems of parameters for 0 ,, i.e., they form two bases
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of the k-vector space m,/mZ. Applying Steinitz Exchange Theorem for these bases,
we can find a finite chain of systems of elements

(f1o o+ oo a) = (A" - ) (A% o o) o (A™s o 0 fi™)

= (gl: D) gd)
such that
a) each f{” is one of the elements f;, .. ,fd,gl, R P
b) each system gives rise to a basis of m,/m

¢) each system (f¢+Y, ..., ff*?) arises from ( f 9, f37) by the replacement
of just one element.

By Proposition 3.3.10, each of the systems (£, ..., f;") gives rise to an étale
morphism f% : X’ — A where X’ is a nonempty Zariski open subset of X. We remark
now thatif Y = X\X’, then dim(Y) < d — 1, and therefore the canonical homomorphism
H%(X', u,) - H®(X, p,) is bijective. Thus it suffices to show that if f, ..., f;_;, &
and f;, ..., f;_,, k are two systems of elements in O(X) which give rise to étale mor-
phisms ¢ : X — A% and ¢ : X — A% respectively, then Trift---%-119 = Tr{fr - Ja-1.W,

Let = be the projection A* — A%~ on the first d — 1 coordinates. Since o ¢ = wo ¢,
it follows, by the case d = 1, that Tr, o Tr, = Tr, 0 Tr,. We have

Trife - Jd-19 = (Trpg1 0 Try) o Tr, = Trpes 0 (Try 0 Try)
= Trpe-10 (Try o Try) = (Trpe-1 0 Try) o Ty,

= Tr()_{fl, veny fd—lvh)_

The lemma is proved. m

The construction of the trace mapping for arbitrary ¢ is obtained from Lemma 7.2.2
in the same way as the corresponding construction in Theorem 6.2.1 is obtained from
Corollary 6.2.8.

It remains to show that if the geometric fibres of ¢ are nonempty and connected
and 7 is prime to char('l;), then Tr, is an isomorphism. By the Weak Base Change
Theorem 5.3.1, it suffices to show that if % is algebraically closed and X is a separated
connected smooth k-analytic space of dimension d, then Try : H¥(X, pi) 5 Z/nZ. We
remark that it suffices to find for such a space X an étale covering (U; — X), o with
separated U, such that all Try, are isomorphisms. This is verified by induction. To use
the induction, it suffices to show that for any point x € X there exists a separated étale
morphism f: U — X and a smooth morphism ¢ : U — V of pure dimension one to a
separated smooth k-analytic space V such that x € f(U) and the geometric fibres of ¢
are nonempty and connected. For this we shrink X and take an étale morphism X — A’
Let ¢ be the composition of the latter morphism with the projection A* — A%~ The
morphism ¢ : X — A%7! is smooth of pure dimension one. Applying Theorem 3.7.2,
we get the required morphisms f and ¢. m



134 VLADIMIR G. BERKOVICH

:T.2.3. Corollary. — Let ¢ : % — X be a separated smooth morphism of pure dimension d
between schemes of locally finite type over Spec(f), where o is a k-affinoid algebra. Then the
diagram

(R @, (ph 9))™ == R ¢3"(ui gan)
(Trq,)& Arq,an
(Z/nZ)z-an
is commutative. &

Let ¢ : Y — X be a separated smooth morphism of pure dimension 4. By Corol-
lary 5.3.11, for any F* e D(X, Z/nZ) there is a canonical isomorphism

L
Ro,(¢" F*(d) [24]) = F* ® Ro, (] v) [24].
Theorem 7.2.1 gives a morphism (in D(X, Z/nZ))
Ro, (15, v) [2d] — (Z[nZ)x.

Therefore we get a morphism

Tr, : Ro, (o* F*(d) [2d]) — F°

which will also be called a trace mapping. For F € §(X, Z/nZ) the latter morphism
is induced by a homomorphism of sheaves R* ¢,(¢* F(d)) — F. It is an isomorphism

~

if the geometric fibres of ¢ are nonempty and connected and # is prime to char(k) because

R¥ ¢, (9" F(d)) = FOR® ¢,(p] ).

7.3. Poincaré Duality

First of all we want to fix notation. Let X be a k-analytic space, and let A be a
ring (in practice, A = Z/nZ). The functors of homomorphisms Hom and of germs of
homomorphisms #om (between Ay-modules) have derived functors

Hom : D(X, A)° x D*(X, A) - D(A)
and Hom: D(X, A)° x D*(X,A) - D(X, A),

where D(A) is the derived category of A-modules. Recall that if G* is bounded below
and G" — J* is an injective resolution of G°, then Hom(F*, G*) = Hom'(F*, J*) and
Hom(F*, G°) = #Hom'(F*, J*). One sets

Ext'(F', G') = He(Hom(F", G))
and Ext(F*, G*) = HYHom(F", G)).
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For sheaves F, G € $(X, A) these are the usual functors Ext and &xt, and &xt*(F, G)
is the sheaf associated with the presheaf (U — X) — Ext(F|y, G|;). We remark that
if a A-module G is injective, then the sheaf s#om(F, G) is flabby.

Let now ¢ : Y — X be a separated smooth morphism of pure dimension d, and
let » be an integer. By functoriality of Re,, for any complexes G* and G’* of sheaves
of (Z/nZ)y-modules which are bounded above and below, respectively, there is a cano-
nical morphism of complexes

@, (Hom'(G*, G")) - #om'(Re, G*, Rg, G”*).

Let G"* — J* be an injective resolution of G”*. Then the complexes #om*(G", J*) on Y

and ¢, J* on X consist of flabby sheaves. Therefore there is the following canonical
morphisms in D* (X, Z/nZ)

Ro.(#om(G', G)) = ¢.(#om*(G", J7))
—#'om’(Re, G, Re, J*) = #om(Re, G*, Ry, G”).

Assume now that n is prime to char(k). Then applying this morphism to complexes G"*
of the form ¢* F*(d) [2d] and using the trace mapping Re,(¢* F*(d) [2d]) — F*, we obtain
for any G* e D™ (Y, Z/nZ) and F* e D*(X, Z/nZ) a duality morphism

Ro,(#om(G", ¢ F*(d) [2d])) — #om(Rg, G, F*).

~

7.8.1. Theorem (Poincaré Duality Theorem). — Suppose that n is prime to char(k).
Then the duality morphism is an isomorphism.

We remark that the theorem is equivalent to the fact that, for all ¢ € Z, the duality
morphism induces isomorphisms

Ext!(G', ¢* F*(d) [2d]) = Ext/(Rg, G, F*).

By Remark 6.2.10, the theorem is not true without the assumption that » is prime

~

to char(®).

