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ISOTROPY OF QUADRATIC FORMS
OVER FUNCTION FIELDS OFj&-ADIG CURVES

by R. PARIMALA and V SURESH

INTRODUCTION

Let A; be a field of characteristic not equal to 2. We recall the notion of the
^-invariant u(k) of k

u {k) = sup{ dimension of q \ q an anisotropic quadratic form over k }

It is a longstanding question whether the finiteness of u(k) implies the finiteness of
u{k(t)). This was open even in the case k is a j&-adic field. Recently, by using a theorem
ofSaltman ([S], 3.4, [Sl], [HV], 2.5) on bounding the index of central simple algebras
over the function field k(X) in one variable over a non-dyadic j^-adic field by the square
of the exponent, Hoffmann - Van Geel ([HV], 3.7) and independently Merkurjev ([M2])
proved the finiteness of the ^-invariant of k(X). Hoffmann and Van Geel ([HV], 3.7)
proved that u{k(X)) ^ 22. In this paper, we follow the techniques of Saltman to
prove that the ^-invariant of A(X) is bounded by 10. We remark that conjecturally
u{k(X)) = 8. Recall that if F is a finite field, k = F((^)) is C2 and if X is an irreducible
curve over k, then k(X) is a €3 field ([Gre], p 36, p 22) and hence u(k(X)) = 8.

The main step of the proof is to kill any element in H^A^X), Z/2) in a quadratic
extension of k(X) (3.8). This is done by killing the ramification of any element of
H3^^), Z/2) on a regular proper model J%T of a quadratic extension L of A:(X)
and using a theorem, of Kato ([K], 5.2) that the unramified cohomology group
H^(L/^,Z/2) = 0. This shows that every element a in H3^^), Z/2) is of the
form (/) U p, with (/) G H^^), Z/2) = yl(X)*/A(X)*2 and P € H2^), Z/2). In
view of a theorem of Saltman (cf. 2.2), P and hence a, is a sum of two symbols. A
subtler choice of a biquadratic extension (2.1) which splits P G H2^^), Z/2) leads to
the fact that every element in H3^^), Z/2) is a symbol (/) U (g) U (A). In fact we also
prove (3.9) that given o^ C H3^^), Z/2), 1 ^ i ^ n, there exist f,g, hi € A;(X)* such
that Oi = (/) U {g) U (hi). This is a local two-dimensional analogue of a result of Tate
for number fields ([T|, 5.2).

Using methods of Hoffmann and Van Geel ([HV]) and the fact that every
element in H3^^), Z/2) is a symbol, one can deduce that u{k(X)) < 12 (4.2). One
shows further that given a € H3^^), Z/2), a suitable choice of a quadratic extension
L = k(X)(^ ) which splits a can be made so that f is a value of a given binary
quadratic form (4.4). This leads to u{k(X)) ̂  10 (4.5).
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Let A; be a j&-adic field and G a smooth, projective, geometrically integral curve
over k. Let n : X —^ C be an admissible quadric fibration (cf. [CSk]) and GHo(X/C)
the kernel of the induced homomorphism T^ : CHo(X) —> CHo(C), where GHo denotes
the group of zero-cycles modulo rational equivalence. In ([CSk]), Colliot-Thelene and
Skorobogatov posed the question whether CHo(X/G) is zero if dim(X) ^ 4. In ([HV],
4.2), Hoffmann and Van Geel showed that if A; is non-dyadic and dimX ^ 6, then,
CHo(X/G) = 0. They further proved that if every element in H\k(X), Z/2) is a symbol
and dim(X) ^ 4, then GHo(X/G) = 0 ([HV], 4.4). Thus, as a consequence of our result,
it follows that if dim(X) ^ 4, then CHo(X/C) = 0 (5.2), answering the above question
of Colliot-Thelene and Skorobogatov in the affirmative.

In ([Se], §8.3), Serre raised the question whether for a j&-adic field A;, every
element in H3^), Z/2) is a symbol. In this were true, he has the following explicit
description of the set of isomorphism classes of Cayley algebras over k(t) as the set

C(P) = {f.P -^ Z/2 | Supp (/) finite and ^>c) = 0 },
xef

where P denotes the set of closed points ofP^. Using our theorem and a result ofKato
([K]), we give a description (6.3), following Serre's method, of the set of isomorphism
classes of Cayley algebras over A(X), where X is a smooth, irreducible curve over a
non-dyadic j&-adic field, which reduces to that of Serre in the case X = P^.

We thank J.-L. Golliot-Thelene for various helpful discussions during the prepa-
ration of this paper. We thank S. Bloch, D. Hoffmann and Van Geel for their keen
interest in this work. We thank J.-P Serre for bringing to our notice the question
discussed in §6. We thank the organisers of the "Arithmetic Geometry" programme
at the Isaac Newton Institute, University of Cambridge, for inviting us to participate
in the programme, and we acknowledge with pleasure the local hospitality at the Isaac
Newton Institute while this paper was under preparation.

1. Some Preliminaries

We recall (cf. [Sc]) some basic definitions and facts about quadratic forms and (cf.
[C]) some results on Galois cohomology and unramified cohomology. Let F be a field
of characteristic not equal to 2. By a quadratic form over F we mean a pair (V, y), where
V is a finite dimensional vector space, q: V —> F is a map such that q(kv) = ̂ q(v\ for
^ C F, v C V and the map bq : V x V —> F given by bq(v, w) = q(v + w) - q(v) - q(w)
is a non-singular bilinear form. We shall abbreviate (V, q) by q. Let q be a quadratic
form over F. The rank of q, denoted by rk (q), is defined as the dimension of V over
F. We say that a quadratic form q over F is isotropic if there exists v € V, v =(= 0, such
that q(v) = 0; otherwise q is called anisotropic. The u-invanant of F, denoted by u (F), is
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defined as

u(F) = sup{ rk(y) | q an anisotropic quadratic form over F }.

Let q be a quadratic form over F. Since char(F) =[= 2, q is isometric to a diagonal
form < a\, • • - , a,n >, for some ^ e F*. A quadratic form is isotropic if and only if
q ^< 1, — 1 >-L ({ for some quadratic form c/ over F. A quadratic form q is said
to be hyperbolic if y c^< 1, - 1 >_L • • • -L< 1, - 1 >. Let W(F) be the Witt group
of quadratic forms over F. Note that every element in W(F) is represented by an
anisotropic quadratic form over F. A quadratic form q represents 0 in W(F) if and
only if q is hyperbolic. Tensor product of quadratic forms makes W(F) into a ring. Let
I(F) be the ideal of W(F) consisting of even rank forms. For n > 1, let P(F) denote
the n^ power of I(F). The abelian group P(F) is generated by quadratic forms of
the type < \,a\ > 0 • - • (g) < 1,^ >, with a, € F*. A quadratic form of the type
< 1, a\ > (g) • • • ® < 1, an > is called an n-fold Pfister form. Let P^(F) denote the set of
yz-fold Pfister forms over F.

