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ABSTRACT

Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good
perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear
diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called
“resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These
are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”.
Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear
diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of
positive measure.
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1. Introduction

In this article, we continue our earlier work on germs of singular holomorphic
vector fields in Cn. Our aim is to give a better understanding of the behavior of com-
plex flows in a neighborhood of an isolated singular point (which will be 0) of such
a vector field.

As it is well known, the behavior of trajectories at the vicinity of the singular
point is very difficult to describe. These difficulties are closely related, in the one hand,
to the problem of small divisors and, on the other hand, to the problem of symmetries and
first integrals.

The vector fields for which the situation is well understood are the completely
integrable ones, in a sense which will be recalled later on. One of their main features
is that they are holomorphically normalizable in a neighborhood of the origin. The
analysis of the behavior of the flow can therefore be carried out on the normal form
and then, pulled back by the biholomorphism: all the fibers of an associated algebraic
map (the moment map or the resonant map), when intersected with a fixed polydisc
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around the origin, are invariant by the flow of the normal form. Moreover, its restric-
tion is nothing but the restriction of a linear diagonal vector field whose eigenvalues
depend only on the fiber.

The situation we shall deal with concerns the perturbed case. By this we mean
the following: we choose a holomorphic singular completely integrable system. Let us
perturb it in some way. What can be said about the behavior of the flow of the per-
turbed system? Roughly speaking, we shall show that, generically, a large set of the
deformed fibers is still invariant under the perturbed flow.

1.1. Classical hamiltonian framework: Complete integrability and KAM theory

First of all, let us recall Liouville’s theorem [Arn76] which concerns hamiltonian
systems. Let H1, ..., Hn be smooth functions on a smooth symplectic manifold M2n;
let π : M2n → Rn be the moment map defined to be π(x) = (H1(x), ..., Hn(x)). We
assume that, for all 1 ≤ i, j ≤ n, the Poisson brackets {Hi, Hj} vanish. Let c ∈ Rn be
a regular value of π; we assume that π−1(c) is compact and connected. Then there
exists a neighborhood U of π−1(c) and a symplectomorphism Φ from U to π(U)×Tn

such that, in this new coordinate system, the symplectic vector field XHi associated to
each Hi is tangent to the fiber {d}× Tn. It is constant on it and the constant depends
only on the fiber. They define quasi-periodic motions on each torus. The family of
hamiltonian vector fields XH1, ..., XHn is said to be completely integrable.

Nevertheless, completely integrable systems are pretty rare when one looks at
problems arising from physics and in particular, celestial mechanics. One often en-
counters small perturbations of integrable systems. So, the natural question to be asked
is: what can be said about these nonintegrable systems? Do these systems still have
invariant tori on which the motion is quasi-periodic? Of course, the perturbation is
assumed to be hamiltonian.

The answer was given almost fifty years ago by the celebrated KAM theorem. It
is named after its authors Kolmogorov-Arnold-Moser [Kol54,Kol57,Arn63a,Arn63b,
Mos62]. Roughly speaking, this theorem states that, if the integrable vector field which
is to be perturbed is nondegenerate in some sense and if the perturbation is small
enough and still hamiltonian then there is a set of “positive measure” of invariant tori
for the perturbed hamiltonian and it gives rise to quasi-periodic motions of these tori.
The constants defining the quasi-periodic motions of the tori satisfy some diophantine
condition.

Let (θ, I) be symplectic coordinates (angles-actions) of Tn × Rn (Tn denotes the
n-dimensional torus). Assume that the flow of the unperturbed hamiltonian H0{

θ̇ = ω(I)
İ = 0
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with ω(I) belongs to Rn and is such that det(∂ωi
∂Ij

)(0) �= 0 (this is the classical nonde-
generacy condition). Let us consider a small analytic perturbation of H0:{

θ̇ = ω(I) + εf (θ, I, ε)
İ = εg(θ, I, ε)

.

According to the nondegeneracy condition, for any k ≥ 1, there is an analytic change
of coordinates (φ, J) such that{

φ̇ = ωk( J) + εk fk(φ, J, ε)
J̇ = ak( J, ε) + εkgk(φ, J, ε)

.

It is defined on some open set in the J coordinates. This is known as the Lindstedt
procedure. We shall call this a Lindstedt normal form up to order k. One can get
rid of the fast variables (angles) up to any order of the perturbation. Moreover, if we
assume that the perturbation is still hamiltonian then we have{

φ̇ = ωk( J) + εk fk(φ, J, ε)
J̇ = εkgk(φ, J, ε)

.

The KAM procedure says that Lindstedt normalization process can be carried out
“until the end” if the slow variable J belongs to some well chosen set: there is a sym-
plectic change of coordinates such that, if J0 ∈ Rn belongs to this set, we have{

φ̇ = ω∞( J0)

J̇ = 0
.

This shows that the torus Tn × { J0} is an invariant manifold in the new coordinates.
We refer to [Arn88, Chap. 5]. Moreover, it is required that ω∞( J0) be diophantine,
that is

∃C, ν > 0, ∀Q ∈ Zn \ {0}, |(Q , ω∞( J0))| >
C

|Q |ν ,

where (. , . ) denotes the usual scalar product of Rn and |Q | denotes the sum of the
absolute values of the coordinates of Q .

Both the nondegeneracy condition and the diophantine condition have been im-
proved by H. Rüssmann [Rüs01].

A very nice introduction to these results can be found in the exposition at Sémi-
naire Bourbaki of J.-B. Bost [Bos86]; it contains a proof of the KAM theorem based
on the Nash-Moser theorem (see also [Zeh75,Zeh76,Eli88]). Other surveys on that
topic are [Arn88], [Arn76, Appendix 8] and in particular, the book [BHS96] by Broer,
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Huitema and Sevryuk, which contains an extensive bibliography. About Lindstedt ex-
pansion, one can consult the article [Eli96].

Since then, a lot of work has been done on that subject. A closely related theme
is the existence of invariant circles of twist mappings of the annulus [Rüs70,Rüs72,
Her83,Her86,Yoc92] as well as the bifurcation of elliptic fixed point (smooth case)
[Che85,Yoc87]. These topics together with their links with celestial mechanics are ex-
plained in the books by C. L. Siegel and J. Moser [SM71], by S. Sternberg [Ste69a,
Ste69b] and by J. Moser [Mos73].

All this literature is concerned with nonsingular hamiltonian dynamical systems.
Few results have been obtained in the singular case [Arn61].

1.2. Singular complete integrability

From now on, we shall be concerned with singular holomorphic vector fields
in a neighborhood of the origin of Cn, n ≥ 2. Let us recall one of the statements of
a previous article [Sto00] (see also [Sto05]).

Let g be a l-dimensional commutative Lie algebra over C. Let λ1, ..., λn be com-
plex linear forms over g such that the Lie morphism S from g to the Lie algebra of
linear vector fields of Cn defined by S(g) = ∑n

i=1 λi(g)xi∂/∂xi is injective. For any
Q = (q1, ..., qn) ∈ Nn and 1 ≤ i ≤ n, we define the weight αQ ,i(S) of S to be the
linear form

∑n
j=1 q jλj(g) − λi(g). Let us set |Q | = q1 + · · · + qn. Let ‖ . ‖ be a norm

on the C-vector space of linear forms on g. Let us define a sequence of positive real
numbers

ωk(S) = inf
{‖αQ ,i‖ �= 0, 1 ≤ i ≤ n, 2 ≤ |Q | ≤ 2k

}
.

We define a diophantine condition relative to S to be

(ω(S)) −
∑
k≥0

ln ωk(S)

2k
< +∞.

Let X k
n (resp. X̂ k

n ) be the Lie algebra of germs of holomorphic (resp. formal) vector

fields vanishing at order greater than or equal to k at 0 ∈ Cn. Let
(
X̂ 1

n

)S
(resp. Ô S

n )
be the formal centralizer of S (resp. the ring of formal first integrals), that is the set
of formal vector fields X (resp. formal power series f ) such that [S(g), X] = 0 (resp.
LS( g)( f ) = 0) for all g ∈ g.

A nonlinear deformation S + ε of S is a Lie morphism from S to X 1
n such that

ε ∈ HomC(g,X 2
n ). Let Φ̂ be a formal diffeomorphism of (Cn, 0) which is assumed to

be tangent to Id at 0. We define Φ̂∗(S + ε)(g) := Φ̂∗(S(g)+ ε(g)) to be the conjugate
of S+ε by Φ̂. After having defined the notion of formal normal form of S+ε relative
to S, we can state the following
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Theorem 1.2.1 [Sto98,Sto00]. — Let S be an injective diagonal morphism such that the

condition (ω(S)) holds. Let S + ε be a nonlinear holomorphic deformation of S. Let us assume it

admits an element of HomC

(
g, Ô S

n ⊗C S(g)
)

as a formal normal form. Then there is a formal

normalizing diffeomorphism Φ̂ which is holomorphic in a neighborhood of 0 in Cn.

Such a nonlinear deformation is called a holomorphic singular completely
integrable system. Let us make a few remarks about this. Assume that the ring
(Ôn)

S of formal first integrals of S doesn’t reduce to the constants. Then is is gener-
ated, as an algebra, by some monomials xR1, ..., xRp of Cn ([Sto00, Proposition 5.3.2,
p. 163]), Ri ∈ Nn. These are the resonant monomials. We define the resonant
map π to be the map which associates to a point x of Cn, the values of the mono-
mials at this point; that is

π : x ∈ Cn �→ (xR1, ..., xRp) ∈ CS ⊂ Cp,

where CS is the algebraic subvariety of Cp defined by the algebraic relations among
the xRi ’s. The fibers of this mapping will be called the resonant varieties (they may
have singularities).