Proof. — Fixing one of the complexes G* or F*, one gets an exact functor with
respect to the second complex which is way out right (see [Hal], § I.7). Therefore it suf-
fices to verify the theorem only for complexes of the form G* = G, where G € S(Y, Z/nZ),

and F* = F(— d) [— 2d], where F € §(X, Z/nZ). Thus it suffices to show that for all
g > 0 the canonical mappings

®Y(G, F) := Ext‘(G, ¢* F) — ¥¢(G, F) := Hom(Rg, G, F(— d) [¢ — 2d])

are isomorphisms. For example, in the case d = 0 the theorem follows from the fact
that the functor ¢, is left adjoint to the functor ¢*.

First of all we reduce the situation to the case when the space X (and therefore Y)
is good. Indeed, assume that our statement is true in this case. Since the statement is
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local with respect to X, we can shrink X and assume that X = U, X, where X, are closed
analytic domains isomorphic to open subsets of -affinoid spaces (in particular, the X; are
good). Since any F has an embedding in the direct sum D™ v, F;, where F,=vF
and v, is the canonical embedding X; — X, it suffices to verify that

4G, v;, F) S¥YG, v, F), ¢g=0.
If v/ and ¢; are defined by the cartesian diagram

Y 2 X

b

Y, %5 X,

there is a canonical isomorphism of sheaves ¢* v, F; 5 v, ¢;* F, (the stalks of these
sheaves are isomorphic). Therefore, ®%G,yv,, F;,) = ®(v;* G, F,). Furthermore, the
morphism v, : X; - X satisfies the condition of Corollary 5.3.6, and therefore
v;(Re, G) 5 Re;,(v;* G). It follows that ¥¢(G,v,, F,) = ¥¢v,* G, F;), and since the
space X, is good, the assumption gives an isomorphism ®%G,v,, F,) 5 VG, v, F)).

Thus, we may assume that the spaces X and Y are good. Suppose that d> 1.
We fix the sheaf F and set ®Y(G) = @G, F) and ¥*(G) = ¥*G, F). Then {®?} .,
and { ¥?},5, are exact contravariant d-functors from S(Y, Z/nZ) to /b, the functors

?°(G) = Hom(G, ¢*F) and Y°(G) = Hom(R* ¢, G, F(— d))

are left exact, and ®? are right satellites of the functor ®°. Thus to prove the theorem
it suffices (and is necessary) to show that

a) OS5 W and

b) the functors ¥ ¢ > 1, are right satellites of the functor W°.

The statement 4) is equivalent to the fact that the functors ¥'%, ¢ > 1, are effaceable,
i.e., for any G €S(Y, Z/nZ) and « € ¥Y(G) there exists an epimorphism of sheaves
G’ — G such that « goes to zero under the induced homomorphism ¥¢(G) - ¥4(G’).

Step 1. — @®° 5 W, Since the functors ®° and ¥ are left exact, it suffices to find
a family of sheaves # C S(Y, Z/nZ) such that for any G € S(Y, Z/nZ) there exists an
epimorphism @iEI M; — G with M, e # and, for any M e .#, one has ®°(M) = ¥°(M).
We take for # the class of sheaves of the form g,(Z/nZ), where g: V — Y is a separated
étale morphism for which there exists a commutative diagram

Y 5 X
R
v-YLou

such that fis a separated étale morphism and ¢ is a smooth morphism whose geometric
fibres are nonempty and connected. From Corollary 3.7.3 (see also the proof of Pro-
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position 4.4.5) it follows that any G is the epimorphic image of a direct sum of some
sheaves from . Let M = g,(Z/nZ),. Then in the above notation we have
®°(M) = Hom(g,(Z/nZ)y, ¢" F) = Hom((Z/nZ)y, ¢" F|) = ¢" F(V)
and ¥M) = Hom(R* o,(g,(Z/nZ)y), F(— d))
= Hom(f,(R* ¢,(Z/nZ)y), F(— d))
= Hom(R* §,(Z/nZ)v, F(— d) |v)
— Hom((Z/nZ), (— d), F(— d)|) = F(U)

~

because the geometric fibres of ¢ are nonempty and connected and 7 is prime to char(k)
(Theorem 7.2.1). Thus, it suffices to show that if ¢: Y — X is a separated smooth
morphism of pure dimension 4 with nonempty and connected geometric fibres, then for
F € S(X, Z/nZ) the mapping
% ¢ F(Y) = Hom((Z/nZ)y, ¢" F)
— Hom(R* ¢,(u3 v), R 9, 9" F(d)) = F(X)

is an isomorphism. Since R™ ¢, ¢* F(d) > F®R* ¢,(u? y), the composition of the
canonical mapping F(X) — ¢* F(Y) with y is the identity on F(X). Therefore the
required fact follows from the following statement.

7.3.2. Proposition. — Let ¢ : Y — X be a morphism of k-analytic spaces, and suppose
that any étale base change of ¢ is an open map with nonempty and connected fibres. Then for any
sheaf of sets F on X one has F S ¢, ¢* F.

7.3.3. Lemma. — Any k-analytic space X contains a point x such that, for some embedding
of fields k* — 5 (x)°, the image of the induced homomorphism of Galois groups G,p, — Gy has
Sfinite index in G,.

Proof. — We may assume that X is k-affinoid. If X is strictly k-affinoid, then we
take an arbitrary point x with [ (x):%k] < o0 (ie., ¥ € X;). Therefore it suffices to
show that if K = K, where r ¢ V4 Ik_'l, and the statement is true for the K-affinoid
space X' = X ® K, then it is also true for X. For this we take a point x’ € X’ such that,
for some embedding of fields K* < #(x')*, the image of the induced homomorphism
G, = Gg has finite index. Furthermore, we fix an embedding of fields %° < K°.
(We remark that the induced homomorphism G — G, is surjective.) Let x be the image
of the point ' in X. The above embeddings of fields induce an embedding %°* < 5#(x)°,
and we get a commutative diagram of homomorphisms

Gyw — G
] |
Guw) — G

where the right homomorphism is surjective and the image of the lower homomorphism
has finite index. The required statement follows. m

18
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Proof of Proposition T.3.2. — For a sheaf of sets G on Y and two elements f, g € G(Y)
we set Supp(f—g) ={yeY|f,+g,} Itis a closed subset of Y.

We claim that if f, g € ¢* F(Y), then Supp(f— g) = ¢~ }(Z) for some set £ C X.
(From this it follows that the set X is closed because ¢ is an open map.) Indeed, it suffices
to show that if X = .#(k) and f+ g, then Supp(f— g) = Y. Assume that f, + g, at
some point » € Y. By the definition of ¢* F, there is an étale neighborhood 42:V —Y
of the point y such that V is a K-analytic space, where K is a finite separable extension
of k, and the elements f|, and g|, come from some elements of F(K). Clearly, the latter
elements are not equal. It follows that f| and g| do not coincide at all points of V, and
therefore f,, + g, for all »' e (V). Since % is an open map, it follows that the set
Supp(f — g) is open, and therefore it coincides with Y because Y is connected.