The rank induces an isomorphism rk : W(F)/I(F) ^ Z/2. For a quadratic form
over F, let d{q) be the discriminant of q and c(q) the Clifford invariant of q. Then the
discriminant induces an isomorphism d : I^F)/!2^ —> F*/F*2. A celebrated theorem of
Merkurjev ([Ml]) asserts that c induces an isomorphism

^-H^Z/^,
1\F)

where for any n ^ 0, H"(F, Z/2) denotes the ra* Galois cohomology group
H"(Gal(F,/F), Z/2), F, denoting the separable closure of F. For a € F*, let (a)
denote the class in H'(F, Z/2) = F*/F*2. For ai, • • • , a, € F*, let (fli). • • • • (fl«)
denote the element (ai) U • • • U (a,) € W(F, Z/2). Let n > 1. For f l i , • • • , On € F*,
let

en : P,,(F) ̂  H"(F, Z/2)

be defined by (?„(< 1, - fli > ® • • • (8> < 1, - On >) = (fli)- • • • -(a,,) £ H»(F, Z/2). Then e\
is the discriminant and e^ is the Clifford invariant. Suppose that the 2-cohomological
dimension cd^(F) of F is at most 3. Then by a theorem of Arason, Elman and Jacob
([AEJ], Corollary 4 and Theorem 2), ^(F) = 0 and

03 : I\F) -^ H^F, Z/2)

is an isomorphism.
Let R be a discrete valuation ring, F its quotient field and K its residue field.

Assume that the characteristic of K is not equal to 2. For q > 1, let

^H^F.z/^ir-'oc.z/^
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be the residue homomorphism defined with respect to R. If P is the maximal ideal
of R, then sometimes we denote 9p by 9p. For ^ units in R, 1 ^ i ̂  q — 1 and n a
parameter in R, we have 9a{{u\)' • • • (uq-\) • (n)) = (^)- • • • (u,), where bar denotes the
image in K.

Let JT be a regular integral scheme of dimension n and F its function field. For
i ^ 0, let JK'1 denote the set of points of SK" of codimension i For any x C JT, let
K(x) denote the residue field at x. Assume that the characteristic of K{x) is not equal
to 2, for any x C ^T. For x € J%"1, let ^^ denote the discrete valuation ring at x
and (9;, : H^F, Z^—^H'7"1^), Z/2) the residue homomorphism defined with respect
to ̂ ,. Let

HL(F/^,Z/2)=ker(?(F,Z/2)^) ^ H^K^ Z/2)).
xe^1

An element a G H^F, Z/2) is called unramified at a point x G ^T1, if 9^(a) = 0; otherwise
it is called ramified at x. We say that a € H^(F, Z/2) is unramified on JT if it is
unramified at all points of S^\ i.e., a G H^(F/^, Z/2). We define the ramification
divisor

ram^(a)= ^ .̂
^(")=FO

For/C F*, we denote by Supp^-(/) the support of the principal divisor div^.(/).
Let A; be a j^-adic field, p =^= 2. Let X be a smooth, projective, integral curve

over k and K = A;(X) the function field of X. Let ̂  be the ring of integers of k. For
a, G H^K, Z/2) andj^* € K*, 1 ^ z < n, 1 < j ^ m, by a result of Lipman on the
resolution of singularities (cf. [S], Proof of 2.1), there exists a regular, projective model
J%T of X over ̂  and two regular curves C and E on J%" with only normal crossings
(i.e., for every x C C Ft E, the maximal ideal of the local ring ^^ is generated by
local equations of G and E at ^), such that

Ui^n Supp (ram^(a,)) U Ui^ Supp^(^) C Supp(C + E).

We use this result throughout this paper without further reference.
Let F be a field of characteristic not equal to 2 and L a field extension of F.

For any a C W(F, Z/2), the image of a in HP(L, Z/2) under the restriction map is
denoted by a^. Let J^ be a scheme and x € J3T. Let ̂ ^ be the local ring at x. For
any/G ^jy^ ̂  image of/in K.{x) is denoted by f{x). For any ring A, let A* denote
the group of units in A. Let A C B be local rings with maximal ideals m^ and m^
respectively. We say that B dominates A if m^ C m^ In the rest of the paper, we assume
that 2 is invertible in all the rings concerned.
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2. Cohomology in degree 2

Let A; be a non-dyadic j&-adic field and ̂  the ring of integers in k. Let X be
a smooth, projective, irreducible curve over k and K = A(X) the function field of X
over k.

Proposition 2.1. — Let k, X and K be as above. Let a, e H^K, Z/2), 1 < i ̂  n. Let
J(T be a regular, projective model ofX. over ̂  such that

n

\J Supp (ram^ (a,)) C Supp (C + E),
!=1

where C and E are regular curves on SK" having only normal crossings. Suppose there exists f^. K*
such that

div^(/ )=C+E+F,

where F is a divisor on SK" whose support does not contain any point ofC ftE and no component of
C or E is contained in F. Let T be the finite set of closed points consisting ofCr\]L, CnF, EnF.
Let B be the semi-local ring at T. Let h G B, h =|= 0, be such that Suppg .^(A) C Supp(G + E)
and h is square free in B. Suppose x 6 C n E is a closed point. Let n^ cmd 5^ be local equations

at x for C and E respectively. We write h = n^ 5^ Wx and y= Kx6xW^ where w^y w\ are units at
x and e\y £3 € { 0, 1 }. Suppose there exists an element h\ € B* such that for x € T,

(i) zf h(x) =^= 0., then (hh\){x) is not a square in K{x).
(ii) if h(x) = 0 and either ^ e C n F o r ^ c E H F , then h\ is a unit at x.
(iii) if h(x) = 0 and x C G H E, then (WxW^h\){x) is not a square in K.(x).

Then the image of o^ in H^K^- /̂/, '\jhh\)y p )̂ u ^cro, for 1 ^ i < n.

Proof. — Let L = K-{\/f, \/hh\) and S be a discrete valuation ring, containing ̂ ,
with quotient field L. Since JT is projective over ^, there exists a point x G J%" of
codimension 1 or 2 such that S dominates the local ring A = ̂ ^. We show that, for
1 ^ i^ 72, (a^L is unramified at S. Fix z, 1 ̂  i^ n and let a = o^.

Suppose that x ^ C U E. Then a is unramified on A and hence unramified over
S ([S], 1.4). Assume that x G C U E.

Suppose that dim(A) = 1. Then f is a parameter at x and hence S is ramified
over A. Therefore a is unramified on S.

Suppose that dim(A) = 2. Let ws be the maximal ideal of S and v$ the valuation
of S. We show that 9s{a^) = 0.

Suppose that x G C \ (E U/) (resp. x G E \ (C U/)). Then / is a local equation
for C (resp. E) at x and a can be ramified only at {f) in A. By ([S], 1.2), we have
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a = a' + ( u ) ' (/), where a' is unramified on A and u G A*. Since ( u ) ' (f)^ = (u) - (1) = 0,
(XL = (XL is unramified at S.

Suppose that x (E C H F. Then ̂  E and hence, by ([S], 1.2), a = a' + ( u ) ' (TC,),
where a' is unramified on A, u (E A*. Suppose further that h{x) ^ 0. Then {hh^{x) is
not a square in K{x). We have 9s{(u)' (^)) = M^, bar denoting the image modulo ws.
Since (hh^{x)} is not a square in the finite field K{x\ u(x) is a square in K{x) (Jhh^x)).

Since K{x) {^(hh^){x)) C S/ws, M is a square in S/ms and hence (u) - (n,) is unramified
on S. Suppose that h(x) = 0. Since h^x) is a unit at ^ and Supp^^A) C Supp(G + E),
AAi is a local equation for C at x, n, = hh^v, v C A* and a = a' + (u) . (AAi^). Since
(%) • (hh^ = {u) • (z/)L, a is unramified at S. Similarly, one proves that a is unramified at
S, if x (E E n F.