The conclusion of the previous theorem has the following geometric interpre-
tation: let D be a polydisc, centered at the origin and included in the range of the
holomorphic normalizing diffeomorphism. In the sequel, when we say fiber of π, we
mean its intersection with D. Our previous result implies that, in the new holomor-
phic coordinates, the holomorphic vector fields are tangent to each fiber over π(D),
they are pairwise commuting and, when restricted to a fiber, they are just the restric-
tion to the fiber of a linear diagonal vector field whose eigenvalues depend only on
the fiber (see Figure 1).

This reminds us of the classical complete integrability theorem of hamiltonian
systems. The fibers, which can be regarded as the toric varieties, play the rôle of the
classical tori. The flows associated to the restrictions to the fibers of the linear vector
fields to which the original vector fields are conjugate to, play the rôle of the quasi-

periodic motions on the tori.

1.3. A KAM phenomenon for singular holomorphic vector fields

With respect to what has already been said, the natural question one may ask
is the following: starting from a holomorphic singular completely integrable system in
a neighborhood of the origin of Cn (a common fixed point), we consider a holomor-
phic perturbation (in some sense) of one its vector fields. Does this perturbation still
have invariant varieties in some neighborhood of the origin? Are these varieties bi-
holomorphic to resonant varieties? To which vector field on a resonant variety does
the biholomorphism conjugate the restriction of the perturbation to an invariant var-
iety? Is there a “big set” of surviving invariant varieties?
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FIG. 1. — Singular complete integrability: in the new holomorphic coordinate system, all the fibers (intersected with
a fixed polydisc) are left invariant by the vector fields and their motion on it is a linear one

The aim of this article is to answer these questions. Before fixing notation and
giving precise statements, let us give a taste of what it is all about.

Let S : g→ P1
n be as above. This defines a collection of linear diagonal vector

fields on Cn we shall work with. Let X be a holomorphic vector field in a neighbor-
hood of the origin in Cn. Let X0 be a nondegenerate singular integrable vector
field (in the sense of Rüssmann). We mean that X0 is of the form

X0 =
l∑

j=1

aj(xR1, ..., xRp)Sj, aj ∈ OS
n

where the range of the map (a1, ..., al) from (Cn, 0) to (Cl, 0) is not included in any
complex hyperplane.
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Then, we consider a small holomorphic perturbation X of X0. Let us set X =
X0 + Rm0 where Rm0 is a germ of holomorphic vector field at the origin and of order
greater than or equal to m0 at that point. One of the difficulties is that there are no
natural actions-angles coordinates to play with. Nevertheless, we shall construct some-
thing similar: we add new variables u1, ..., up which correspond to the resonant mono-
mials (which are assumed to be algebraically independent). These are the “slow vari-
ables”. To the holomorphic vector field X in (Cn, 0), we shall associate a holomorphic
vector field X̃ in (Cn+p, 0) where the coordinate along ∂

∂uj
is the Lie derivative of the

resonant monomial xRj along X. This vector field is tangent to the variety

Σ = {
(x, u) ∈ Cn × Cp, | uj = xRj , j = 1, ..., p

}
and its restriction to it is nothing but X. We shall say that X̃ is fibered over X.
We shall conjugate X̃ by germs of diffeomorphisms which preserve the variety Σ.
Such a germ will be built in the following way: let Φ(x, u) := y = x + U(x, u) be
a family of germs of biholomorphisms of (Cn, 0), tangent to the identity at the origin
and parametrized over an open set U in Cp. Let us set v := u + π( y) − π(x) and
Φ̃(x, u) := ( y, v). The latter is a germ of diffeomorphism at (0, b) and tangent to the
identity at this point, for any b. It leaves Σ invariant. We shall say the Φ̃ is fibered
over Φ. We shall define the notion of Lindstedt-Poincaré normal form of X̃ of
order k as follows: there exists a fibered diffeomophism Φ̃k such that

(Φ̃k)∗X̃ =
{

ẏ = NFk( y, v) + Rk+1( y, v) + rΣ,k( y, v)
v̇ = π∗

(
NFk( y, v) + Rk+1( y, v) + rΣ,k( y, v)

) .

Here, [X0, ˜NFk( y, v)] vanishes on Σ, Rk+1 is of order greater than or equal to k + 1
and rΣ vanishes on Σ.

If we were dealing with an integrable symplectic vector field X0, we would re-
quire the perturbation to be also symplectic. The analogue, in our general setting, is
an assumption on the Lindstedt-Poincaré normal form of X. Namely, we require
that

NFk( y, v) =
l∑

j=1

ak
j (v)Sj( y).

Hence, the Lindstedt-Poincaré normal form reads

(Φ̃k)∗X̃ =
{

ẏ = ∑l
j=1 ak

j (v)Sj( y) + Rk+1( y, v) + rΣ,k( y, v)
v̇ = π∗(Rk+1( y, v) + rΣ,k( y, v))

.

A perturbation X of X0 which has a Lindstedt-Poincaré normal form of this type for
any k will be called good perturbation of X0.
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Our main result is as follow:
For any small enough good perturbation, there is a neighborhood U of the origin of Cn and

there are compact sets of positive 2p-measure belonging to the range of the resonant map π with the

following properties: let K be such a compact set,

– for each b ∈ K, for each connected component of π−1(b) ∩ U, X has an invariant holo-

morphic subset of some open set of Cn biholomorphic to the connected component of the

fiber;

– when X is restricted to this invariant subset, the biholomorphism conjugates X to the re-

striction of a linear vector field NFb to the connected component of the fiber.

FIG. 2. — KAM phenomenon: any fiber (when restricted to a fixed polydisc) over a compact set of positive measure is
biholomorphic to an analytic subset left invariant by X and the biholomorphism conjugates a linear motion on the fiber
to the motion of X on the corresponding invariant set

The germs of the ideas of the proof can be found in the work of Bibikov and
Pliss [BP67] (see also [Bib79, Chap. 3]) although the authors work with the Poincaré-
Dulac normal form and this leads to an incomplete argument. The authors are con-
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cerned with peculiar systems of differential equations of the form

dxj

dt
= iλj xj + ifj(x1, ..., xn, y1, ..., yn)

dyj

dt
= −iλj yj − ifj( y1, ..., yn, x1, ..., xn) ( j = 1, ..., n),

where i2 = −1 and the λj’s are real and uncommensurable numbers. The authors are
looking for invariant manifolds of the form xj yj = constant, with j = 1, ..., n.

I would like to thank M. Chaperon, Y. Colin de Verdière, B. Malgrange,
J.-P. Ramis and J.-C. Yoccoz for their encouragements. I also thank F. Fauvet and
P. Thomas for correcting some of my English language mistakes.

2. Notation

Let R = (r1, ..., rn) ∈ (
R∗

+
)n

; the open polydisc centered at 0 ∈ Cn with polyra-
dius R will be denoted by Dn(0, R) = {z ∈ Cn | |zi| < ri}. If r > 0 then Dn(0, r) will
denote the polydisc Dn(0, (r, ..., r)). If Q = (q1, ..., qn) ∈ Nn, |Q | = q1 + · · · + qn will
denote the norm of Q .

Let U be an nonvoid connected open set of Cp; then Op(U ) (resp. Op(U )) will
denote the ring of holomorphic functions on U (resp. in a neighborhood of the closed
set U ). Let f ∈ Op(U ) be such a function, we shall set ‖ f ‖U := supx∈U | f (x)|.

2.1. Norms

Let U be a nonvoid connected open set of Cp. Let us set

BU := Op(U ) ⊗C C[[x1, ..., xn]].
It is an algebra over C. Let f = ∑

Q∈Nn fQ (u)xQ be an element of BU where the fQ ’s
belong to Op(U ). We shall set

f̄ :=
∑

Q∈Nn

‖ fQ ‖U xQ ∈ C[[x1, ..., xn]].

The order of such an element is the smallest integer k ∈ N such that there exists
Q ∈ Nn of norm equal to k and fQ �≡ 0; this integer will be denoted by ordU ( f ). Let
k be an integer; the k-jet of f is

Jk
U ( f ) :=

∑
Q∈Nn,|Q |≤k

fQ (u)xQ .
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We shall say that an element g dominates f if for any multiindex Q ∈ Nn,
‖ fQ ‖U is less than or equal to ‖gQ ‖U ; in this case, we shall write f ≺U g. Let
R = (r1, ..., rn) ∈ (

R∗
+
)n

; let us set

| f |U ,R :=
∑

Q∈Nn

‖ fQ ‖U RQ = f̄ (r1, ..., rn).

We have the following properties:

fg ≺U f̄ ḡ,

if f ≺U g then | f |U ,R ≤ |g|U ,R.

Let f ∈ BU such that ordU ( f ) ≥ m. We assume that | f |U ,r is finite for some positive r.
Then, for any positive R < r, we have

| f |U ,R ≤
(

R
r

)m

| f |U ,r(2.1.1)

supz∈U×Dr | f (z)| ≤ | f |U ,r.(2.1.2)

We shall define the set

Hn(U , R) = {
f ∈ On(U )[[x1, ..., xn]] | | f |U ,R < +∞}

.

Remark 2.1.1 (Important remark). — Let xR1, ..., xRp be a finite number of (nontrivial)

monomials of Cn. Let Σ be the submanifold of Cn × Cp defined to be

Σ = {
(x, u) ∈ Cn × Cp | ui = xRi i = 1, ..., p

}
.