Let now fe¢*F(Y). It suffices to show that every point x € X has an étale
neighborhood X’ — X such that the restriction of f on Y Xy X' comes from an
element g e F(X'). By Lemma 7.3.3, we can replace X by an étale neighborhood
of the point x and assume that there exists a point y € ¢~ () for which the homomorphism
G,y > Gysy» induced by an embedding 5 (x)® < J#( »)°, is surjective. It follows that
F,(o#(x)) 5 (¢* F), (5£()). Therefore we can shrink X and find an element g € F(X)
whose image in (9" F), (5#()) coincides with f,. We have Supp(f— g) = ¢ (2)
for some closed set = C X. Since x ¢ Z, we can find an open neighborhood % of x such
that fl,yq) = 2. ®

Step 2. — The functors ¥, q > 1, are effaceable for d = 1. To show this we need the
following fact which is an analog of the Fundamental Lemma 1.6.9 from [SGA4],
Exp. XVIII.

7.3.4. Fundamental Lemma. — Let ¢ : Y — X be a separated smooth morphism of pure
dimension one, and suppose that X is good. Then for any point y € Y there exist separated étale
morphisms f: X' > X and g:Y' Y =Y X X’

Y %> X
[
Y’ _i’_) X’
, o
[
YI/
suck that y € f'(g(Y")) and
(i) the homomorphism RY @' (i, v+) — R ¢[(w, y) 5 zer0;
(i) the geometric fibres of ¢ are nomempty, noncompact and connected.

* Proof. — We replace X by an affinoid neighborhood of the point » = ¢( ). Let
X =u(HL).
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1) One can shrink Y and assume that there is a commutative diagram

Y s g

N

X

where  : Y — X = Spec() is a smooth affine curve of finite type over X', and j is an open
immersion. This is Lemma 3.6.2.

We remark that from 1) it follows that ¢,(p, y) = 0 and the same is trﬁe for any
étale open subset of Y. Let % = Spec(B). ‘

2) One can shrink Y and % and assume that there exist fy, ..., f, €Bande,, ..., ¢, >0
such that

Y={e®[|fi())]<e l<i<m}
For this we remark that a basis of open sets in #*" is formed by sets of the form
O e || fDN<a, &> b 1<i<nl<j<m},

where f;, g, €B and g, b;> 0. Replacing B by the localization B, , , the second
inequality can be rewritten as | g;'(»’)| < 4; %, and we are done.
3) In the situation of 2) the canonical homomorphism

R! ‘Ps(é’m, Y) —-R! 4’?“(%‘,@“)

is injective. (We remark that, by Corollary 7.1.4, the latter sheaf coincides with
(R'" ¢, 1, 4)™.) By the Weak Base Change Theorem 5.3.1, it suffices to verify the fol-
lowing fact. Suppose that & is an affine curve of finite type over %, f;, ..., f, € O(Z),
and % ={x e ™ || fi(x)| <, 1 <i< m}for some g > 0. Then the canonical homo-
morphism H}(%, p,) - Hy(Z™, u,) is injective. We may assume that the set S = 2*"\#%
is nonempty. By Proposition 5.2.6 (ii), there is an exact sequence ' '

HO((2%, 8), pa) > Ho(%, 1) > Hy(2™, ).

We claim that H((2®, S), u,) = 0. Indeed, it suffices to verify that if S is contained
in a disjoint union of open sets ¥~ and #” and the set S N ¥” is nonempty, then it is
noncompact. Suppose that S N ¥” is nonempty and compact. Then we can find its
affinoid neighborhood V in ¥~ (see [Ber], 2.6.3). By the Maximum Modulus Principle
[Ber], 2.5.20, every of the functions f; takes its maximum at the topological boundary
o(V[¥") of the set V in ¥". Since (V[¥") NS = @, then 9(V/[¥") C %. From this it

follows that | f;(x)| < ¢, for all x € V and 1< i< m. This contradicts to the supposition
that S N ¥ + @.
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We are now ready to prove the lemma. By the Fundamental Lemma 1.6.9 from
[SGA4], Exp. XVIII, one can find a separated étale morphism of finite type g: ¥’ — %

v Lo
P
@I
such that y e g(®’) (y is the image of the point y in %) and the homomorphism

R §}(1,.9v) = R (1, o) is zero. Let Y’ be the inverse image of Y in #’*, and let ¢’
denote the restriction of ¢'** to Y’. Consider the commutative diagram

R CP!((J’n,Y) — (R'¢, P‘»,@r)m

I I

R ¢{(t,v) — (R' ] p, o)™

By 3), the upper arrow is injective. Since the right arrow is zero, it follows that the left
arrow is also zero. Finally, to satisfy the condition (ii), it suffices to apply Theorem 3.7.2
to the morphism ¢’:Y’ —Y. The Fundamental Lemma is proved. m

The following is Lemma 2.14.2 from [SGA4], Exp. XVIII.

7.8.5. Lemma. — Suppose that o/ is an abelian category, m > 0, { F; },<i<om are objects
of D) such that HYF;) =0 for ¢¢[0,m], f;:F; >F; , (0<i<2m—1) are
morphisms, and f is their composition ¥y — F,,.. Assume that H(f,) = 0 for ¢<m. Then
there exists in D¥(f) a morphism ¢ : H™(F,) [— m] — F,,, such that the diagram

F, -1 F;,
N\ A
- HM(F) [— m]

is commulative. W

7.3.6. Corollary. — Let ¢:Y — X be a separated smooth morphism of pure dimension
one, and suppose that X is good. Then for any point y € Y there exist separated étale morphisms
[:X >Xand g:Y'>Y =Y Xz X’
| Y % X

o
Yr __L XI
by

YI!
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suck that y e f'(g(Y")) and there is a factorization
Roy (tn, vr) —> Roy(pn, v)
\ /
(Z[nZ).
where t is induced by the trace mapping.