Suppose that x G C n E. Let ̂  and 6, be local equations for C and E at x given
in the statement of the proposition. Then we have/= K^w[ with w' € A*. We have
([S], 1.2) a = a' + a", where a' is unramified on A and a" is a sum of symbols of the
type (u) • (7^), (v) • (S,) and (^) • (§„), u, v € A*. For M G A*, we have

(*) (u) • (5^ = (u). (S,/)L = (^). (7lA,

(**) (̂ ) • (̂ )L = (^ • (^/)L = (̂ ) • (S,<)L,

(***) (̂ ) • (8.)L = (7l./) • (S.)L = (8,<) . (S,)L = (-<) • (S,)L.

Suppose further that h(x) ̂  0. Then hh^x) is not a square in K(^). As before,
(^) • (^)L and ( v ) ' (S,)L are unramified at S for any v C A*. Therefore (XL is unramified
at S. Suppose that h(x) = 0. Then either h = n,w, or A = 6,w, or A = 7^8^, where
^ C A*. If A = TC^ or §,̂ , then, by (*), (**), (* * *) it follows that ^(oc") = 0 and
hence a is unramified at S. Suppose h = K^W,. Since y^, Jhh^ C L*, Jw'.w^ G L*.
Since (w^w^h\)(x) is not a square in K.(x), once again using (***) and arguing as above,
it follows that a!' and hence a is unramified at S.

Let k be the field of constants in L. Let X' be the smooth, projective, irreducible
curve over k with L as its function field. Let JT' be a regular, projective model of
X' over ,̂. For every y! € ^ ' of codimension 1, ^/^, dominates ^^, where
x e ̂  is a point of codimension 1 or 2. The element (XL is unramified at ^ for every
y! G ̂ /1. Since the Brauer group of JT7 is trivial (cf. [L], Theorem 4 or [Gr], 2.15
and 3.1), it follows that (XL = 0. This completes the proof of the proposition. D

Corollary 2.2 ([S], 3.4). — Let D be a central division algebra over K of exponent 2 in the
Brauer group ofK. Then the degree of'D is at most 4. In particular, every element in H^K, Z/2)
is a sum of two symbols.

Proof — Let a G H^K, Z/2) denote the class of D. Let ^T, G and E be as
in (2.1) defined with respect to a. By a semi-local argument, due to CoUiot-Thelene
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(cf. [HV], Lemma 2.4), we choose/e K* such that

d iv^( / )=C+E+F,

where F is a divisor on SK" whose support does not contain any point of C H E not
any component of C or E. Let T and B be as in (2.1). Let h G B* be such that for
every x G T, h(x) is not a square in K.(x). We set h\ = 1. Then h and h\ satisfy the
hypotheses of (2.1). Therefore by (2.1), the image of a in H^K^. v^). 2/2) is zero.
Hence D ® K(v^, ->/h) is a split algebra. In particular, the degree of D is at most 4
and D is a tensor product of two quaternion algebras ([A]). Hence a is a sum of two
symbols. D

3. Cohomology in degree 3

Lemma 3.1. — Let F be a finite field of characteristic not equal to 2 and Y a smooth,
projective curve over F. Let P € H^F^, Z/2) and Pi, .... ?n be the closed points o/Y where P
is ramified. Let j'G F(Y)* be such that at each P^ either fhas odd valuation or f is a unit at P^
and f (Pi) is not a square in K(P,). Then P (g) F(Y) [^/f ) == 0.

Pro(/ — By class field theory, it is enough to prove that P ® F(Y) (^ ) ls

unramified at each discrete valuation ring of F(Y) (-^7 )• Let S be a discrete valuation
ring with F(Y) <^/J ) as its quotient field. Let R be the discrete valuation ring of F(Y)
such that R C S. If P is unramified at R, then P is unramified at S. Suppose that
P is ramified at R and R = ^yp ^or some z- If/has odd valuation at P^, then S
over R is ramified and hence P is unramified at S. If/has even valuation at P^, then
by the choice of//is a unit at P^ and not a square in K(P^). Therefore the residue
field S of S is a quadratic extension of the residue field K(P,) at R. Since S over R
is unramified, <9s(^L) = 9pW ®K(P,) S (cf. [S]. 1.3). Since S is a quadratic extension of
K(P,) and K(P^) is a finite field, every element of K(P,) is a square in S. Therefore P is
unramified at S. D.

Lemma 3.2. — Let R be a discrete valuation ring, K its quotient field and K its residue
field, with char K =(= 2. Let 8 be a parameter in R and u € R*. If (u) • (S) is unramified at R^
then ( u ) ' (8) = {u) • (u") for some u' C R*.

Proof. — Suppose that {u) ' (8) is unramified at R. Since 9p((M) • (8)) = (u), where
bar denotes the image in K, u is a square in K. Let a € R be such that a2 = u.
We write a2 — u = vS" for some r ^ 1 and v € R*. Suppose that r ^ 2. We have
(a + 8)2 - u = z/y +8^ 2a8 = 8(z/y-1 + 8 + 2fl). Since r ^ 2 and a is a unit in R,
z^"1 + 8 + 2a is a unit in R. Replacing a by a + 8 we assume that r = 1. Therefore
we have, {u) ' (8) = (a2 - vS) • (8) = (1 - a-^vS) • (8) = (since (x) • (1 - x) is trivial)
(1 - a-^S) • (fl-^82) = (1 - a-^vS) • (z/) = (^) • (z/). D
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Proposition 3.3. — Let A be a regular local ring of dimension 2, K its quotient field and K
its residue field, with char K =f= 2. Jw ̂ ^ regular parameter no/A (i.e., A/(n) is regular) with
residue field K{n\ suppose that every element ofH2^), Z/2) is represented by a symbol (a) ' {b)
for some a, b € K(TC)*. Let a € H^K, Z/2).

(i) Suppose a is ramified only at n among the prime elements of A. Assume that K is a
regular parameter in A. Then

a = a' + {u)' (v)' (jc)

for some a' € H^(K/Spec(A), Z/2) and u, v € A*.
(ii) Suppose a is ramified only at n and S among the prime elements of A. Further assume

that n and 8 generate the maximal ideal m of A. Then

a = oci + a^,
q __

where a\ C H^(K/Spec(A), Z/2) and a^ is a sum of symbols of the type

(u) . (.). (7i), ^•(.)-(8), (̂ ) • (8). (TC),

u, v running over the units of A.

Proof. — Let a and n be as in (i). Since n is a regular parameter of A, there
exists a prime element 8 in A such that the maximal ideal m of A is generated by n
and 8. We have a complex ([K], Prop. 1.7)

H^Z/2)^ ® H^Z/^H^Z/^:
^€Spec(A)1

By the assumption on K.(n), there exist ^, b € A such that ^(a) = (fl) • (A), bar denoting
the image in A/(7r). Since m is generated by K and 8, A/{n) is a discrete valuation
ring with 8 as a parameter. Without loss of generality we assume that (9jc(a) is equal
to either (u) • {v) or (u) ' {v 8) for some u, v G A*. Suppose (^(a) = {u) ' {v 8). Since a
has residue only at n, 99(a) = 9 { ( u ) ' (v 8)) is the square class of the image of u in K*.
Since 99 = 0, u is a square modulo m. Thus (z/) • (u 8) over K(7i) is unramified at 8 and
by (3.2) (u) • (z7 8) = (zZ) • (zf) for some z/ € A*. Thus we assume that 9n(a) = (zZ) • (v)
for some ^ y e A*. Let a7 = a - (u) • (z;) • (71). Since <9^(a) = 9n{{u) ' {v) • (7i)) and
9^((u) • (y) • (Tt)) = 9^ (a) = 0 for any prime element TC' of A not equal to TC, we have
9{af) = 0. Hence a' G H^(K/Spec(A), Z/2) and a = a' + {u) • (^) • (71).