Let f (x, u) = ∑
Q∈Nn fQ (u)xQ be a holomorphic function on Dn(0, r) × Dp(b, r ′) which is

assumed to intersect Σ. We shall denote by f|Σ the function obtained by replacing each
monomial xRi by ui . If |b| + r ′ ≤ r|Ri |, we have

| f|Σ|Dp(b,r ′),r ≤ | f |Dp(b,r ′),r.

This is due to the fact that

‖ui‖Dp(b,r ′) ≤ |b| + r ′ ≤ r|Ri | = |xRi |Dp(b,r ′),r.
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2.2. Spaces of vector fields and spaces of functions

Let us set some notation which will be used throughout this article. Let k be
a positive integer:

– Pk
n denotes the C-space of homogeneous polynomial vector fields on Cn and

of degree k,
– Pm,k

n denotes the C-space of polynomial vector fields on Cn, of order ≥ m
and of degree ≤ k (m ≤ k),

– X̂ k
n denotes the C-space of formal vector fields on Cn and of order ≥ k at 0,

– X k
n denotes the C-space of germs of holomorphic vector fields on (Cn, 0) and

of order ≥ k at 0,
– pk

n denotes the C-space of homogeneous polynomials on Cn and of degree k,

– Ôn denotes the ring of formal power series in Cn,
– On denotes the ring of germs at 0 of holomorphic functions in Cn.

3. Normal forms of vector fields, invariants and nondegeneracy

3.1. Normal forms

Let X ∈ X̂ 1
n be a formal vector field of Cn and s its linear part (assumed not to

be zero) at the origin.

Definition 3.1.1. — X is said to be a normal form if [s, X] = 0.

Proposition 3.1.2 (Poincaré-Dulac formal normal form) [Arn80]. — Let X belong X̂ 1
n as

above. Then there exists a formal diffeomorphism Φ̂, vanishing at 0 and tangent to identity at this

point such that

Φ̂∗X = s + N̂, [s, N̂] = 0;

where N̂ is a nonlinear formal vector field.

This means that we can find a formal change of coordinates in which X is trans-
formed into a normal form. In general, the normalizing diffeomorphism is not unique
and diverges.

3.2. Invariants and toric varieties

Let g be a complex l-dimensional commutative Lie algebra. Let S : g→ P1
n be

a Lie morphism from g to the Lie algebra of linear vector fields of Cn. It is assumed
to be injective and semi-simple. This means that we can find a basis {g1, ..., gl} of g
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such that, for each index i, S(gi) is a linear diagonal vector field of Cn and the family
{S(gi)}i=1,...,l is linearly independent over C. Let us define

Ô S
n = {

f ∈ Ôn | ∀g ∈ g, LS( g)( f ) = 0
}
,(

X̂ 1
n

)S = {
Y ∈ X̂ 1

n | ∀g ∈ g, [S(g), Y] = 0
}
,

to be the ring of formal first integrals of S and the formal centralizer of S respectively.
Here, LS( g)( f ) denotes the Lie derivative of f along S(g).

3.2.1. Weights, weight spaces of the morphism S. — The morphism S induces
a representation ρk of g in Pk

n defined to be ρk(g)p = [S(g), p]. The linear forms
αQ ,i := (Q , λ)−λi , |Q | = k are the weights of order k of this representation. There
is a decomposition of Pk

n into direct sums of weight spaces of this representation:

Pk
n =

⊕
α

(
Pk

n

)
α

where (
Pk

n

)
α

= {
p ∈ Pk

n | ∀g ∈ g, [S(g), p] = α(g)p
} �= {0}

denotes the α-weight space associated to the weight α. The set of nonzero weights of
S into Pk,m

n will be denoted by W k,m
n,∗ . We refer to our previous article [Sto00, Chap. 5

– The fundamental structures – p. 158–168] for more details about this topic.
Let ‖ . ‖ be a norm in g∗. We define the sequence of positive numbers

ωk(S) = inf
{‖α‖, for all nonzero weights of S into P2k+1,2k+1

n

}
.

3.2.2. Toric varieties. — If Ô S
n �= C, we know from [Sto00, Prop. 5.3.2] that

there exists a finite number of monomials xR1, ..., xRp such that

Ô S
n = C[[xR1, ..., xRp]].

Moreover,
(
X̂ 1

n

)S
is a Ô S

n -module of finite type. Let us define the map

π : x ∈ Cn �→ (xR1, ..., xRp) ∈ Cp.

Let Cπ denote the algebraic subvariety of Cp defined by the algebraic relations among
the monomials xR1, ..., xRp :

Cπ = {
u ∈ Cp | P(u) = 0, ∀P ∈ C[u1, ..., up]

such that P(xR1, ..., xRp) = 0
}
.
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It is well known that such a variety is a toric variety. In fact, there is an action
of the algebraic torus (C∗)n on Cp defined by x.u = (u1xR1, ..., upxRp) whenever u =
(u1, ..., up) ∈ Cp and x = (x1, ..., xn) ∈ (C∗)n. The affine variety Cπ is the Zariski
closure of the orbit of the point 1 = (1, ..., 1). If b ∈ Cp belongs to this orbit, then
the set

π−1(b) = {
x ∈ (C∗)n | xR1 = b1, ..., xRp = bp

}
is isomorphic the isotropy subgroup of 1; that is the subgroup G of (C∗)n defined by
G = {x ∈ (C∗)n | x.1 = 1}.

Let Iπ (resp. Î π ) denote the ideal of definition of Cπ (resp. Iπ⊗Ôn). Therefore,
we have an isomorphism φπ : C[[u1, ..., up]]/Î π

∼→ Ô S
n defined to be φπ([F]) = F ◦ π

for any representative F ∈ C[[u1, ..., up]] of [F]. We shall also denote by φπ the induced

map on
(
C[[u1, ..., up]]/Î π

)k
, for any positive integer k.

Let R be the p×n-matrix which rows are the exponents of the monomials defin-
ing π:

R =
⎛
⎜⎝

R1
...

Rp

⎞
⎟⎠ =

⎛
⎜⎝

R1,1 · · · R1,n
...

...

Rp,1 · · · Rp,n

⎞
⎟⎠ .

Let r be the rank of R. Let M = (mi, j)1≤i≤p
1≤ j≤n

be a p × n-matrix and let k be smaller

than or equal to min(n, p). Let I = {i1 < · · · < ik} (resp. J = { j1 < · · · < jk}) be a set
of increasing integers of [1, p] (resp. [1, n]). We shall say that both I and J are k-sets.
We shall write MI, J for the matrix MI, J = (mis, jt)1≤s,t≤k.

Proposition 3.2.1. — Let r be a positive number and let Dr be the polydisc centered at the

origin of Cn with radius r. Let H = {x ∈ Cn | x1 · · · xn = 0} be the union of the coordinate

hyperplanes. Let Dr \ H be the set of points of Dr not belonging to H. Then,

1. Dr \ H is an open connected set of Cn,

2. π|Dr\H is of constant rank equal to the rank of R.

Proof. — The first point is classical since H is of complex codimension 1. Let k
be a positive integer smaller than or equal to min(p, n) and let I = {i1 < · · · < ik}
(resp. J = { j1 < · · · < jk}) be a set of increasing integers of [1, p] (resp. [1, n]). Let
x ∈ Dr \ H. We have

(Dπ(x))I, J =
(

rj,i
xRi

xj

)
i∈I
j∈ J

.
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According to the multilinearity property of the determinant, we obtain

xj1 · · · xjk det(Dπ(x))I, J = det
(
rj,ixRi

)
i∈I
j∈ J

= xRi1 · · · xRik det
(
ri, j

)
i∈I
j∈ J

.

Since the zero set of xj1 · · · xjk (resp. xRi1 · · · xRik ) is included in H then, for all x ∈ Dr\H,
the determinant of (Dπ(x))I, J vanishes if and only if the determinant of RI, J does. Let
s be the rank of R. Then, for all positive integers s < t ≤ min(n, p), and all t-sets I, J,
the determinant of RI, J vanishes; thus, so does det(Dπ(x))I, J. Moreover, there are
s-sets I, J such that the determinant of RI, J is not zero; thus, det(Dπ(x))I, J �= 0. As
a consequence, the rank of πDr\H is equal to the rank of R. ��

Let us recall the rank theorem:

Theorem 3.2.2 [Chi89, p. 307]. — Let D be an open connected set in Cn and let

f : D → Cp be a holomorphic map such that rankz f = r for all z ∈ D. Then, for any

point a ∈ D, there exists a neighborhood U of a in D and a neighborhood V of f (a) in Cp such

that:

1. f (U) is an r-dimensional complex submanifold in V,

2. there is an r-dimensional complex plane L passing through a such that f maps biholomor-

phically L ∩ U onto f (U).

We may apply this result to our situation: π is of constant rank s on Dr \ H;
therefore for any point a ∈ Dr \ H, there is a neighborhood Ua of a in Dr \ H such
that π(Ua) is an r-dimensional submanifold of Cp.

3.3. Nondegeneracy of vector fields

From now on, we shall assume that the resonant monomials
xR1, ..., xRp are algebraically independent.

Definition 3.3.1.

– A formal map f̂ : Cp → Cl is a l-tuple of formal power series of Cp.

– A formal map f̂ : Cp → Cl is said to be nondegenerate (in the sense of Rüssmann)

if for any nonzero c = (c1, ..., cl) ∈ Cl , < c, f̂ >:= ∑l
j=1 cj f̂ j doesn’t vanish identically.