Proof (see [SGA4], Exp. XVIII, 2.14.4). — We set o =¢: Yy =Y - X, =X
and construct by induction four diagrams

Y, —— X,

I I

’ q";'+l
Yi,, — X'i—{-l

T ¢i+y‘
Yii,

which satisfy the conclusion of the Fundamental Lemma. Furthermore, we set X' = X,
and Y;" =Y, Xy, X'. If §;; denotes the canonical morphism Y;" — X', then the mappings

ROy, (0, vrr,) = ROy (e, v2)
are zeroes for ¢ = 0,1 and the mapping
Tr:R? ‘l’q(l’m,yi’) — (Z|nZ)y.

is an isomorphism. By Lemma 7.3.5, the required statement is true for Y’ =Y,. m

We now prove the statement of Step 2. Let # be the family of sheaves on Y of
the form #4,(Z/nZ),, where A:V —Y is a separated étale morphism. Since any
G €S(Y, Z/nZ) is the epimorphic image of a direct sum of some sheaves from .4, it
suffices to show that for any M = £, (Z/nZ), and « € ¥¢(M) there exists an epimorphism
@D, M, > M with M, e# such that the image of « in all ¥9(M,) is zero. Let ¢
denote the morphism 4o ¢:V — X. One has

¥4M) = Hom(Re, M, F(— 1) [¢ — 2]) = Hom(R¢, g, v, F[g — 2]).

We apply Corollary 7.3.6 to the morphism ¢ and an arbitrary point y € V. It follows
that one can find separated étale morphisms f: X’ >X and g: V' > V' =V x; X’

v 4% X
b
v L X

%

VII
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such that y e f'(g(V"')) and there is a factorization
R‘P;’(Hn,v") . R‘I’;(Pm,v')

NS

(ZinZ)x [— 2]

We set M’ = (&f' g), (Z|nZ)y... The image of « in
P(M’') = Hom (R;' (i, v), Flx [g — 2])

is a morphism which goes through a morphism (Z/rZ). [— 2] — F[X. [¢ — 2]. The latter
morphism is represented by an element B € Ext!((Z/nZ)y.,F IX’) = HY(X', F). Let
x" = {('), where »' e V' and f’(»') = . Since ¢ > 1, we can find a separated étale
neighborhood X’* — X’ of the point x’ such that the element B goes to zero under the
canonical homomorphism

HYX', F) - HY(X", F).

Thus, if we replace the above objects by their base change under the morphism
X" —» X', the image of « in ¥¢(M’) will be zero.
We remark that from Steps 1 and 2 it follows that the theorem is true for d = 1.

Step 3. — The functors ¥ q > 1, are effaceable for d > 2. First of all we remark
that to verify the statement for a morphism ¢:Y — X it suffices to find an étale

covering { Y, Ay }ie1 such that it is true for all of the morphisms ¢, = 9o g;: Y, - X.
Indeed, suppose we have G € S(Y, Z/nZ), ¢ > 1 and « € ¥(G). Let G; be the pullback
of G on Y, and let «; be the image of « in ¥¢(G,) = Hom(Rg,, G;, F(— d) [¢ — 2d]).

By hypothesis, for any i €I there exists an epimorphism G; — G, such that the image
of o; in W¥G;) is zero. Then we get an epimorphism of sheaves @ielg“(G{) -G
such that the image of « in any ¥(g,(G;)) = Y¥G;) is zero.

We prove our statement by induction. Assume that it is true for d — 1. By the
above remark it suffices to verify the statement for a morphism y:Z — X which is a
composition of separated smooth morphisms ¢ : Z — Y of pure dimension d — 1 and
¢ : Y — X of pure dimension one. Since the theorem is true for d = 1, we have

¥(G) = Hom(Ry, G, F(—d) [g — 2d])
= Hom(Re¢,(Ry, G(d — 1) [24 — 2]), F(—1) [¢ — 2])
= Ext(R¢, G(d — 1) [2d — 2], ¢* F) :
— Hom(R¢, G, ¢ F(— d + 1) [g — 2d + 2])
= ¥, oem(G) '

where the latter denotes the analogous functor for the morphism ¢ and the sheaf ¢* F. By
induction, there exists an epimorphism G’ — G such that the image of « in ¥, .. (G")
is zero. Since the latter group coincides with ¥¢(G’), we get the required statement.
The theorem is proved. m
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7.4. Applications of Poincaré Duality

Let n be an integer prime to char(Z).

T.4.1. Theorem. — Let ¢ : Y — X be a separated smooth morphism of pure dimension d.
Then for any F € S(X, Z[nZ) there is a canonical isomorphism

Ro.(¢" F) = Hom(Ro,(Z[nZ)y, F(— d) [— 2d]).

Proof. — Since Z/nZ is a free Z[nZ-module, then &xt((Z/nZ), ¢* F) = 0 for
all ¢ > 1, and therefore S#om((Z/nZ)y, ¢* F) = ¢" F. The required statement is obtained
by applying Poincaré Duality to the complexes G* = (Z/nZ)yand F* = F(— d) [— 2d]. m

We say that a morphism of k-analytic spaces ¢:Y — X is acyclzc if for any
F € S(X, Z/nZ) one has F = ¢,(¢* F) and R?o,(¢*F) =0, ¢> 1.

T7.4.2. Corollary. — Let ¢ : Y — X be a separated smooth morphism of pure dimension d,
and suppose that the geometric fibres of ¢ are nonempty and connected and have trivial cohomology
groups H with coefficients in Z[nZ for ¢ < 2d. Then the morphism ¢ s acyclic. For example, the
morphisms X X A% - X and X X D — X, where D is an open disc in A%, are acyclic. m

The following is a straightforward consequence of Poincaré Duality.

7.4.3. Theorem. — Suppose that k is algebraically closed, and let X be a separated smooth
k-analytic space of pure dimension d. Then for any F € S(X, Z/nZ) and q > O there is a canonical
tsomorphism

Exti(F, pt, ) 3 H2 (X, F)".
In particular, if ¥ is finite locally constant, then one has
| HY(X,F'(d)) > H* ¢(X,F)". =
7.4.4. Corollary. — Suppose that k is algebraically closed, and let X be a proper smooth

k-analytic space. Then for any finite locally constant sheaf F € S(X, Z|nZ) the groups H"(X F)
are finite. W

Let S be a k-analytic space. A smooth S-pair (Y, X) is a commutative diagram of
morphisms of k-analytic spaces '

Yy > X

AN
[Ny 7
- S
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where f and g are smooth, and i is a closed immersion. The codimension of (Y, X) at a
point y €Y is the codimension at y of the fibre Y, in X,, where s = g(»). One can asso-
ciate with a smooth S-pair (Y, X) the following commutative diagram

Y 2 X o wu

N oA

S

where U = X\Y, and ; is the canonical open immersion.

7.4.5. Theorem (Cohomological Purity Theorem). — Let (Y, X) be a smooth S-pair of
codimension c, and let F be an abelian sheaf on X which is locally isomorphic (in the étale topology) to
a sheaf of the form f*F', where F' €S(S, Z|nZ) (for example, F is a locally constant
(Z[nZ)x-module). Then

(1) #LX,F) =0 for ¢ + 2;
(ii) there is a canonical isomorphism H#% (X, F) 5 i* F(— ).
Proof. — We remark that if we are given a cartesian diagram
Yy 5 X
ok
Y — X
with étale ¢, then for any ¢ > O there is a canonical isomorphism
HYX, ) |y 3 % (X, Fly).
Therefore we may assume that F = f* F’ for some F' € (S, Z/nZ).