Now let a, TC and 8 be as in (ii). Since every element in H^TC), Z/2) is
represented by a symbol, there exist u, v C A*, such that 9n(a) is equal to (zZ) • (v)
or {u) • (v 8). Set (Xi = a - ( u ) ' { v ) ' (7i) if 9n(a) = (u) ' (v) and (Xi = a - {u) ' { v S ) ' (7i) if
9n(a) = { u ) ' (v 8). Since a is ramified only at n and 8, (Xi is unramified except possibly
at 8. Now we can apply (i) to describe a? This completes the proof of the propo-
sition. D
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Remark 3.4. — Suppose that in the above proposition, K is a Junction field in one variable
over a non-dyadic local field k, Sf? a regular 2-dimensional scheme over the integers ^\ and A the
local ring at a codimension 2 point of ̂ . Then for every prime n € A, the residue field K.(n) at n
is either a local field or a junction field in one variable over a finite field. Therefore every element in
H2^^ Z/2) is represented by a symbol. Thus A satisfies the hypothesis of (3.3).

Let k be a non-dyadic j&-adic field and ̂  the ring of integers in k. Let X be
a smooth, projective, irreducible curve over k and K = A:(X) the function field of X
over k.

Let a G H^K, Z/2). Let S^ be a regular, projective model of X over ̂ \ such
that

ram^(a) C C + E,

where C and E are regular curves on J%" having only normal crossings.

Lemma 3.5. — Let k, K and J^T be as above. Let x be a codimension 2 point of ̂  and
A = ̂ .̂ Let S be a discrete valuation ring which dominates A. Then every symbol of the type
(u) • {v) • {n), with u, v € A* and K G K*, is unramified at S.

Proof. — Let u, v € A*. We have 9s{{u) - { v ) ' {n)) = {(u)'^^, bar denoting the
image in the residue field of S and Vs denoting the valuation of S. Since u, v € A* and
K{x) is a finite field, it follows that {u)'(v) = 0. Hence ( u ) ' ( v ) ' (n) is unramified at S. D

Lemma 3.6. — Let k, K, a G H^K, Z/2), 3^\ G and E be as above. Let L be
an extension ofK. and S a discrete valuation ring with quotient field L. Suppose that there exists
x G G n E such that S dominates ^^^. Suppose one of the following conditions holds.

(i) The residue field qf& contains a quadratic extension qfK.(x).
(ii) There exist local equations Kx, Sxfor C and E respectively at x such that either n^ ^ §x

or n^Sx ^ of the form wQ2, 9 G S, w G S*, with the image of w in the residue field ofS having
its square class coming from K(^)*.

Then (XL is unramified at S.

Proof — Let A = <^^. By (3.3), a = a' + a", where a' is unramified on A and
a" is a sum of the symbols of the type ( u ) ' ( v ) ' ( ^ ^ (u)' (v) • (8^), (^) • (n^)' (5^), with z/, v G A*.
Let Vs denote the discrete valuation of S, 9s denote the residue homomorphism at S
and ms denote the maximal ideal of S. By (3.5), ( u ) ' ( v ) ' (n^ (^) • (y) • (§x) are unramified
at S.

Suppose that the residue field of S contains a quadratic extension of K.(x). We
have

W'(^)-(8x))=(^)uM^) •(§.)).
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Since the unique quadratic extension of K(x) is contained in the residue field of S, u
is a square in the residue field of S. Therefore 9s(a^ = 0.

Suppose that ^ = wQ2 for some w G S* such that w = Uf with ^ € K(^)*, and
6 C S. Then, we have {(u) ' (^) • (§^L = ({u) ' (w) ' (§^L. We have 9s{{u) ' (n^ • (§„)) =
((zZ) • (w))^ = ((,0 . (X))^). Since u , ̂  € K^)*, as before, it follows that (u) • (?l) = 0.
Similarly, one can prove that if S^ = w62, with w, Q as above, then 9s((u)' (n,) • (5^)) = 0.
Suppose that TiA = wQ\ with ,̂ 9 as above. Since (u) . (^) • (S^) = (z<) • (-TrA) • (S^), we
have { ( u ) ' (TC,) • (§,))L = ((u) • (-^) . (5,))L and 9s{((u) • (n,) ' (5,))^ = ((zZ) • {-w)Y^ = 0.
Therefore a is unramified at S. D

Lemma 3.7. — Let k and K be as in (3.6). Let A be a regular local ring of dimension
2 with K as its quotient field, and S a discrete valuation ring containing A. Then the map
H^K, Z/2) ^H^L, Z/2) r^n^ to a map

T^ /'1^/C^^/,/A\ '•7 /o\ . T-r3H;,(K/Spec(A), Z/2) -^ H^(L/Spec(S), Z/2).

Proo^ — The lemma follows from the absolute purity theorem of Gabber for two
dimensional regular local rings. We give a proof here for the sake of completeness.

Let W(A) denote the Witt group of A. Since A is a two-dimensional regular local
ring, one has the following exact sequence ([O], [CS])

O^W(A)^W(K)^ 0) W(K(;V)).
»eSpec(A)1

For n ^ 0, let I«(A) := P(K) n W(A). Since cd (K) < 3 and cd (K(x)) < 2, in view of
([AEJ], Theorem 2), the homomorphisms c, : P(F)-^H"(F, Z/2) exist and are surjective
with kernel P^F), for F = K or K(x). Since the following diagram is commutative (cf.
P]),

l3(R) ^ ^ l2(K(^)

<-eSpec(A)1

1 e3 \e•i
'v '^

H^K.Z/^ -9^ ^ H2^)^/^
A:(=Spec(A)1

with ^3 and ^2 isomorphisms, ^3 induces an isomorphism

.3:l3(^H^(K/Spec(A),Z/2)
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Let a G H^,(K./Spec(A),Z/2) and q C Is(A) with e^q) = a. Then ^ e 13(8) and
O^L = ^(^L) in H^L, Z/2). In view of the following commutative diagram

I^L) ^ I^S/ms)

1 ^3 1 ^2

H^L.Z^) ^ H\S/m^Z/2),

we have <9s((XL) = <9s(^L)) = ^2<9s(?L) = 0.
Thus (XL e H^(L/Spec(S), Z/2). D

Theorem 3.8. — Z^ k be a non-dyadic p-adic field, X a smooth, projective, irreducible curve
over k. Let K = k(X) and a, G H^K, Z/2), 1 ^ i ^ TZ. TT^z there exists f ̂  K* ^d ^W
a, (g) K^y^) = 0 for 1 ^ ^ ̂  n.

Proof. — Let J^T be a regular projective model of X over ̂  with

U^iSupp(ram^(a,)) C Supp(C + E),

where G and E are regular curves on J%T with only normal crossings. Let^G K* be
such that

d iv^( / )=C+E+F,

where F is a divisor on J^T whose support does not contain any point of G H E, nor
any component of G or E. Let L = 'K.(^/f). Let k ' be the field of constants in L. Let
X' be the smooth, projective, irreducible curve over k ' with function field L. Let J^T'
be a regular, projective model for X7 over 6^,. Fix z, 1 ^ i^ n and let a = o^. We show
that (XL C H^(L/^', Z/2). Letj/ € ^ ' be a point of codimension 1 and S = ̂ /^
be the discrete valuation ring atj/. Since J%T is proper over (^ ̂  there exists a point
x € ^T of codimension 1 or 2, such that S dominates the local ring A = ̂ ^.