Remark 3.3.2. — If the k-jet, Jk( f̂ ), of a formal map f̂ is nondegenerate, so is Jk+m( f̂ ).

Lemma 3.3.3. — Let F̂ = (F̂1, ..., F̂l) : Cn →̂ Cl be a formal map such that for all

1 ≤ i ≤ l, F̂i ∈ Ô S
n . The following statements are equivalent:

1. F̂ : Cn → Cl is a nondegenerate formal map,

2. φ−1
π (F̂) : Cp → Cl is a nondegenerate formal map.
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Proof. — There is a formal power series F of Cp such that F ◦ π = F̂. Since
the resonant monomials are algebraically independent, < c, F̂ > = 0 if and only if
< c, F > = 0. ��

Definition 3.3.4. — A holomorphic vector field
∑l

j=1 ajSj will be said to be nondegenerate

if the map (a1, ..., al) is nondegenerate.

3.4. Fibered vector fields and diffeomorphisms along π

Let Σ be the graph of π; that is the algebraic subvariety of Cn × Cp defined by

Σ := {
(x, u) ∈ Cn × Cp | ui = xRi , i = 1, ..., p

}
.

Let U be an open set in Cp and let f be a holomorphic function over
Dn(0, r) × U which vanishes as well as its derivative at x = 0. It can be written as

f (x, u) =
∑

Q∈Nn
2

fQ (u)xQ .

Moreover, it can be written also as

f =
∑′

Q∈Nn

f ′
Q (xR, u)xQ

where the sum ranges over {0} together with the set of Q ∈ Nn for which xQ is not
divisible by any xRi . Two such series f and g will be said equivalent modulo Σ if

f ′
Q (xR, u) = g′

Q (xR, u) on Σ.

We shall denote [ f ] (or f ) the equivalence class and write it as the series

f := [ f ] :=
∑′

Q∈Nn

[
f ′
Q (xR, u)

]
xQ

where [ f ′
Q (xR, u)] denotes the equivalence class modulo Σ of f ′

Q (xR, u). Let

X =
n∑

i=1

Xi∂/∂xi +
p∑

k=1

Xk∂/∂uk

be a holomorphic vector field on Dn(0, r) × U . We shall define [X] (or X) to be

X := [X] :=
n∑

i=1

[Xi]∂/∂xi +
p∑

k=1

[Xk]∂/∂uk.
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Definition 3.4.1. — The restriction f|Σ of f to Σ is the formal power series defined to be

f|Σ :=
∑′

Q∈Nn

[ f ′
Q (u, u)]xQ ,

where the sum ranges over {0} together with the set of Q ∈ Nn for which xQ is not divisible by

any xRi .

Let X be a holomorphic family over U of holomorphic of vector fields in a neigh-
borhood V of the origin in Cn. We mean that

X(x, u) =
n∑

i=1

Xi(x, u)
∂

∂xi

where the Xi(x, u)’s belong to On(V) ⊗C Op(U ).
Let us set

X̃(x, u) := (X, π∗X)(x, u) =
n∑

i=1

Xi(x, u)
∂

∂xi
+

p∑
k=1

X(xRk )(x, u)
∂

∂uk
.

As usual, X(xRk) denotes the Lie derivative of xRk along X, namely:

X(xRk)(x, u) =
n∑

i=1

Xi(x, u)
∂xRk

∂xi
.

The vector field X̃ will be said to be fibered over π (with respect to X). One
of the features of X̃ is that it is tangent to Σ and its restriction to it is precisely the
vector field X(π(x), x).

Let Φ be a holomorphic family over U of germs of holomorphic diffeomor-
phisms of (Cn, 0) tangent to identity at 0 in Cn. We shall write

Φ(x, u) = x + φ(x, u),

where φ belongs to Op(U ) ⊗ M 2
n . Let us set

Φ̃(x, u) := (Φ(x, u), u + (π(Φ(x, u)) − π(x))).

If b belongs to U , then Φ̃(0, b) = (0, b). Moreover, Φ̃ is tangent to identity at that
point. Thus, it is a local diffeomorphism at (0, b). The diffeomorphism X̃ will be said
to be fibered over π (with respect to Φ). It leaves the variety Σ (globally) invari-
ant. In fact, if u = π(x) then

Φ̃(π(x), x) = (Φ(π(x), x), π(Φ(π(x), x))).

In the sequel, pr1 (resp. pr2) will denote the projection onto Cn (resp. Cp).
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Lemma 3.4.2. — If both X̃ and Φ̃ are fibered over π (with respect to X and Φ respec-

tively) then so is Φ̃∗X̃. Moreover, the restriction of Φ̃∗X̃ on Σ does depend only on the restrictions

of X̃ and Φ̃ to Σ.

Proof. — In fact, we have

Φ̃∗X̃( y, v) = DΦ̃(x, u)X̃(x, u)
= (DxΦ(x, u)X(x, u) + DuΦ(x, u)π∗X(x, u),

Dx(π(Φ(x, u)) − π(x))X(x, u)
+ Du(u + π(Φ(x, u)))π∗X(x, u)).

But precisely, the quantity

Dx(π(Φ(x, u)) − π(x))X(x, u) + Du(u + π(Φ(x, u)))π∗X(x, u)

is equal to

Dπ(Φ(x, u)) (DxΦ(x, u)X(x, u) + DuΦ(x, u)π∗X(x, u)).

It is sufficient to prove this with X = ( f (xR, u)+ fΣ(xR, u))xQ ∂/∂xi and ( ỹ, ṽ) :=
Φ̃(x, u) with

ỹ = x + xP(g(xR, u) + gΣ(xR, u))∂/∂xi

ṽ = u + π(x + xP(g(xR, u) + gΣ(xR, u))∂/∂xi) − π(x).

Here, we assume that neither xQ nor xP are divisible by any xRk . Moreover, both fΣ
and gΣ belong to the ideal generated by the xRk − uk ’s. Let us set

( y, v) := Ψ̃(x, u)

y := x + xPg(xR, u)∂/∂xi

v := u + π(x + xPg(xR, u)∂/∂xi) − π(x)

Y(x, u) := f (xR, u)xQ ∂/∂xi.

The previous computation shows that

pr1(Φ̃∗X̃( y, v)) = DxΦ(x, u)( f (xR, u) + fΣ(xR, u))xQ

(
∂

∂xi

)

+ DuΦ(x, u)

(
p∑

k=1

( f (xR, u) + fΣ(xR, u))xQ ∂xRk

∂xi

∂

∂uk

)
.

Let us write gΣ(xR,u) = ∑p
k=1(x

Rk − uk)gΣ,k(xR, u). Let us define the differential operator

∂g(xR, u)
∂vk

:= ∂g
∂tk

(xR, u) + ∂g
∂uk

(xR, u)
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where g(xR, u) = π∗(g(t, u)). Then, we obtain

pr1(Φ̃∗X̃( ỹ, ṽ)) =
[

xP
p∑

k=1

(
∂g(xR, u)

∂vk
+

p∑
m=1

(xRm − um)
∂gΣ,m(xR,u)

∂vk

)
∂xRk

∂xi

+ (g(xR, u) + gΣ(xR, u))
∂xP

∂xi
+ 1

]
( f (xR, u)

+ fΣ(xR, u))xQ ∂

∂yi
.

This is due to the fact that ∂(xRm−um)

∂vk
= 0 for all integers 1 ≤ k, m ≤ p. As a conse-

quence, if (x, u) belongs to Σ, then ( ỹ, ṽ) = ( y, v). Moreover, we have

pr1(Φ̃∗X̃( y, v)) = pr1(Ψ̃∗Ỹ( y, v)). ��

3.5. Lindstedt-Poincaré normal forms of fibered vector fields along π

Let X = s1(x)+R(x) be a germ of vector field in a neighborhood of the origin in
Cn which is a nonlinear perturbation of the polynomial vector field s1 = ∑l

j=1 aj(xR)Sj .
Let us assume that the order m0 of R is greater than the degree of s1(x).

Let U be an open set in Cp. Let Y(x, u) be a family, over U , of germs of vector
fields of Cn, whose restriction to Σ is equal to X. It is required that Y(x, u) = s1(x, u) +
R(x, u) where s1(x, u) is defined to be

∑l
j=1 aj(u)Sj and where R(x, u) is nonlinear

(in x). We define the holomorphic vector field X̃ on an open set of Cn × Cp to be

X̃(x, u) = (Y(x, u), π∗Y(x, u)) = (s1(x, u) + R(x, u), π∗R(x, u)).

Lemma 3.5.1. — Let U(x, u) (resp. s(x, u)) be a representative, over U , of some nonlinear

vector field (resp. s1(u, x)). Then, the class of the Lie bracket [s(x, u), Ũ(x, u)] depends only on

the classes [s] and [Ũ]. Moreover, if U(x, u) belongs to α-weight space of S then so do Ũ and

[s1(x, u), Ũ(x, u)].
Proof. — It is sufficient to prove this for U(x, u) = b̃(x, u)xQ ∂

∂xi
and s(x, u) =∑l

j=1 ãj(x, u)Sj where ãj = aj(xR, u) + aj,Σ(xR, u) and b̃ = b(xR, u) + bΣ(xR, u). We have

[s(x, u), Ũ(x, u)] =
l∑

j=1

ãj b̃
[

Sj, xQ ∂

∂xi

]
− b̃xQ ∂ãj

∂xi
Sj

+
l∑

j=1

[
ãjSj,

p∑
k=1

b̃xQ ∂xRk

∂xi

∂

∂uk

]
.
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Since the xRk ’s are common first integrals of the Sj ’s, we have Sj(b̃) = 0. This leads to[
ãjSj,

p∑
k=1

b̃xQ ∂xRk

∂xi

∂

∂uk

]
=

p∑
k=1

[
ãj b̃Sj

(
xQ ∂xRk

∂xi

)
∂

∂uk
− b̃xQ ∂xRk

∂xi

∂ãj

∂uk
Sj

]
.