Let f be of pure dimension d. Then g is of pure dimension ¢ := d — ¢. By Poincaré
Duality, for any G € S(Y, Z/nZ) there is a canonical isomorphism

Hom(G, g* F'(e) [2¢]) > Hom(Rg, G, F'). .
Since Rg, G = Rf,(i, G), it follows by Poincaré Duality applied to the morphism f

that one has
Hom(Rg, G, F') 5 Hom(z, G, f* F'(d) [24]).

Furthermore, since the functor i, is left adjoint to the functor ¢!, the latter group is
isomorphic to Hom(G, Ri'(f* F') (d) [2d]). Thus, we get an isomorphism
Hom(G, g* F'(e) [2¢]) > Hom(G, Ri'(f* F') (d) [24]),
and this isomorphism is functorial on G. It follows that it is induced by an isomorphism
of complexes in D(Y, Z/nZ)
& F(e) [2¢] S Ri'(f* F') (d) [24].
Hence, Ri'(F) 5 4* F(— ¢) [— 2¢], and the theorem follows. m
In the following three corollaries, the situation is the same as in Theorem 7.4.5.
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7.4.6. Corollary. — HY(X,F) =0 for 0< ¢< 2c — 1 and
H{(X, F) 5 H™*(Y, * F(— ¢))
Jorq>2c. m

7.4.7. Corollary. — F 3 j,(F|p), R*71j,(F|y) 3i,(* F(— ¢)), and R%j.(Fly) =0
SJor q0,2c— 1. m
Applying the spectral sequence R?£,(R%j,(Fly)) = R**¢4,(F lo), we get

7.4.8. Corollary (Gysin sequence). — Suppose that the relative dimension of f is equal
to d.

(i) Rf,F 3 R,(Fly) for 0< q< 2 — 2, and there is an exact sequence
0 >R*'fF >R* A (F|p) - g F(—0) —
—R¥f,F > R¥*L(F|y) >R g,(i F(—¢)) - ...
(ii) Suppose that k is algebraically closed and S = M (k). Then HY(X, F) 5 HYU, F)
Jor 0< ¢< 2c — 2, and there is an exact sequence
0 ->H*"Y(X,F) - H*" YU, F) - H (Y, * F(—¢)) -
- H*X,F) - H*(U,F) > HYY,* F(—¢)) - ...
- H24~ Y, # F(—¢)) > H¥X,F) - H¥(U,F) -0. m

The following statement will be used in the proof of the Comparison Theorem 7.5.1.

7.4.9. Theorem. — Let ¢ : Y — X be a separated smooth morphism of pure dimension d,
and suppose that F is a finite locally constant (Z[nZ)y-module such that all the sheaves R @ (FY),
q > 0, are finite locally constant. Then for any q > O there is a canonical isomorphism

Rig F 3 (R*q,(F))" (— d).

7.4.10. Lemma. — Let X be a k-analytic space. Suppose that the cohomology sheaves of
a complex ¥* € D™ (X, Z/nZ) are finite locally constant, and let G be a locally free sheaf of
(Z[nZ) x-modules of finite rank. Then for any q € Z there is a canonical isomorphism

Ext'(F*, G) 5 #om(H™ Y(F*), G).
Proof. — If F is finite locally constant, then &#%F, G) = 0 for all ¢ > 1 because

Z/nZ is an injective Z[nZ-module. Our statement now follows from the spectral sequence
(see [Gro], 2.4.2)

Ext?(HY(F*), G) = &«t?T4F',G). m
Proof of Theorem 7.4.9. — Since GV is also finite locally constant, Lemma 7.4.10
gives an isomorphism

Hom(F', b ) = Hom(F", ) = G(d).
19
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By Poincaré Duality and Lemma 7.4.10, we have
(R?9, F) (d) = R g, (#om(F", p3 y))
= Ext*~ %Ry (FY), (Z/nZ)x) = (R¥~?,(F"))".

The required statement follows. m

7.5. The Comparison Theorem

7.5.1. Theorem. — Suppose that & is a scheme of finite type over Spec(Z), where o is a
k-affinoid algebra, f: X — & and ¢ : ¥ — X are morphisms of finite type, and F is a cons-
tructible abelian sheaf on % with torsion orders prime to char('l;). Then there exists an everywhere
dense open subset U C P such that the following properties hold.

(i) The sheaves R® ¢, F |,.1y, are constructible and equal to zero except a finite number
of them. ‘

(i) The formation of the sheaves R o, F is compatible with any base change ' — &
such that the image of &' is contained in U.

(iii) In (ii) assume that &' is a scheme of locally finite type over Spec(%), where & is an
affinoid sf-algebra, and that the morphism &' — & is a composition &S — S, B - .
Let @' be the morphism ¥’ = ¥ X o ' > X' =X X o F', and let F' be the inverse image
of F on ¥'. Then for any q > O there is a canonical isomorphism

(R g, F') 3 R glin F'o,

~ The condition on the morphism &’ — & implies that for any scheme 2 of locally
finite type over & one has

(Z Xy PNV ZD X pan P,

The existence of an everywhere dense open subset % C & which possesses the
properties (i) and (ii) is guaranteed by Deligne’s ¢ generic > theorem 1.9 from [SGA43],
Th. finitude. In fact the proof of Theorem 7.5.1 follows closely the proof of Deligne’s
theorem and uses it. Moreover, the proof is a purely formal reasoning which works over
the field of complex numbers C as well (of course, in this case one should assume that
&/ = % = Q). The other main ingredients of the proof are the Comparison Theorem
for Cohomology with Compact Support, Poincaré Duality for schemes and analytic
spaces, and the constructibility of the sheaves R? ¢, # ([SGA4], Exp. XVII, 5.3.6).

Progf. — By Deligne’s theorem, we can shrink & and assume that the properties (i)
and (ii) hold for = &. And so it remains to show that there exists an everywhere
dense open subset  C & for which the property (iii) holds.

Since the property (iii) is local with respect to & and %, we may assume that

they are separated. Furthermore, if (¥, X ¥),c1 18 a finite étale covering of ¥, then it
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suffices to verify (iii) for all of the morphisms ¢g; : %, — . Therefore we may assume
that # is also separated. Finally, since the scheme % is Noetherian, we can find an
integer n prime to char(k) with n# = 0. Therefore we can work with the categories of

sheaves of Z/nZ-modules.