Suppose dim(A) = 1. Then A is a discrete valuation ring. If x corresponds to a
component of G or E, then f is a parameter at x and S over A is ramified. Hence,
(XL is unramified at S. Suppose that x does not correspond to a component of G or
E. Since ram^- (a) C C + E, a is unramified at R and hence (XL is unramified at S.

Suppose dim(A) = 2. Suppose first that x does not belong to Supp(C) U Supp(E).
Then a is unramified on A and hence unramified at S (3.7). Suppose x C Supp(C) \
Supp(E) or x C Supp(E) \ Supp(G), then by (3.3) and (3.5), a is unramified on A and
hence by (3.7), (XL is unramified at S. Suppose that x G Supp(C) H Supp(E). Let TL,
and 6x be local equations for G and E at x respectively. Then we havey= 7^5^ for
some w C: A*. Since/is a square in L, it follows from (3.6) that (XL is unramified
at S. Therefore (XL C H^L/JT', Z/2). Since H^L/^T', Z/2) = 0 ([K], 5.2), we have
(XL = 0. D
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Theorem 3.9. — Let k be a non-dyadic p-adic field and K a junction field in one variable over
k. Let a, € H^K, Z/2), 1 ^ i ̂  n. Then there exist f, g, hi C K* such that a, = (/) • {g) • (A,).
In particular, every element in H^K, Z/2) is a symbol.

Proof — By (3.8), there exists h C K* such that a, (g) K(V%) = 0, for 1 ^ i ̂  n,
Therefore, there exist ([Ar], 4.6) P, e H^K, Z/2), such that a, = (A) U ?„ for 1 ^ i ̂  n.
Let X be a smooth, projective, irreducible curve over k with A:(X) = K. Let ̂  be a
regular, projective model of X over ̂  such that

U^Supp(ram^(P,)) U Supp^(A) C Supp(G + E)

where C and E are as before. Let/e K* be such that

d iv^ ( / )=C+E+F,

where F is a divisor on ^T whose support does not contain any point of C Fl E, nor
any component of C or E. Let T be the finite set of codimension 2 points of S^
consisting of G D E, G H F and E n F. Let B be the semi local ring at T. Since S^
is regular, B is a regular ring and hence a unique factorisation domain with quotient
field K. Hence, without loss of generality, we assume that h G B and is square free
with Suppsp^(A) C Supp(G + E). Let x € C H E. Let n, and S^ be local equations at x
for G and E respectively. Then h = n^S^w^ and/= TcA^ where Wx, w[ € B are units
at x and £1, £3 C { 0, 1 }. Ghoose w C B* such that w is a unit at one closed point
of each component of G and E and —w{x)Wx(x)w^{x) is not a square in K(^). Replacing
f by wf, we assume that —Wx{x)w'^x) is not a square in K.(x) for all x € C D E and
divjy (/) = C + E + F', with C, E as above and F' is a divisor on JT whose support
does not contain any point of C n E and any component of C or E. We claim that
there exist a, € K* such that a, = (A) • (/) • (^), 1 ^ i ̂  n. For x € T,

(i) if h{x) 4= 0, let a^ b^ € ^(x) be such that h(x){h(x)d^ - b^) is not a square.
(ii) if h(x) = 0, let a, = 0 and b, = 1 in K(x).
Let a, b C B be such that a(x) = a, and b(x) = b, for all x C T. Let h\ = ha2 - b2.

Since -w^x)w'^x) is not a square in K{x) for any x € G nE, it is easy to see that/, A, h\
satisfy the conditions in (2.1). Therefore, by (2.1), P, (g) YJ^/j\ Jhh^) = 0, for 1 ̂  i ̂  n.
Hence there exist a,, b, C K* such that P, = (/) • (^) + (AAi) • (^), for 1 ^ z < n (cf.
[HV], 3.1). Since AAi = (Afl)2 - hb2, AAi is norm from K(^/K) and hence (A) • (AAi) = 0.
For 1 ^ i ̂  n, we have

a,=(A)Up,
=W-(/) - (^+(A)-W.(^)

=(̂ H/H^
This completes the proof of the theorem. D
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4. u-invariant

Theorem 4.1. — Let k be a non-dyadic p-adic field and K a junction field in one variable
over k. Then every element o/T^K) is represented by a 3-fold Pfister form.

Proof — Let q be an anisotropic quadratic form over K representing an element
of I^K). Let a = e^q). Then by (3.9), a = (/) • {g) • (A). Since €3 : I^K) -^ H^K, Z/2)
is an isomorphism ([AEJ], Theorem 2), q =< 1, -/>< 1, -,?> < 1, - A > in I^K).
Since y is anisotropic, q ^< 1, —f>< I , — g > < l , — h > . D

Corollary 4.2. — Let K be as in (4.1). Then every quadratic form over K o/'m7zA: ̂  least
13 is isotropic.

Proof — Let q be a quadratic form over q of rank 13. By the theorem of Saltman
(cf. 2.2), c(q) is a biquaternion algebra over K. Let qo be a quadratic form over K such
that rk {qo) = 5, d(q + qo) = 1 and c(q + yo) = 0 (cf. [HV], 3.2). Then q + yo G I^K)
([Ml]). By (4.1), we have q+qo=< 1,/x 1,^>< 1 , A > for some f,g, he K*. Since
rk {q) = 13, y ^< 1,/x l , g >< 1, A >± -yo. Since I^K) = 0, every element in

I^K) represents every element ofK*. In particular < 1 , / > < 1 , ^ > < 1 , A > represents
a value of qo. Therefore q is isotropic. D

To prove that every quadratic form over K of rank at least 11 is isotropic,
we need a subtler choice of a quadratic extension which splits the given element in
H^K, Z/2).

Let A: be a non-dyadic j^-adic field, X a smooth, projective, integral curve over k
and K = A(X). Let a C H^K, Z/2) and J^ be a regular, projective model of X over
the ring ̂  of integers in A:, such that

ram^(a) C C + E ,

where C and E are regular curves on J%" such that C and E have only normal
crossings. Let T = G D E and B be the semi-local ring at T. Since JK" is regular, B is
a regular semi-local ring and hence a unique factorisation domain.

Lemma 4.3. — With the notation as above^ let L be a quadratic extension ofK. Let S
be a discrete valuation ring with L as its quotient field. Assume that S H K = B(^ where n
is a prime element in B giving a local equation for a component C\ of C. ^ C i n E = | = 0 , let
GI n E = { x\, • • • , Xr} and 8 .̂ be a local equation ofEat X{, 1 ^ i < r. Suppose that either
C i n E = 0 o r L = K(-^/7) withf^. B satisfying one of the following conditions:

(i) / is a parameter in B(^
(ii)fis a unit in B^) such that either v^ (/) = 1 orf{xi) is not a square in K(^), 1 ̂  i ̂  r,

where bar denotes the image modulo (n) and z/g denotes the discrete valuation ofT^/(n) at 8 .̂.
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Then (XL is unraimfied at S.