It is then sufficient to show that the class of

B := ∂ãj

∂xi
+

p∑
k=1

∂xRk

∂xi

∂ãj

∂uk
=

p∑
k=1

∂xRk

∂xi

(
∂ãj

∂vk
(xR, u)

)

depends only on the class of ãj . Let us write aj,Σ = ∑p
m=1(x

Rm − um)aj,Σ,m. Since
∂(xRm − um)/∂vk = 0, we have

∂ãj(xR, u)
∂vk

= ∂aj(xR, u)
∂vk

+
p∑

m=1

(xRm − um)
∂aj,Σ,m(xR, u)

∂vk
,

which ends the proof.
Let us assume that U belongs to the α-weight space of S. According to the pre-

vious computations, we have

[Sk, Ũ] = [Sk, U] +
p∑

m=1

Sk(U(xRm))
∂

∂um
.

The result follows from the equality Sk(U(xRm)) = [Sk, U](xRm) = α(gk)U(xRm). ��
Definition 3.5.2 (Lindstedt-Poincaré normal form). — The fibered vector field X̃ over π

with respect X is said to be normalized up to order m along Σ, if there exists an open

set Um and a fibered diffeomorphism Φ̃ over Um such that

Φ̃∗X̃ = ÑFm + ˜Rm+1 + r̃Σ

where ˜Rm+1 is a fibered vector field with respect to a vector field of order greater than or equal to

m + 1. The vector field ÑFm commutes with s1(x, u) and does not depend on the choice of a repre-

sentant of X.

The vector field X is said to be Lindstedt-Poincaré normalized up to order m
if one of its fibered vector field X̃ is normalized up to order m. We shall also say that the restriction

ÑFm|Σ is a Lindstedt-Poincaré normal form up order m of X.

Lemma 3.5.3. — If s0 is nondegenerate then X̃ admits a Lindstedt-Poincaré normal form

up to any order.
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Proof. — Let us assume that X̃ is normalized up to order m and let us write

pr1X̃ = NFm(x, u) + Rm+1(x, u) + rΣ(x, u)

where u belongs to an open set Um. Let us make a change of variables of the form

Φ̃ :=
(

y
v

)
=

(
x + U(x, u)

u + π(x + U(x, u)) − π(x)

)
=:

(
x
u

)
+ W.

On the one hand, we have

Φ̃∗X̃ = X̃ + [W, X̃] + 1
2
[W, [W, X̃]] + · · · .

On the other hand, r̃ ′
Σ = Φ̃∗r̃Σ vanishes on Σ as well as

pr1

([ÑFm, W]) = [s1(x, u), Wx] −
l∑

j=1

Wu(aj(u))Sj + [NFm − s1, Wx]

+
n∑

i=1

π∗NFm(Wx,i)
∂

∂xi
−

n∑
i=1

Wu

(
NFm

i

) ∂

∂xi
.

Here, Wu (resp. Wx) stands for π(x + U(x, u)) − π(x) (resp. U). Let Bm+1 denote the
sum of the projection of Rm+1 onto the weight spaces associated to weights of degree
m + 1. Its restriction to Σ doesn’t depend on the choice of the representa-
tive Rm+1. Therefore, if U is of order greater than or equal to m + 1, we may write

pr1

(
Φ̃∗X̃( y, v)

) = NFm( y, v) + Bm+1( y, v) − [s1( y, v), U]
+ Rm+2( y, v) + r ′

Σ( y, v),

where the vector field Rm+2( y, v) is of order greater than or equal to m + 2.
For any weight α of S in Pm+1

n , let us set

Aα :=
l∑

j=1

aj(u)α(g j ).

Since s1 is nondegenerate, if α is nonzero then Aα doesn’t vanish identically. For if it
did then the image of map (a1, ..., al) would be contained in a complex hyperplane.
Let Um+1 be the complement, in Um, of the zero set of the Aα’s where α ranges over
the set of nonzero weights of S in Pm+1

n . For such an α, let us set, for u ∈ Um+1,

Uα(x, u) := Bm+1
α (x, u)
Aα(u)

and U =
∑
α �=0

Uα.
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We have

[s1(x, u), Uα] =
l∑

j=1

aj(u)[Sj, Uα] =
⎛
⎝ l∑

j=1

aj(u)α(g j)

⎞
⎠ Uα = Bm+1

α .

Hence, we have

pr1

(
Φ̃∗X̃( y, v)

) = NFm( y, v) + Bm+1
0 ( y, v) + Rm+2( y, v) + r ′

Σ( y, v).

Let us set

NFm+1( y, v) := NFm( y, v) + Bm+1
0,|Σ( y, v).

Then, we have[
s1, NFm+1

] = 0.

Let X̃′ be another fibered vector field with respect to X and which is normalized
up to order m. Let us assume that it differs from pr1(X̃) by a vector fields vanishing
on Σ. Hence, it can be written as

pr1X̃′ = NFm(x, u) + Rm+1(x, u) + r ′
Σ(x, u).

Then, Φ̃∗X̃′ will differ from Φ̃∗X̃ by a fibered vector field vanishing on Σ. ��
Definition 3.5.4. — The vector field X̃ is said to be a good deformation relative

to S if X̃ admits a Lindstedt-Poincaré normal form of order m of the form

l∑
j=1

am
j (u)Sj,

for any order m greater than or equal to 2.

Remark 3.5.5. — Let us expand the meaning of this definition. In coordinates, the vector

field (Φ̃m)∗X can be written as

dxi

dt
=

⎛
⎝ l∑

j=1

am
j (u)λj,i

⎞
⎠ xi + Rm+1,i(x, u) + rΣ,i

duk

dt
= Rm+1,i(xRk ) + rΣ,i(xRk),
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where i ranges from 1 to n and k ranges from 1 to p. It is a perturbation of order greater than or

equal to m + 1 (in x) of the “integrable”-one along Σ

dxi

dt
=

⎛
⎝ l∑

j=1

am
j (u)λj,i

⎞
⎠ xi + rΣ,i

duk

dt
= rΣ,i(xRk)

where i ranges from 1 to n and k ranges from 1 to p. The uk’s are to be thought as the actions (the

“slow variables”) whereas the nonresonant monomials xQ are the functions of the “fast variables”.

4. Main results

Let g be a complex l-dimensional commutative Lie algebra. Let S : g→ P1
n be

a Lie morphism from g to the Lie algebra of linear vector fields of Cn. It is assumed
to be injective and semi-simple. This means that, up to a linear change of coordinates,
there are linear forms λ1, ..., λn ∈ g∗ such that for all g ∈ g,

S(g) =
n∑

i=1

λi(g)xi
∂

∂xi
.

In the sequel, {g1, ..., gl} will denote a fixed basis of g and we shall set Si = S(gi).
The family {Si}i=1,...,l is linearly independent over C. We shall denote by W k,m

n,∗ the
set of nonzero weights of S in Pk,m

n ; that is the set set of nonzero linear forms∑n
i=1 q jλj(g) − λi(g), for which (q1, ..., qn) ∈ Nn, 1 ≤ i ≤ n and k ≤ q1 + · · · + qn ≤ m.

We assume that the ring of formal first integrals ÔS
n is not reduced to C. We recall

that ÔS
n = C[[xR1, ..., xRp]] where xR1, ..., xRp are monomials of Cn. We shall assume

that they are algebraically independent.
Let X ∈ X 1

n be a germ of vector field of (Cn, 0) vanishing at the origin and
which linear part belongs to S(g). Let us assume that X is a good perturbation of
order m0 + 1 ≥ 2 of a nondegenerate vector field

X0 =
l∑

j=1

ajSj

where the aj ’s belong to OS
n . We shall write a = (a1, ..., al). Hence, its Lindstedt-

Poincaré normal form, at each order m ≥ m0, is of the form

NFm(x, u) =
l∑

j=1

am
j (u)Sj(x),

where the am
j ’s are holomorphic functions on some open set Um of Cp. Moreover,

X − X0 is flat up to order m0 at the origin.
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Let ω = {ωk}k∈N∗ be a sequence a positive numbers such that
– ωk ≤ 1,
– ωk+1 ≤ ωk,
– the series

∑
k>0

− ln ωk
2k converges.

Such a sequence will be called a diophantine sequence.
Let ρ be a sufficiently small positive number less than 1/2. Let K be a nonvoid

compact set of π(Dn(0, ρ)). Let γ be a positive real number and less than some γ ′.
We define the decreasing sequence {Kk(X,K, ω, γ)}k∈N of compact sets of π(Dn(0, ρ))

as follows:

K0 = K,

Kk =
⎧⎨
⎩b ∈ Kk−1 | ∀α ∈ W 2k+1,2k+1

n,∗ ,

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

a2k

j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωk+1

⎫⎬
⎭ .

In other words, Kk is the set of b’s such that the small divisors of order greater than
m and of degree less than 2m + 1 with respect of the linear diagonal vector field
NFm(b, x) are greater or equal than γωk+1 with m = 2k.