7.5.2. Lemma. — The property (iii) holds when Z = &, ¢ is smooth, and F 1is locally
constant.

Progf. — We may assume that ¢ is smooth of pure dimension d. Since the sheaf %"
is also locally constant, all the sheaves R? ¢, (#"), ¢ > 0, are constructible. Furthermore,
since they are equal to zero for ¢ > 2d, we can shrink & and assume that all the sheaves
R¢,(F"), ¢> 0, are actually locally constant. Theorem 7.4.9 and its analog for
schemes give isomorphisms '

R, (F) 3 R¥ g (F)) (—d),
R gi"(F™) = (R¥ ™ g(F))Y (— d).

The required statement now follows from the Comparison Theorem for Cohomology
with Compact Support (Corollaries 7.1.4 and 7.1.5). ®

We remark that it suffices to prove the theorem in the case when ¢ is an open
immersion with everywhere dense image. Indeed, we may assume that % is affine.
Then there is a factorization ¢ = {j, where j: % < £ is an open immersion, and
y: Z — & is a proper morphism. Hence R, = R{, Rj, and R} = R{i* Rj*, and
the required statement follows from the Comparison Theorem for Cohomology with
Compact Support.

We remark also that it suffices to assume that & is the spectrum of an integral
domain. Let  be the generic point of &. We prove the following statement by induction.

(%)g The property (iii) holds when dim(%,) < d and ¢ is an open immersion with every-
where dense image.

1) (%)y @s true. It suffices to show that there exists an everywhere dense open
subset % C & with f~'(%) C %. For this we may assume that Z is affine, and we can
find an open immersion with everywhere dense image £ — Zina proper &-scheme Z.
It follows that % is everywhere dense in Z, and therefore Z. » = %,. The latter means
that the point % is not contained in the closed set { s € & | dim(S%'_ .) = 1 }. Thus, we can
shrink & and assume that & is finite over <. Finally, since T . = ¥, the image of the
closed set & \% is closed and nowhere dense in <. ‘Therefore, shrinking &%, we get
Y=%=4.

Suppose now that d> 1 and assume that (%),_, is true.

2) One can shrink & and find an open subset & C X such that its complement &, is finite
over & and the property (iii) holds for the open immersion % N & — Z.
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Since the statement is local with respect to Z’, we may assume that & is a closed
subscheme of the affine space A%. Let w; denote the i-th projection & — Al. The
induction hypotheses applied to the diagrams

¥ =

N\ A

Ay

gives open subsets %; C A}, such that the property (iii) holds for the open immersions
¥ N Y (U) -7 Y(%,) and the sets %,;. It follows that if we set 2 = U | =7 (%),
then it also holds for the open immersion # N 2 — Z and the set . Finally, the reaso-
ning from 1) shows that we can shrink &% and assume that the morphism AL\%; - &
are finite. It follows that the morphism %, = N = Y(AL\%,) — & is also finite.

3) ()4 is true if ¥ is smooth over & and F is locally constant.

Since the statement is local with respect to &, we may assume that & is a closed
subscheme of the affine space Aj. After that we can replace & by its closure in the pro-
jective space P%. In particular, we may assume that the morphism f: & — & is proper.

We shrink & and take the open immersion j: & <« Z and the closed immersion

i: %, - % which are guaranteed by 2). Consider the commutative diagram
NN LI '

P A

&

By construction, f is proper, f; is finite, and the property (iii) holds for the open
immersion # N 2 — % and the set % = &. By hypotheses, g is smooth, and there-
fore, by Lemma 7.5.2, we can shrink % and assume that the property (iii) holds for
the morphism g: % — %.
To verify (iii), we may assume that the base change is already done. (The only thing
we should take care of is that our further manipulations do not change the scheme #.)
Consider the exact sequence

(1) 0—->j,j'Re, F >Ro, F i, 1"Rep, F -0
and the induced morphisms of exact sequences (1)** — (1*%)
0 — j*(j*Ro, F)* — (Re, F)™ — i*(i*Ro, F)* —> 0
| o l
0 —> ju(j*" Re¥ F*) —» Rgi®F™ —» #(i Roi® F) —> 0

Since the first vertical arrow is an isomorphism, then to show that 6(%) is an isomorphism,
it suffices to verify that

(i* Ro, F)™ 3 i Rt o,
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For this we apply Rf, and Rf? to the sequences (1) and (1**), respectively. We obtain
a morphism of exact triangles

— RAJJ R F)" —— (Rg, F)™ — fil(i" Ro, F)* ——

! ! !

— Rf®E(™ RePF®) —> RgPF™ —> fu(i R F) —>

The first and the second vertical arrows are isomorphisms. Therefore the third arrow is
also an isomorphism. Since f; is finite, it follows that (i* R, &#)*™ 5 *™ R F#*™,

4) ()4 ts true in the general case. Decreasing &, we can find a finite radicial surjective
morphism &’ — & such that the scheme (# X o, &), has an everywhere dense open
subset which is smooth over &’. Since such a manipulation does not change the étale
cohomology, we may assume that % has an everywhere dense subset 2 which is smooth
over &. Shrinking %, we may assume that & is locally constant over Z. Let j denote
the open immersion 2 < #. By 3), we can shrink % and assume that the theorem is true
for the pairs of morphisms (f: ¥ > &L, ¢ =¢j: X >%)and (g: ¥ -~ L, j: Z > %)
and the sheaf j* #. It follows that if we define ¥* by the exact triangle

(2) -F >R F >9 >
then there is an exact triangle
(2[!1) > g‘an — Rj:njn.n g‘an > gan- —

Furthermore, the sheaves H%(¥") are constructible and equal to zero except a finite
number of them, and the formation of H%¥*) is compatible with any base change.
Finally, the sheaves H%%*) have support in the closed subset ¥ = #\Z, and one
has dim(#7,) < d — 1. Since the canonical morphism #"— % is a composition of the
open immersion #” W, where W is the Zariski closure of #" in %, and the closed
immersion %~ — &, it follows, by inductional hypotheses, that we can shrink & and
assume that the property (iii) holds for the morphism ¢ : # — % and the sheaves H%(¥").