Proof — Let A = B^). Then the residue field K(TC) of A is the quotient field of
B/(7i). Since ram^a C C + E and Gi is a regular curve on ̂ , it follows from the
complex ([K], 1.7)

H^K.Z/^ Q H^Z/^ Q H^.Z^)
ne^1 j^r2

that c^) (a) is possibly ramified only at the discrete valuations of K(n) corresponding to
Gi H E. Suppose that Cq D E = 0. Then it follows that 9(^(a) is unramified at every
discrete valuation ring ofK(7c). Since K(TC) is either a global field of positive characteristic
(so that there are no archimedean primes) or a local field, by class field theory, we
have ^(a) = 0 and hence (XL is unramified at S.

Suppose that Gi HE =|= 0. Suppose that/is a parameter in A. Then S over A is
ramified and hence (XL is unramified at S. Suppose that/is as in (ii). Since ^ (/) = 1

or / (x,) is not a square in K(^), for 1 ^ i ^ r, it follows that / is not a square in
B/(7i). Since G and E have only normal crossings, B/(7l) is a regular semi local ring
and is integrally closed. Hence / is not a square in the residue field K.{n) of A. Since
H^K, Z/2) is generated by symbols and the ramification map is natural on unramified
extensions, one sees easily that ifS over A is unramified, then <9s((XL) = <9A((x)(g)K(7c)(\//).
Suppose that K(7l) is a j&-adic field. Since the residue field of S is the quadratic extension
^W {\f )? ^ follows that ^A(oc) is split over K(TC) (^//). Since / is a unit in A, S over

A is unramified and hence ^s(^L) = 9^(a) 0 K(7i) (y/) = 0 and (XL is unramified at S.
Suppose that K(n) is a function field in one variable over a finite field. As above, it
follows that <9A(cx) can be ramified only at the discrete valuation rings of K.(n) given by
the prime elements 8^ in B/(7c), 1 ^ i ^ r. By the assumption on/, in view of (3.1),
<9A(a) 0 K(7i) (^/f) = 0 ^d Ae lemma follows. D

Proposition 4.4. — Let k, K be as above. Let a € H^K, Z/2) W ^ A C K*. TT^z
^? exists fe K* ^A^A zj ^ ya/^ of the quadratic form <a,b> such that a 0 K(v^7) = 0.

.Pn?</ — Let ̂  be a regular, projective model of X over ̂  such that

Supp(a) U Supp(&) U Supp(ram^ (a)) C Supp(G + E),

where G and E are regular curves on ̂  with only normal crossings. Let T = G D E.
Let B be the semi-local ring at T. For x € T, let TC^, S^ G B be local equations for
C and E at ,̂ respectively. Since B is a unique factorisation domain with quotient
field K, without loss of generality, we assume that a^ b are square free in B and
Supp5p^(aA) C Supp(G + E). Let c G B be the greatest common divisor of a and b, so
that a = cd\ b = c b ' y with a', 6' G B. Since a and b are square free, c, a!, b' are pairwise
coprime. For x € T, choose ^, ^ G K(x) as follows:
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(i) Suppose c(x) = 0. Let m^ denote the maximal ideal of B at x. Since c, a ! , V
are pairwise coprime and the only prime elements ofB^ which divide cdV are n^ 8x5
at least one of d and V is coprime with n^ and 8 ,̂ and hence is a unit at x. Thus
a\x) ̂  0 or b\x) -^ 0. Let u^ v, G K(^) be such that fl'(^ + b'(x)v^ ^ 0.

(ii) Suppose that c(x) ^ 0 and a ' b ' { x ) = 0. Let ^ = ^ = 1.
(iii) Suppose that c(x)a'(x)V (x} -\- 0. Since K(^) is a finite field of characteristic not

equal to 2, every element of K.{x) is represented by the quadratic form < a ' ( x ) , b'(x) >.
Let u,, v, € K(x) be such that c(x)a\x)b'(x) (a'(x)u^ 4- b\x)v2,) ^ K(^)*2.

Let ^, v G B be such that u(x) = u^ and v(x) = v^ for all x G T. Let
/ = ca'b\a'u2 + ^y2). Clearly / is a value of c < d ^ V >=< a, b >. We now show
that a (g) K(^/f ) = 0. Let L = K(^/7 ) and k ' be the field of constants of L. Let
X7 be a smooth, projective, irreducible curve over k ' with ^'(X') = L. Let ^ ' be a
regular proper model ofX7 over ^, and^ G ̂ ' be a point of codimension one. Let
S = ^^/^ be the discrete valuation ring atj. As in the proof of (3.9), it is enough to
show that (XL is unramified at S. Since S^ is projective over ^, there exists a point
^ G ̂  of codimension 1 or 2, such that S dominates the local ring A = (9^ .

Suppose dim(A) = 1. Then A is a discrete valuation ring. Suppose that ^ does
not correspond to a component of G or E. Then a is unramified at A and hence
(XL is unramified at S. Let ^ correspond to a component Gi of C. The case where ^
corresponds to a component of E is similar.

Suppose that Cq D E = 0. Then by (4.3), (XL is unramified at S.
Suppose that Ci H E =)= 0. Let n be a prime element of B corresponding to the

component Ci. Since c, d , V are pairwise coprime in B, it follows that at most one of
^, d ^ V is divisible by TC.

Suppose n divides c. Let x e Cq H E. Then by (i), a'u2 + b'v^ is a unit in ^^.
Since A is a localisation of ^^ ̂  a'u2 + Vi?- is a unit in A. Further, since n divides c,
both d and &' are units in A. Therefore/is a parameter in A and hence by (4.3), (XL
is unramified at S.

Suppose n does not divide c and divides d or V ' . Let x G Cq H E. If c(x) = 0,
then by (i), a'u2 + Z/y2 is a unit at ^ and hence it is a unit in A. If c(x) ^ 0, then by (ii),
u and v are units at x and hence units in A. Since only one of the d , V is divisible
by 7l, ^M2 + b'v2 is a unit in A. Therefore, as above, / is a parameter in A and (XL is
unramified at S.

Suppose that n does not divide c a ' b ' . Let x G Cq D E. If c(x) = 0, then by (i),
a'u2 + b'v^ is a unit at ^ and hence a unit in A. Suppose that c(x) =(= 0. Since n does
not divide dV', the only prime elements of B^ which divide dV being 71 and 8^, either
a ' ( x ) ^ 0 or ^) =^ 0. Therefore if a'b^x) = 0, then by (ii), a'u2 + 6V is a unit at x and
if ci!b'(x) =(= 0, then by iii), a'u2 + ^y2 is a unit at ;c. Therefore a'u2 + ^y2 is a unit in A
and hence y§ (/) = y§ (ca!b'\ which is equal to 0 or 1. Further, if ^ (/) = 0, by (iii),
f(x) is not a square in K(^). Therefore, by (4.3), (X^ is unramified at S.
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Suppose dim(A) = 2. Then ^ is a closed point of ^ ' . If ^ ^ G U E, then a is
unramified on A and hence unramified at S (3.7). Assume that ^ G CUE. I f ^ ^ G D E ,
then by (3.3 and 3.5), (XL is unramified at S. Suppose that ^ e C Fl E. Then A = B^ ,
where m^ is the maximal ideal of B at ^.

Suppose that c(^) = 0. Then, by the choice of u, y, a'u2 + b'v2 is a unit at ^. Since
the only prime elements of A which divide cdV are TC^, 8^ and c, a!, &' are pairwise
coprime,/= cci!b'{a'u2 + ^y2) is of the form wn^ or w8^ or wn^, with w G A*. Since
/€ L*2, by (3.6), (XL is unramified at S.