Theorem 4.0.6. — Under the assumptions above, let ω be a diophantine sequence; let K
and γ be defined as above. If m0 is large enough and if the set K∞(X,K, ω, γ) := ⋂

k∈Nn Kk

is nonvoid then, for any b ∈ K∞,

1. the sequence {NFm(x, b)} converges to a linear diagonal vector field

NF(x, b) = ∑l
j=1 ãj(b)Sj(x),

2. there is a biholomorphism of analytic subsets of open sets in Cn,

Θb : π−1(b) ∩ D0(ρ) → Vb ⊂ Cn

which conjugates the restriction of NF(x, b) to π−1(b) ∩ D0(ρ) to the restriction of X
to Vb.

As a consequence, X is tangent to the toroidal analytic subset Vb; its restriction to it is conjugated

to the restriction to the toric analytic subset π−1(b)∩Dn(0, ρ) of the linear diagonal vector
field

∑l
j=1 ãj(b)Sj .

Definition 4.0.7. — Let ω = {ωk}k≥1 be a diophantine sequence and µ0 be a positive

integer. We shall say that S is strictly diophantine relatively to (ω,µ0) if

lim
k→+∞

(
2k + n + 1

)n+1
(

ωk

ωk(S)

)2/µ0

= 0.

Theorem 4.0.8. — Let K be a compact set of π(Dn(0, ρ)) of positive 2p-measure. As-

sume that S is strictly diophantine relatively to the sequence (ω = {ωi}i≥1, µ0) where µ0 is the
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index of nondegeneracy of X0 with respect to K (see Section 9.1). Then, under the assumptions of

Theorem 4.0.6, K∞ is nonvoid and has a positive 2p-measure.

The definition of strict diophantineness is derived from Rüssmann assumptions
in his work on KAM theory in the symplectic case [Rüs01]. It should be noticed that,
in the hamiltonian situation, the numbers ωk(S) don’t appear in the condition since
they are bounded from below (see for instance [Sto00, Theorem 10.2.1–10.2.2]).

Remark 4.0.9. — Similar statements were announced in [Sto01]. At that time, we made

the assumption that the formal Poincaré-Dulac normal form of the deformation X was of the form∑
j â jSj , with âj ∈ Ô S

n . But, we failed to prove that this assumption implies the assumption we

actually do on the Lindsedt-Poincaré normal form. Hence, the result about the holomorphy of the

Poincaré normal form, announced in the note as a consequence of the proof of the main result, is not

proved yet.

5. Sketch of the proof

Let X̃ be a fibered deformation of X over a neighborhood of the origin in Cp.
The global mechanism of our proof is to normalize, in the sense of Lindstedt-Poincaré,
the vector field X̃. To do so, we shall use a slightly modified Newton process. As-
suming that X̃ is normalized up to order m, we shall normalize it up to order 2m
by a holomorphic diffeomorphism of some polydisc Dn(0, Rm) × Dp(b, tm), tangent to
identity at (0, b). It is also fibered over π. Let us set

X̃(x, u) = NFm + R̃m+1 + r̃Σ

where NFm(x, u) = ∑l
i=1 am

i (u)Si(x), R̃m+1 is a fibered over a holomorphic vector field
of order greater than or equal to m + 1 and r̃Σ is fibered over a vector field vanishing
on Σ. Let us write

R̃m+1 = B̃m+1,2m + R̃2m+1

where B̃m+1,2m denotes the projection of R̃m+1 on the weight spaces (of S) of degree
less than or equal to 2m:

B̃m+1,2m = B̃m+1,2m
0 ⊕

∑
α �=0

B̃m+1,2m
α

where the sum is taken over the nonzero weights of the representation of S into the
space Op(Dp(b, tm))⊗Pm+1,2m

n , Bm+1,2m
α being the projection of Bm+1,2m onto the α-weight

space.
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In order to normalize X up to order 2m, one is led to solve, for each nonzero
weight α of order less than or equal to 2m, the following cohomological equation:

[NFm, Um,α](x, u) + DuNFm(x, u)Dπ(x)Um,α(x, u) = Bm+1,2m
α (x, u),

where the unknown, Um,α, is to be a holomorphic vector field of order greater than
or equal to m + 1, belonging to the α-weight space. Let us set

Am,α(u) =
l∑

j=1

am
j (u)α(g j ).

Let Vm be an open set where Am,α doesn’t vanish and assume that b belongs to Vm.
On this set, we find that

Um,α(x, u) =
(

Id − Dm

Am,α(u)

)
Bm+1,2m

α (x, u)
Am,α(u)

is the solution of the cohomological equation. The On × Op({b})-linear operator Dm is
nilpotent of order 2 on Op({b}) ⊗ X m+1

n .
Let us set

Um =
∑

α �=0 and of degree≤2m

Um,α,

and

Φm = Id + Um, Φ̃m(x, u) = (x + Um(x, u), u + π(x + Um(x, u)) − π(x)).

This map is a holomorphic diffeomorphism in a neighborhood of (0, b) and it nor-
malizes X̃ up to order 2m. In fact, let us set NF2m = NFm + B̃m+1,2m

0|Σ . Then,

(Φ̃m)∗X̃ = NF2m + R̃2m+1 + rΣ

is normalized up to order 2m (R̃2m+1 is of order greater than or equal to 2m + 1 in x).
We have to control the behavior of the estimates of Φ̃m and (Φ̃m)∗X̃ when m

ranges from some integer on. This is the goal of the section entitled “The induction
process”. In order to obtain good estimates we shall consider special sets. Let us set
m = 2k and let b belong to

Kk :=
⎧⎨
⎩c ∈ Kk−1 | ∀α ∈ W 2k+1,2k+1

n,∗

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

a2k−1
j (c)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωk+1

⎫⎬
⎭ .

Let use set

tm := γ
ωk+1

2lΛ(2m + 1)
.
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Let U be an open connected set of Cp and let r be a positive number. Let f
belong to Op(U) ⊗ C[[x1, ..., xn]]:

f =
∑

Q∈Nn

fQ (u)xQ

where the fQ ’s are holomorphic functions on U. We set

| f |U,r =
∑

Q∈Nn

sup
u∈U

| fQ (u)|r|Q |.

If f is just a formal power series, then | f |U,r doesn’t depend on U and is nothing but
the polydisc norm

| f |r =
∑

Q∈Nn

| fQ |r|Q |.

We show that the function Am,α(u) doesn’t vanish on Dn(0, Rm)×Dp(b, tm). There-
fore, Um,α can be seen as a holomorphic vector field which coefficients are holomor-
phic functions on Dn(0, Rm)× Dp(b, tm). Moreover, it is of order greater than or equal
to m + 1 in x. We show the following estimate (Proposition 6.2.1):

let r > 1/2. If ‖D(am(u))‖Dp(b,tm) ≤ 1, there exists c1 > 0 such that the solution of the

cohomological equation satisfies

|Um,α|Dp(b,tm),r ≤ c1

γ 2ω2
k+1

∣∣Bm+1,2m
α

∣∣
Dp(b,tm),r

.

We should emphasize the rôle of the ring of invariants OS
n , the element of which

are the natural “constants”. The small divisors are no longer complex numbers but
rather elements of this ring: these are the functions Am,α defined on an appropriate
set.

We assume that 1/2 < r ≤ 1 and that m = 2k for some positive integer k. We
define the positive numbers

γk =
(

c1

γ 2ω2
k+1

)−1/m

, θk := γkm−2/m, ri := θ i
kr, i ≥ 1.

If m is sufficiently large, we set

NFm,b(r) =
{

X ∈ Op(Dp(b, tm/2)) ⊗ P1
n | |X|Dp(b,tm),r < 1 − 1

m3
,

|Du(X)|Dp(b,tm),r < 1 − 1
m2

}
,

Bm+1,b(r) =
{

X ∈ Op(Dp(b, tm)) ⊗ X m+1
n | |X|Dp(b,tm),r <

25n
m4

}
.
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We assume that 25n/m4 < 1. We shall show the following (Proposition 7.0.2):
let b belong to Kk−1. We assume X̃ = NFm + R̃m+1 + r̃Σ is normalized up to order m and

that (NFm, Rm+1) ∈ NFm,b(r) × Bm+1,b(r). If b belongs to Kk and if m is sufficiently large

(say ≥ 2k0 independent of r), then

– Dn(0, r5) × Dp(b, t2m) ⊂ Φ̃m(Dn(0, r) × Dp(b, tm)),

– (NF2m, R2m+1) ∈ NF2m,b(r5) × B2m+1,b(r5).

This proposition is fundamental for the induction process since it enables us to
control the norms. Moreover, it states that, at each step, there is a “good” thickening
neighborhood of the toric variety on which the analysis can be done. Its proof is rather
long and technical.

Now, we are able to give a sketch of the proof the existence of the invariants
varieties. Since the sequence {ωk} is diophantine, we show that the sequence of radii
defined by

Rk+1 = θ5
k Rk,

converges to some positive R which can be assume to be greater than 1/2. Let {Ψ̃k}
be the sequence of holomorphic diffeomorphisms defined by

Ψ̃k = Φ̃2k ◦ Ψ̃k−1.

The diffeomorphism Ψ̃k normalizes X̃ up to order 2k+1. Thanks to our estimates, we
show that the sequence of inverse diffeomorphisms {Ψ−1

k }, when restricted to Dn(0, ρ)×
π−1(b), converges ( for the compact topology of the analytic set) to a holomorphic dif-
feomophism on Θb on Dn(0, ρ) × π−1(b) ( for some well chosen ρ < 1/2).