As in the proof of 3), to verify (iii) we may assume that the base change is already

done. Applying Rg, and R¢?" to the triangles (2) and (2*), respectively, we obtain a
morphism of triangles

— (Re, #)™ —> (RY, j" F)™ —> (R, ¥)" —>
le(m l l
—> RglF™ > Rymj™ Fm _, Romgm —»
Since the second vertical arrow is an isomorphism, to show that (%) is an isomorphism,
it suffices to verify that
(Rg, 9 Ryt 9.
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But this follows from the homomorphism of spectral sequences

(R? ¢, (HY(#)))™" ==> (R?Tp, &)

l L

RY gR(HI(9™)) —» Re e gu
because the left arrows are isomorphisms. The theorem is proved. m

7.5.8. Corollary. — Let ¢ : % — & be a morphism of finite type between schemes of locally
Jinite type over k, and let F be a constructible abelian sheaf on % with torsion orders prime to char('/;).
Then for any q > O there is a canonical isomorphism ‘
(R, F)™ = R gi» F™2

- Progf. — Since the statement is local with respect to &, we may assume that &
(and therefore %) is of finite type over %k, and therefore we can apply Theorem 7.5.1
for o =k and & = Spec(k). m :

7.5.4. Corollary. — Let & be a scheme of locally finite type over k, and let F be a cons-

tructible abelian sheaf on & with torsion orders prime to char(k). Then for any q¢ > O there is a
canonical isomorphism

HYZ, #) 5 HY(Z™, F*).
Proof. — First of all we remark that it suffices to consider the case when the scheme
is affine and of finite type over %. Indeed, if this is so, then in the general case we can take

a covering % ={ U, },o; of Z by open affine subschemes of finite type over £ and use
the homomorphism of spectral sequences

H(%|%, #(F)) === H"*YZ, F)

! !

H (2 &, #Y(F™)) ==> HP (g, F=)

Thus, we may assume that Z is affine and of finite type over 4. In this case we
apply Corollary 7.5.3, the homomorphism of the Leray spectral sequences associated
with the morphisms & — Spec(k) and Z*" — .#(k), and the fact that the required state-
ment is true for & = Spec(k). m

7.6. The invariance of cohomology under extensions of the ground field

7.6.1. Theorem.. — Let K[k be an extension of algebraically closed non-Archimedean
Sfields. Let X be a k-analytic space, and let ¥ be an abelian torsion sheaf on X with torsion orders
prime to char(;). We set X’ = X ® K and denote by F' the inverse image of F on X'. Then for
any q > 0 there is a canonical isomorphism

HY(X, F) 3 H(X', F’).
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Progf. — All the sheaves considered below are supposed to be abelian torsion with
torsion orders prime to char(?e’). ‘

We remark that if the theorem is true for 2-affinoid spaces, it is also true for arbitrary
k-analytic spaces. Indeed, if X is separated paracompact, we can find a locally finite
affinoid covering ¥" ={V,};c; of X and apply the homomorphism of the spectral
sequences 4.3.7

He (v, #9(F)) == H*9(X,F)

! l

Hr (v, #9F)) = Hr (X', F)

where ¥ ={V,®K },.. If X is arbitrary paracompact, we use the same reasoning
and the fact that the intersection of two affinoid domains is a compact analytic domain.
If X is Hausdorff, we use the similar reasoning for a covering of X by open paracompact
subsets and the fact that the intersection of two open paracompact subsets in a locally
compact space is paracompact. If X is arbitrary, we use the same reasoning for a covering
of X by open Hausdorff subsets.

Furthermore, we remark that it suffices to prove the theorem for one-dimensional
k-affinoid spaces. Indeed, let Y = .#(%) be a k-affinoid space of dimension 4 > 2, and
suppose that the theorem is true for %-affinoid spaces of smaller dimension. Take an
element f e # which is not constant at any irreducible component of Y, and consider
the induced morphism f: Y — AL Let X = .#(&) be a closed disc in A! which contains
the image of Y. We get a morphism of k-affinoid spaces ¢ : Y — X such that dim(X) =1
and dim(Y,) < 4 for all points x € X. Consider the following commutative diagram

Y 5 X
ek
where X’ = X®K and Y =Y®K =Y x4 X". To prove the theorem for Y, it
suffices to show that for any sheaf F on Y and any ¢ > 0 there is a canonical isomorphism
(R7q, F)' 3 Riq. F.
But this is obtained, by induction, from the Weak Base Change Theorem 5.3.1. Indeed,

if x e X and &’ € X' is a pair of points with x = =(x’), then a fixed embedding of fields
H(x)* <> (x')* induces an isomorphism of analytic spaces

A 7 e ~
Y:®zm: (%) > Yz

Thus, we may assume that X in the theorem is a one-dimensional k-affinoid space.
To prove the theorem for X, we consider the following more general situation. Let S
be a locally closed subset of X, and F be a sheaf on the k-germ (X, S). We set
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(X', 8) = (X, S) ®K and denote by F’ the inverse image of F on (X', S’). Further-
more we denote by 6%((X, S), F) and 03((X, S), F), respectively, the canonical homo-
morphisms

HY((X, §), F) - HY((X", §), F)
and HY((X, S), F) - HY((X", §), F').

Our starting point is Theorem 6.4.1 (ii) which implies that 6?(X, F) is an isomorphism
if the sheaf F is finite constant. And here is a continuation.

1) 04X, F) is an isomorphism, when F is finite locally constant. — Indeed, one can
find a finite étale covering Y — X such that the sheaf F|y is constant, and there-
fore one can use the spectral sequences associated with the étale coverings (Y — X) and
(Y®K - X).

2) 09((X, S), F) is an isomorphism, when S is closed and F is finite locally constant. —
Indeed, by Proposition 4.4.1, the sheaf F extends to a finite locally constant sheaf on an
open neighborhood of S. Our statement now follows from Proposition 4.3.5 because
affinoid neighborhoods of S form a basis of its neighborhoods.

3) 03((X,S), F) is an isomorphism when ¥ extends to a finite locally constant sheaf
on (X, S) (S is the closure of S in X). Indeed, we can apply 2), the exact cohomological
sequences associated with the embeddings

(X,8) S (X,8) < (X, 5\9)
and (X, 8) & (X, §8)) < (X', B)\S),
where (X', (S)") = (X, S) ®K, and the five-lemma.
4) 04((X, S), F) is an isomorphism for an arbitrary finite locally constant sheaf F. Indeed,
by Proposition 5.2.8, one has
H{((X, §), F) = lim H{((X, T), F)
and Hi((X', §), F') = lim H((X', T'), F),
where T runs through open subsets of S with compact closure. Therefore we can apply 3).
5) 09X, F) is an isomorphism, when F is of the form j, G, where j is the morphism of
germs (X, S) — X determined be a locally closed subset SC X, and G is a finite locally constant
skeaf on (X, S). From Corollary 5.2.5 it follows that
HY(X,j, G) = H{((X, §), G)
and HY(X', j; G') = HY((X', §"), G').
Since j, G' = (j, G)’, we can apply 4).
6) 09X, F) is an isomorphism, when F is quasiconstructible. This is obtained from 5),
by induction, using Proposition 4.4.4 and the five-lemma.

7) 04X, F) is an isomorphism for arbitrary F. This follows from 6) and Proposi-
tions 4.4.5 and 5.2.9. m
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7.6.2. Corollary. — In the situation of Theorem 7.6.1 assume that X is Hausdorff.
Then for any g > O there is a canonical isomorphism

HY(X, F) 3 HY(X', F').