Suppose that c{^) =)= 0 and a\^)b\^) = 0. If a'(^ or b'(^) is not zero, then, as
above, one shows that either n^ or 8^ or n^ is as in (3.6, ii) and hence, by (3.6), (XL
is unramified at S. Suppose that a'(^) = b'(^) = 0. Since the only prime elements of
A which divide a ' , &' are TC^, 8^ and <2', V are coprime and non units at ^, we have
a' = wn^ and ^ = w'8^ or d = z^8^ and 6' = ^'^ for some w, w' € A*. Consider the
case where ^/ = wn^ and ^/ = ^8^5 with w, w/ e A* (the other case being similar). Let
Vs denote the valuation at S. Since S dominates A, we have Vs{af) ^ 1 and Vs{b') > 1.
We assume without loss of generality that Vs(^) ^ Vs(^Q. Then, b ' / a ! C S and

f= cb\u2 + f^) ^X^)2.
\a)

rl

Suppose that Vs(0 < Vs^). Then u2 + -^ C S*. Since V = w'b^ w1 C A*, c G A* and
<2

/6 L*2, it follows that 8^ is as in (3.6, ii) and (XL is unramified at S. Suppose that

Vs(^) = Vs(^). If ^2 + ̂ 2 G S*, then Vs(/) = Vs(^) + 2vs(^) = 3vs(^). Since Vs(/) is
a

even, it follows that Vs(^) == Vs(A/) is even. In particular Vs(7^) = Vs(8^) is even. By (3.3,
(ii), we have a = a' + a", where a' is unramified on A and a" is a sum of symbols of
the type (|l) • (n') • (n,\ (n) • (|Ll') • (8^), (n) • (^) • (8^), with |LI, |LI' running over A*. Since K,
and 8^ have even valuations at S, clearly a^ is unramified at S. By (3.7), (X^, and hence

7 /

(XL, is unramified at S. Assume that u2 + -^2 is not a unit in S. Let n = VS^Q = Vs(^).
a

Let 9 be a parameter in S and write d = w^, b1 = w^, with w\^w^ G S*. By (ii),

u, v G A*. Since z/2 + -^^ = ^2 + —2^2 is not a unit in S, we have
a w\

u2 w^

V'2 W\

By 3.3, (ii), we have a = a' + a", where a' is unramified on A and a" is a sum of
symbols of the type (|Ll) • (uQ • (^), (n) • (llQ • (8J, (4) • (^) • (8^), with |LI, ̂  running over



ISOTROPY OF QUADRATIC FORMS OVER FUNCTION FIELDS 145

A*. By (3.5), (n) • (p/) • (7^) and (n) • (|J/) • (8^) are unramified at S. Since d = ̂  = w\ff1,
V = z</8^ = w^, we have

(^). (Tcj • (8j = (n) • (^i^). (̂ e").
If n is even, then clearly (p.) • (TlJ • (5^) is unramified at S. Assume that n is odd. Then,
we have

(|l) • (7 )̂ • (8J = (|l) • (ww\ff) • (ww^ff) = (n) • (wwiO) • {—ww\w'w^

and

3s((H) • (^) • (S,))L) = (P) • (-^1^2).

Since — w^/w\ is a square in the residue field ofS, we have 9^{ (|l) • (n^)' (8^)) = (jI)-(2W).
Since |l, w, w' € A* and K(^) is a finite field, it follows that (p) • (?W) = 0. Hence (XL is
unramified at S.

Suppose that d^)d(^b\^) 4= 0. Then by the choice of M, v it follows that
f (^) ^ K(^)*2. Since y is a square in S, it follows from (3.6) that (XL is unramified
at S. This completes the proof of the proposition. D

Theorem 4.5. — Let k be a non-dyadic p-adic field and K a junction field in one variable
over k. Then every quadratic form over K of rank at least 1 1 is isotropic,

Proof — Let q be a quadratic form over K of rank 11. Then by a theorem of
Saltman (cf. 2.2) c{q) is a biquaternion algebra. Let qo be a quadratic form over K with
rk (qo) = 5, d(q + qo) = 1 and c(q + qo) = 0 (cf. [HV], 3.2). Then q + qo e I^K) ([M]).
Therefore, by (4.1), there exists a 3-fold Pfister form q\ over K such that q = q\ — qo.
Since for any ^ G K*, y is isotropic if and only if Kq is isotropic, we assume that
qo =< 1, a, &, f, rf > for some a, b ^ c ^ d ^. K*. Let a = e^(q\\ Then by (4.4), there
exists /€ K* which is a value of < —a, — b > such that a ® K(-^7) = 0- Since ^3 is
an isomorphism, q\ ® K^y^) ls hyperbolic. Therefore there exist ^, h 6 K* such that
yi =< 1, -/>< 1,.? >< 1, h >. Since -/is a value of < a, b >, there exists/ C K*
such that < fl, b >^< -f,f >. We have

q= q\-qo
=<1, - / > < ! , ^ > < 1 , A > - < 1 , -f,f,c,d>
=<1, -fxg,h,gh>-<f,c,d>.

Since rk (y) = 11 and the rank of < 1,/x g, h,gh> - </, c, d > is 9, it follows
that q is isotropic over K. D

Theorem 4.6. — Let k be a non-dyadic p-adic field and K a junction field in one variable
over k. Let q be a quadratic form over K of rank at host 9. Suppose that c(q) is of index at most
2. Then q is isotropic.
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Proof. — By (4.5), if the rank of q is at least 11, then q is isotropic. Assume
that rank of q is 9 or 10. Since c{q) is of index at most 2, there exist a, b € K* such
that c(q) = { — a ) ' (—b) in H^K, Z/2). Suppose that the rank of q is 9. By scaling, we
can assume that d[q) = 1. Let go =< a, b, ab >. Then d(q — qo) = 1 and c(q — qo) = 0.
Therefore q = qo + ^i for some ^i C I^K). As in the proof of (4.5), there exists ̂ G K*
which is a value of < a, b > and q\ ® K.(^/—f ) is hyperbolic. Therefore we have
< a,b >=<f,f > and yi =< !,/>< 1,^ >< 1, A > for some f ,g , h e K*. Since
I^K) = 0 and q\ C I^K), we have rkq\ = q\ for every K G K*. Thus, we have

(~ab)q = {-ab)qo + (-fl̂ i

= (-^)^o + q\
=<-b, -a, -1 >+q,

=<-f, -A -1 >+<1 , />+<1 , /><^ ,^>
=<-f >-^<\J><g,h,gh>.

Therefore q is isotropic. Suppose that the rank of q is 10. Let q1 = q J-< 1 >. Then
c(q) = c(q'). Since the rank of q' is 11, it is isotropic by (4.5). Write q' ==< 1, — 1 >-L q 1 ' .
Then the rank of q" is 9 and c(c[") = c(q'} = c{q). Therefore q" is isotropic. Since
q = q" J-< —1 >, </ is isotropic. D

5. Zero-cycles on quadric fibrations

Let A: be a j^-adic field and C a smooth, projective, geometrically integral curve
over k. Let n : X —> C be an admissible quadric fibration over C (cf. [CSk],
§3). For a variety Y, let GHo(Y) denote the Chow group of zero-cycles on Y. Let
TC* : CHo(X) —^ CHo(C) be the induced homomorphism and GHo(X/C) = ker(7^). If
dim(X) = 2, then it was proved in ([G]) that the group CHo(X/G) is finite. In ([CSk]),
Colliot-Thelene and Skorobogatov proved that if dim(X) = 3, then CHo(X/C) is finite
and they raised the following question:
If dim(X) ^ 4, is the group CHo(X/C) zero or at least finite?