What about the conjugacy problem? By construction, both Ψ̃m and X̃ are tan-
gent to Σ. Hence, according to the induction process, we show that the sequence
{NFm}, restricted to (Dn(0, ρ) ∩ π−1(b)) × π−1(b), converges to a linear vector field

NFb(x) =
l∑

j=1

aj(b)Sj(x).

By definition, it is tangent to the toric variety π−1(b)∩Dn(0, ρ). Moreover, Θb con-
jugates its restriction to π−1(b) ∩ Dn(0, ρ) to the restriction of X to the analytic set
Θb(π

−1(b) ∩ Dn(0, ρ)). That is, X has an invariant analytic subset, namely
Θb(π

−1(b) ∩ Dn(0, ρ)), which is biholomorphic to π−1(b) ∩ Dn(0, ρ). This ends the
sketch of the proof of the first theorem.

The proof of the last theorem is an adaptation of Rüssmann work on KAM
theory [Rüs01, Part 4]. Its goal is to give a sufficient condition which will ensure that
the compact set K∞ is not empty. To do so, we shall show that our assumptions are
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sufficient to ensure that each compact set Kk has a positive measure. The main tool
is Rüssmann Theorem 9.1.1 which can rephrased as follows: given a compact set K
in Rn, a neighborhood B of K and a real valued Cµ0+1-function g on B. Assume
roughly that g as well as all its µ0 derivatives do not vanish simultaneously on K .
Then, there is an upper bound for the measure of the inverse image of ] − ε, ε[ by
any small Cµ0-perturbation of g defined on B; ε has to be small and the upper bound
depends only on g, n, and the size of B relatively to K . Its proof is based on Bakhtin
theorem [Bak87].

6. Solution of the cohomological equation

Let us set

X̃m := Ψ̃m
∗X̃ ∈ Op(Um) ⊗ X 1

n (Dn(0, Rm))

which is assumed to be normalized up to order m. Let us assume that its Lindstedt-
Poincaré normal form of order m can be written as

NFm(x, u) =
l∑

i=1

am
i (u)Si

with the am
i ’s belong to Op(Um). Hence, we have

pr1(Xm) = NFm(x, u) + Rm+1(x, u) + rΣ(x, u),

where Rm+1 belongs to Op(Um)⊗X m+1
n and where rΣ denotes a vector field vanishing

on the subvariety Σ.
Let us decompose Rm+1 along the weight spaces of S and let us write Rm+1 =

Bm+1,2m + R′
2m+1 where Bm+1,2m(x, u) denotes the sum of the projections of Rm+1 along

the weight spaces associated to a weight of degree less than or equal to 2m. We should
emphasize that Bm+1,2m(x, u) may not be a polynomial (in x). The vector field R′

2m+1 is
of order greater than or equal to 2m + 1, with coefficients in Op(Um).

6.1. Cohomological equations

Let x = Φm( y, v) = y + Um( y, v) be a family of holomorphic diffeomorphisms
of (Cn, 0) where Um ∈ Op(U ′

m) ⊗ X m+1
n . Let Φ̃m be the fibered diffeomorphism over

π associated to Φm. Here, U ′
m denotes an open set such that

Φ̃m(Dn(0, Rm) × U ′
m) ⊂ Dn(0, Rm) × Um.
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We shall write (x, u) = Φ̃m( y, v). We have

D
(
Φ̃−1

m

)
( y, v)(Φ̃m)∗X̃( y, v) = X̃

(
Φ̃−1

m ( y, v)
)
.

Let us write

pr1

(
(Φ̃m)∗X̃( y, v)

) = NFm( y, v) + B′( y, v) + C′( y, v) + r ′
Σ

=: Z( y, v) + r ′
Σ

where B′ belongs to Op(U
′
m) ⊗ (

X m+1
n

)S
and C′ belongs to Op(U

′
m) ⊗ X 2m+1

n . By as-
sumption, we have Dπ(x)NFm(x, u) = 0, hence we have the following relations:

(Id + DyUm( y, v))Z( y, v) + DvUm( y, v)Dπ( y)(B′( y, v) + C′( y, v))
= NFm(x, u) + B(x, u) + C(x, u)

= (NFm + B)( y, v)

+ D(NFm)( y, v)
(
Φ̃−1

m ( y, v) − ( y, v)
)

+ (
B
(
Φ̃−1

m ( y, v)
) − B( y, v)

)
+ (

NFm
(
Φ̃−1

m ( y, v)
) − NFm( y, v)

− D(NFm)( y, v)
(
Φ̃−1

m ( y, v) − ( y, v)
))

− pr1

(
D

(
Φ̃−1

m

)
( y, v)r̃ ′

Σ( y, v)
)
.

Therefore, we have

C′( y, v) + B′( y, v) − B( y, v)(6.1.1)

−[NFm, Um]( y, v)

− DuNFm( y, v)Dπ( y)Um( y, v) = −Dy(Um)( y, v)(B′( y, v) + C′( y, v))

− C′( y, v)

+ (
B
(
Φ̃−1

m ( y, v)
) − B( y, v)

)
(
NFm

(
Φ̃−1

m ( y, v)
) − NFm( y, v)

− D(NFm)( y, v)
(
Φ̃−1

m ( y, v) − ( y, v)
))

+ D(NFm)( y, v)(0, π( y + Um) − π( y)

− Dπ( y)Um)

− DvUm( y, v)Dπ( y)(B′( y, v)

+ C′( y, v))

− pr1

(
D

(
Φ̃−1

m

)
( y, v)r̃ ′

Σ( y, v)
)
.
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Assuming that both Um, B and B′ (resp. C′) are of order greater than or equal
to m + 1 (resp. 2m + 1), it is straightforward to notice that the right hand side of
equation (6.1.1) is of order greater than or equal to 2m + 1 modulo a vector field r ′′′

Σ

vanishing on Σ.
Let α be a nonzero weight of S of degree less than or equal to 2m. Let us find

a solution Um,α belonging to Op(Um) ⊗ X m+1
n,α of the cohomological equation

[NFm, Um,α](x, u) + DuNFm(x, u)Dπ(x)Um,α(x, u) = Bm+1,2m
α (x, u).

Here Bm+1,2m
α denotes the projection of Bm+1,2m onto the α-weight space. Let us write

the cohomological equation as follows:

[NFm, Um,α](x, u) =
l∑

j=1

am
j (u)[Sj, Um,α]

=
⎛
⎝ l∑

j=1

am−1
j (u)α(g j )

⎞
⎠Um,α(x, u).(6.1.2)

Let us set

Am,α(u) :=
l∑

j=1

am
j (u)α(g j ),

Dm(Um) := DuNFm(x, u)Dπ(x)Um(x, u)

=
l∑

j=1

Duam
j (x, u)Dπ(x)Um(x, u)Sj,

U ′′
m := U ′

m \ ∪α∈W m+1,2m
n,∗ {u ∈ U ′

m | Am,α(u) = 0}.

The operator Dm is nilpotent with Dm ◦ Dm = 0. In fact, since the Lie derivative of
(each component of ) π along the Si’s vanishes, we have Dπ(x)Dm(Um) = 0.

Let us set, on Dn(0, Rm) × U ′′
m

Um,α(x, u) :=
(

Id − Dm

Am,α(u)

)
Bm+1,2m

α (x, u)
Am,α(u)

.(6.1.3)

This vector field belongs to Op(U ′′
m ) ⊗ X m+1

n,α (Dn(0, Rm)). First of all, since Bm+1,2m
α is

of order greater than or equal to m + 1, so is Dm(Bm+1,2m
α ). Since Am,α(u) is a function

of u, Um,α is of order greater than or equal to m + 1.
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According to (6.1.2) and the properties of the operator Dm, we have

[NFm, Um,α] + DuNFm(x, u)Dπ(x)Um,α(x, u)

= Am,α(x, u)Um,α + Dm(Um,α)

=
(

Bm+1,2m
α

Am,α(u)
− Dm

(
Bm+1,2m

α

)
A2

m,α(u)

)

+ Dm

(
Bm+1,2m

α

Am,α(u)
− Dm

(
Bm+1,2m

α

)
A2

m,α(u)

)

= Bm+1,2m
α .

Let us set Um := ∑
α �=0 Um,α, the sum being taken over the set of nonzero weights of

S into Pm+1,2m
n . Then, we have

[NFm, Um] + DuNFm(x, u)Dπ(x)Um(x, u) = Bm+1,2m
+ ,

where Bm+1,2m
+ denotes Bm+1,2m − Bm+1,2m

0 . Let us set

NF2m(x, u) := NFm(x, u) + Bm+1,2m
0|Σ (x, u).

Then, (Φ̃m)∗X̃m( y, v) = NF2m( y, v)+ C̃′( y, v)+ r̃ ′
Σ( y, v) is normalized up to order 2m.

Here, C̃′( y, v) stands for a fibered vector field over a vector field of order greater than
or equal to 2m + 1. The vector field r̃ ′

Σ is defined to be

(Φ̃m)∗ r̃Σ + B̃m+1,2m
0 − B̃m+1,2m

0|Σ ,

and vanishes on Σ.

6.2. Estimate for the solution of the cohomological equation

We recall that

NFm(x, u) =
l∑

j=1

am(u)Sj

where the am
j ’s belongs to Op(Um) and where we have m = 2k. By assumption, Kk−1 is

a nonvoid compact set of π(Dn(0, ρ)). Let us define the compact set on π(Dn(0, ρ))

Kk =
⎧⎨
⎩b ∈ Kk−1 | ∀α ∈ W 2k+1,2k+1

n,∗

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

am
j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωk+1

⎫⎬
⎭ .