Progof. — From Proposition 5.2.8 and Corollary 5.2.5 it follows that
HY(X, F) = lim H(X, jy,(F|4))
and H{(X', F') = lim HY(X, ja,(F'[4))
where the limit is taken over all open subset % C X with compact closure, %' = # ® K,

and j, (resp. j,-) denotes the canonical open immersion % < X (resp. %’ — X'). The
required statement follows from Theorem 7.6.1. m

7.7. The Base Change Theorem for Cohomology with Compact Support

7.7.1. Theorem. — Let ¢ :Y — X be a Hausdorff morphism of k-analytic spaces and
let f:X' X be a morphism of analytic spaces over k whick give rise to a cartesian
diagram :

Yy 2 X

=T

Yy %> X
Then for any abelian torsion sheaf ¥ on Y with torsion orders prime to char(;) and any ¢ > 0
there is a canonical isomorphism

S*(R?g, F) 5 R q;(f" F).

Proof. — The Weak Base Change Theorem 5.3.1 reduces the situation to the case
when X = #(k) and X' = #(K), where K/ is an extension of algebraically closed
fields. In this case our statement follows from Corollary 7.6.2. m

7.7.2. Corollary. — In the situation of Theorem 7.7.1 suppose that ¢ is of finite dimension,
and let n be an integer prime to char(k). Then for any F'* e D™(X', Z|nZ) and G* € D~ (Y, Z/nZ)
there is a canonical isomorphism

L ~ ’ £ le L % .
F*®f*(Re, G') > Rej(e" F* ® " G°).
Progf. — From Theorem 7.7.1 it follows that there is a canonical isomorphism
f"Re, G°) = Rey(f* G).

Therefore our statement is obtained by applying Theorem 5.3.9 to f': Y' > X'. m
20
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1.17.3. Corollary (Kiinneth Formula). — Given a cartesian diagram of Hausdorff morphisms
of k-analytic spaces

X xgY
o RN
X I Y
N 4
S

suppose that f and g are of finite dimensions, and let n be an integer prime to char('I:). Then fbr
any ¥ e D (X, Z/nZ) and G' € D~ (Y, Z[nZ) there is a canonical isomorphism

Rf, F* @ Rg, G* 3 Rk, (¢" F* & f* GY).
Proof. — Applying Theorem 5.3.9 to the morphism f and Corollary 7.7.2, one has
L ~ . L * . ~ ’ ’x . L &3 .
Rf F'® Rg, G* > Rf\(F' © f"(Rg, G)) = Rf, Rgi(¢" F O G)
S RE(FEfG). =

7.8. The Smooth Base Change Theorem

We say that a morphism of k-analytic spaces ¢ :Y — X is almost smooth if, for
any point x € X, there exist an open Hausdorff neighborhood % of x» and affinoid domains
Vi, -.., V,C% such that V, U ... UV, is a neighborhood of x and all the induced
morphisms ¢~ *(V,) — V, are smooth. Or course, smooth morphisms are almost smooth.
(And we believe that the converse implication is also true.)

7.8.1. Theorem. — Let f: X' — X be an almost smooth morphism of k-analytic spaces,
and let ¢ : Y — X be a morphism of analytic spaces over k, which give rise to a cartesian diagram

Yy % X
e T
Yy & X

~

Then for any (Z[nZ)y-module ¥, where n is an integer prime to char(k), and for any q > O there
s a canonical isomorphism

S'(R%e, F) 5 Riq,(f"F).

Proof. — First of all, the reasoning from the beginning of the proof of Theorem 7.3.1
reduces the situation to the case when fis a smooth morphism of good k-analytic spaces.
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Furthermore, since the statement is local with respect to X’ and is evidently true when f
is étale, it suffices to assume that f is of pure dimension one.
Let x’ be a point of X’, and set x = ¢(x'). One has

(f*(R?9, F)), = (R?q, F), = lim HY(Y xx U, F),
where the limit is taken over all étale morphisms U — X with a fixed point z € U over x
and with a fixed embedding of fields 5 (x) < 5 (x)* over 5 (x). Similarly, one has
(RO, (f" F))y = lim H(Y' Xx W, /" F),
where the limit is taken over all étale morphisms W — X’ with a fixed point w e W
over ' and with a fixed embedding of fields #(w) < 5#(x’')® over #(x'). Therefore,
it suffices to show that for any étale morphism (W, w) — (X', #") there exist étale mor-

phisms g: U - X and /2: U"” - U’ = W X4 U such that the point w is contained in
the image of U’ and for any ¢ > 0 one has

Im(HY(V', £ F) - HY(V", f** F)) C Im(HY(V, F) ~ HY(V", f"* F)),
where V=Y Xy U, V=Y Xy U’ and V' =Y X3 U"”. We can shrink W and
assume that W — X is a separated smooth morphism of pure dimension one.

By Corollary 7.3.6, there exist separated étale morphisms g:U — X and
h:U" ->U =W xxU :

W — X

[

U U

b

UII
such that the point w is contained in the image of U’ and there is a factorization

Ry, (P*», o) —> Ry, (P~». v)

/
N/
(Z/nZ)y [— 2]
where ¢ is induced by the trace mapping. Consider the fibre product of the previous
diagram with Y over X
Y XgW — Y

I l-

v —Y

by

VII
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We claim that for any ¢ > 0 there is a factorization
H(V',f*F) —> H(V",f"F)
HY(V, F)

where the homomorphism H¢(V, F) — H¢V"”, f* F) is the canonical one.
Indeed, by the Base Change Theorem for Cohomology with Compact Sup-
port 7.7.1, there is a factorization

RX;(I"'”,V”) -—> Rq";(l“‘n,v’)

~N S

(Z[nZ)y [— 2]
where ¢’ is induced by the trace mapping. By Theorem 7.4.1, we have

Ry, (4*(Fy)) = Hom(Rii (., v), Flv[— 2D),
Ry (*(Fv)) = Hom(Ry; (i, v), Fly[— 21).

Since #om((Z/nZ)y [— 2], F|v[— 2]) > F Iv, then there is a commutative diagram
RY;(4"(F|y)) — Rp(*(Fly))

NS

Fly

where the morphism FIV — Ry.(x*(F|y)) is the canonical one.

We now apply to the latter commutative diagram the derived functor RT,
where Ty : S(V, Z[nZ) — £/b is the functor of global sections on V. Since I'y o ¢, = Ty,
and 'y oy, = Iy, we get a commutative diagram

RI‘V'(q}“(FIV)) -_—> RPV”(X’*(Flv))

NS

RTy(Fly)
which gives, for any ¢ > 0, a commutative diagram

HY(V',f*F) —> H{(V",f"F)

NS

He(V, F)

in which the homomorphism H4V,F) -~ HYV", f*F) is the canonical one. The
theorem is proved. m
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