In ([PS], 4.8), it was shown that the group GHo(X/C) is finite, answering the
latter part of the above question. Recently Hoffmann and Van Geel ([HV], 4.2) proved
that if k is non-dyadic and dim(X) ^ 6, then CHo(X/C) = 0. Using results proved in
§4, we show that CHo(X/C) = 0 if dim(X) ^ 4 and A; is a non-dyadic j^-adic field.

We recall the identification of CHo(X/G) with a certain subquotient of k(CY
given in ([GSk], 4.2). Let A: be a field of characteristic not equal to 2 and C a smooth,
projective, geometrically integral curve over k. Let n: X —> C be an admissible quadric
fibration of relative dimension at least 1. Let q be a quadratic form over k(C) defining
the generic fibre of 7l. Let N^(A:(G)) be the subgroup of A;(C)* generated by elements
of the type ab with a, b € A;(C)*, which are values of q over k(C). Let k(C)^ be the
subgroup of k(CY consisting of functions, which, at each closed point P of C, can be
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written as a product of a unit at P and an element ofN^(A;(C)). We recall the following
result from ([CSk], 4.2).

Proposition 5.1. — There is an isomorphism

GHo(X/C)-^A(G)^/FN^(C)).

Theorem 5.2. — Let k be a non-dyadic p-adic field and C a smooth, projective, geometrically
integral curve over k. Let K : X —> C be an admissible quadric fibration. If dim^S) > 4 ,̂ then
CHo(X/G) = 0.

Proof. — Let q be a quadratic form over k{C) defining the generic fibre of K.
Since dim(X) ^ 4, the rank of q is at least 5. If q is isotropic, then every element
in k{CY is represented by q over k(C) and hence N^(A:(G)) = A:(C)*. Assume that q is
anisotropic over k{C). Let/G A;(C)*. Since q<S < 1, —/> ^^(^(y^) is hyperbolic,
^(y0 < 1, ~ f > ) ( ^ ) ^ ( C ) ( ^ / ^ ) is zero and hence the index of c[q® < 1, —f^ is
at most 2. Therefore by (4.6), < 1 , —f>®q^ isotropic. That is, there exist y, w
in the underlying vector space of q, with at least one of them non-zero such that
q(v) —fq(w) = 0. Since q is anisotropic, q(v)q(w) =(= 0. Therefore /= q(v)q(w)~1 € N^(A:(G))
and hence N^fc(G)) = /;(C)*. By (5.1), it follows that CHo(X/G) =0. D

6. Cayley algebras
Q

In this section, we recall a connection between H^(K) and the set of isomor-
phism classes of Gayley algebras over a field K of characteristic not 2 ([Se], §8.3).
We then give a description of the set of isomorphism classes of Cayley algebras over
function fields of non-dyadic j&-adic curves in the spirit of Serre, using the fact that
H^(K) = H^K) and a theorem of Kato.

Theorem 6.1 ([Se], §8, Theorem 9). — Let G be a split algebraic group of type G^
defined over a field K of characteristic not equal to 2. There are canonical bijections between the
following sets:

(i) H^K, G).
(ii) HL(K) = { a C H\K, Z/2), a = {a) . (6). (.), a, b, c e K* }.

(iii) The set of isomorphism classes of K.-forms of G.
(iv) The set of isomorphism classes of Cayley algebras over K.
(v) The set of isomorphism classes of 3-fold Pfister forms,
Let k be a j&-adic field. Let P be the set of closed points of P^ and

G(P) = {/: P ̂  Z/2 | Supp(/) finite and ^x) = 0 }:
xeP
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The exact sequence

0 ̂  H3^), Z/2) -^ QH2^), Z/2) ̂  H2^, Z/2) -> 0
x<Ef

identifies H3^), Z/2) with G(P), noting that H2^), Z/2) = Z/2 for every x G P and
the map ©^pH2^), Z/2) -^ H2^, Z/2) is the addition. In ([Se], §8.3), Serre raises
the question whether H\k(t), G) is in bijection with C(P). This is equivalent to the
question whether H^(^)) = H3^), Z/2). In view of (3.9), this is indeed true if k is
non-dyadic.

Let A; be a non-dyadic j^-adic field, and X a smooth, projective, integral curve
over k. Using a result of Kato ([K]) and following Serre, we give a description
of H\k(X), G) as follows. Let ^T be a regular, proper model of X over ^. Let
Y = J^ Xspec(^) Spec(F^) be the special fibre, where F^ is the residue field of k. Let

Y' be the reduced scheme of Y and n: T —> Y' be the normalisation of Y'. Let Y'

denote the set of singular points of Y' and Q= ^(Y^g). Let Y = U^,, ^ denoting
the irreducible components ofT. Let

G(Q) = {/: Q^Z/21 ] /̂% = 0, 1 ^ ̂  r, ]̂ ) = 0 for allj/ € Y,̂  }.
xeY.nQ. .ten-'M

Forj» € Y1, let

^ : H2^.), Z/2) ̂  H^), Z/2)

be the homomorphism defined as ^ = 0 if TC"'^) nY, = 0 and otherwise

^= E ^
JeTc-1^^-

where 9^ denotes the residue map atj^. Let

y=^.
i

By a result of Kato ([K], 5.2), we have an isomorphism

<(A;(X)/X, Z/2) - kerOH2^.), Z/2) w QH1^), Z/2)).
1 j'eY1
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Lemma 6.2. — We have an isomorphism

ker^H2^,), Z/2) ̂  QH'^), Z/2)) ̂  C(Q)
«' ^,eY1

Proo/; — Let (a.) € ©^-H2^,), Z/2) be such that <9((a,)) = 0. Then for a closed
point J € Y, \ Q, ^(a.) = 0. Forje Qf-1 ̂ , let/G) = <3f(a,) e H'(K(3;), Z/2) = Z/2.
Then, by class field theory for function fields in one variable over finite fields, it
follows that/G C(Q). Conversely, let/G C(Q). Then by class field theory, there exist
a, G H2(K(Y,), Z/2) such that forje Q,n T,, ̂ (o.) =/G) and ifj € U -̂ \ Q, then

^(a,) = 0 for aU ?. Since/€ C(Q), a(a,) = 0. This proves the lemma. D
Let P be the set of closed points of X. Let

C(P) = {/: P -^ Z/2 | Supp(/) finite and ^>c) = 0 }.
xer

We have an exact sequence ([K], 5.2)

0 ̂  H^(/;(X)/X, Z/2) ̂  H3^^), Z/2) ̂  QH2^), Z/2) ̂  Z/2 ̂  0:
xeP

This sequence induces an exact sequence

0 ̂  H^(/;(X)/X, Z/2) ̂  H3^^), Z/2) ̂  C(P) ̂  0.

By (6.2), we have H^(X)/X, Z/2) ̂  C(Q). In view of (3.9), we have H^(X), Z/2) =
H3^^), Z/2) and we have the following

Theorem 6.3. — Let k be a non-dyadic p-adic field and X a smooth, projective,
irreducible curve over k. The bijection H\k(X), G) ̂  H (̂X), Z/2) = H\k(X), Z/2) makes
H^pC),, G) a Zi/2-vector space which fits into an exact sequence

0 ̂  C(Q) -^ H^ApC), G) -> C(P) -^ 0:
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