Let us assume that Kk �= ∅. Let us set

Λ := max
1≤i≤n,1≤ j≤l

|λi(g j)|.



130 LAURENT STOLOVITCH

FIG. 3. — The domain π−1(Dp(b, tm)) is a thickening neighborhood of the fiber π−1(b)

Proposition 6.2.1. — Let r > 1/2, and b ∈ Kk which assumed to be nonvoid. Let us set

tm := γ
ωk+1

2lΛ(2m + 1)
.

If ‖D(am(u))‖Dp(b,tm) ≤ 1, then there exists a positive number c1 such that, for any nonzero weight

α of S in Pm+1,2m
n , the solution of the cohomological equation (6.1.3) satisfies

|Um,α|Dp(b,tm),r ≤ c1

γ 2ω2
k+1

∣∣Bm+1,2m
α

∣∣
Dp(b,tm),r

.

Proof. — Let α be a nonzero weight of S into Pm+1,2m
n . Then there exists a multi-

index Q = (q1, ..., qn) ∈ Nn, m + 1 ≤ |Q | ≤ 2m and an index 1 ≤ i ≤ n such that

α(g) = αQ ,i(g) =
n∑

j=1

q jλj(g) − λi(g).

On the set Dp(b, tm), we have the following estimate:∣∣∣∣∣
l∑

j=1

(
am

j (u) − am
j (b)

)
α(g j)

∣∣∣∣∣ ≤ γ
ωk+1

4Λ(2m + 1)
max

j
|α(g j)|.

Since |α(g j)| ≤ (2m + 1) maxi |λi(g j)|, then we have, on Dp(b, tm),∣∣∣∣∣
l∑

j=1

(
am

j (u) − am
j (b)

)
α(g j)

∣∣∣∣∣ ≤ γ
ωk+1

2
.(6.2.1)
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Since b ∈ Kk, then∣∣∣∣∣
l∑

j=1

am
j (b)α(g j)

∣∣∣∣∣ =
∣∣∣∣∣α

(
l∑

j=1

am
j (b)g j

)∣∣∣∣∣ ≥ γωk+1.

Therefore, on Dp(b, tm), we have the following estimate

|Am,α(u)| =
∣∣∣∣∣

l∑
j=1

am
j (u)α(g j )

∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣∣

l∑
j=1

am
j (b)α(g j)

∣∣∣∣∣ −
∣∣∣∣∣

l∑
j=1

(
am

j (u) − am
j (b)

)
α(g j)

∣∣∣∣∣
∣∣∣∣∣

≥ γ
ωk+1

2
.(6.2.2)

Let us set mr := max1≤ j≤l |Sj|r|Dπ|r. Then, we have

|DuNFm(x, u)Dπ(x)Um,α(x, u)|Dp(b,tm),r ≤ lpnmr|U|Dp(b,tm),r‖Du(am)(u)‖Dp(b,tm).

By equation (6.1.3), we obtain the following estimate:

|Um,α|Dp(b,tm),r ≤
4
∣∣Bm+1,2m

α

∣∣
Dp(b,tm),r

γ 2ω2
k+1

(
γ

ωk+1

2
+ pnlmr‖D(am(u)‖Dp(b,tm)

)
.

Since ωk+1 ≤ 1 and γ ≤ γ ′ then, there exists a positive constant c1 such that

|Um,α|Dp(b,tm),r ≤ c1

γ 2ω2
k+1

∣∣Bm+1,2m
α

∣∣
Dp(b,tm),r

.(6.2.3)

This ends the proof of the proposition. ��
In what follows, we shall set

γ−m
k := c1

γ 2ω2
k+1

,(6.2.4)

and we may assume that γk ≤ 1.

7. The induction process

We assume that 1/2 < r ≤ 1 and let m = 2k be an integer greater than or equal
to some positive integer N0 (N0 is greater than 1 and is to be set in the sequel). We
define the positive numbers

γk =
(

c1

γ 2ω2
k+1

)−1/m

, θk := γkm−2/m, ri := θ i
kr, i = 1, ..., 4,
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Let us set

NFm,b(r) =
{

X ∈ Op(Dp(b, tm/2)) ⊗ P1
n | |X|Dp(b,tm),r < 1 − 1

m3
,

|Du(X)|Dp(b,tm),r < 1/(2l|L−1|) − 1
m2

}
,

Bm+1,b(r) =
{

X ∈ Op(Dp(b, tm)) ⊗ X m+1
n | |X|Dp(b,tm),r <

25n
m4

}
.

We assume that 25n/m4 is less than 1. This can always be achieved for m is sufficiently
large.

We shall assume that |b|+ t2m ≤ (r3)
|Ri |, for all i = 1, ..., p. This will enable

us to apply the Remark 2.1.1.
The aim of this section is to prove the following result:

Proposition 7.0.2. — With the above notation, let b ∈ Kk−1. We assume X̃m is normalized

up to order m along Σ. Hence, we have

pr1(X̃m) = NFm(x, u) + Rm+1 + rΣ

with

NFm(x, u) =
l∑

j=1

am
j (u)Sj,

and where Rm+1 is of order greater than or equal to m + 1 and rΣ vanishes on Σ. Let Φ̃m be the

diffeomorphism which normalizes Xm up to order 2m as defined above. Let us write

pr1((Φ̃m)∗X̃m) = NF2m + R′
2m+1 + r ′

Σ.

Let us assume that (NFm, Rm+1) ∈ NFm,b(r) × Bm+1,b(r). If b ∈ Kk and if m is

sufficiently large (say ≥ 2k0 independent of r and b), then

1. Dn(0, r4) × Dp(b, t2m) ⊂ Φ̃m(Dn(0, r) × Dp(b, tm)),

2. (NF2m, R′
2m+1) ∈ NF2m,b(r5) × B2m+1,b(r5).

7.1. From estimates on NFm to estimates on am−1

As we have seen above, our proposition rests on the assumption that the quan-
tity ‖D(am)(u)‖Dp(b,tm) is less than 1. Nevertheless, the only quantity which can be easily
estimated (in particular, through the induction process) is |Du(NFm)|Dp(b,tm),r as well as
|NFm|Dp(b,tm),r. The next lemma translates the estimates Du(NFm) and NFm into an es-
timate for ‖D(am)‖Dp(b,tm).
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By definition, we have, for any integer 1 ≤ i ≤ l,

Sj =
n∑

k=1

λj,kxk
∂

∂xk
,

NFm(x, u) =
l∑

j=1

am
j (u)Sj :=

n∑
k=1

xk gk(u)
∂

∂xk
,

with

gk(u) =
⎛
⎝ l∑

j=1

λj,kam
j (u)

⎞
⎠ .

This can be rewritten under the following form⎛
⎜⎜⎜⎝

g1(u)
...
...

gn(u)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

λ1,1 ... λl,1
...

...
...

...

λ1,n ... λl,n

⎞
⎟⎟⎟⎠

⎛
⎜⎝

am
1 (u)
...

am
l (u)

⎞
⎟⎠ .

We recall that l is less than or equal to n. Since the Si’s are linearly independent
over C, the matrix (λj,i)1≤i≤n

1≤ j≤l
has rank l. Without any loss of generality, we can as-

sume that the matrix L := (λj,i)1≤i, j≤l is invertible with L−1 := (λ̃i, j)1≤i, j≤l as inverse.

Lemma 7.1.1. — Let 1/2 < r ≤ 1 and let η1 be a positive number. Let us set η :=
1

2l|L−1| . If |NFm|Dp(b,tm),r is less than ηη1 and |Du(NFm)|Dp(b,tm),r is less than η, then we have

max
j

∥∥Duam
j (u)

∥∥
Dp(b,tm)

< 1

max
j

∥∥am
j (u)

∥∥
Dp(b,tm)

< η1.

Moreover, we have

max
j

∥∥a2m
j (u) − am

j (u)
∥∥

Dp(b,tm)
≤ 2l|L−1||NF2m − NFm|Dp(b,tm),r.

Proof. — We can write, for any integer 1 ≤ j ≤ l,

am
j (u) =

l∑
k=1

λ̃j,k gk(u).

Since r is greater than 1/2, we have

‖gk(u)‖Dp(b,tm) ≤ 2r‖gk(u)‖Dp(b,tm) ≤ 2|xk g̃k(u)|Dp(b,tm),r ≤ 2|NFm|Dp(b,tm),r.
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As a consequence, we obtain

max
j

∥∥am
j (u)

∥∥
Dp(b,tm)

≤ 2l|L−1||NFm|Dp(b,tm),r.(7.1.1)

On the other hand, for any integer 1 ≤ k ≤ n, we have

∂NFm

∂uk
=

l∑
j=1

∂am
j (u)

∂uk
Sj =:

n∑
i=1

xiGk
i (u)

∂

∂xi
.

As above, for any integers 1 ≤ j ≤ l and 1 ≤ k ≤ n, we have

∂am
j (u)

∂uk
=

l∑
i=1

λ̃j,iGk
i (u).

Therefore, we obtain the following estimate:∥∥∥∥∂am
j (u)

∂uk

∥∥∥∥
Dp(b,tm)

≤ l|L−1| max
i

∥∥Gk
i (u)

∥∥
Dp(b,tm)

≤ 2l|L−1| max
i

∣∣xiGk
i (u)

∣∣
Dp(b,tm),r

≤ 2l|L−1|
∣∣∣∣∂NFm

∂uk

∣∣∣∣
Dp(b,tm),r

.

Let us set η := 1
2l|L−1| . Let us assume that |NFm|Dp(b,tm),r is less than ηη1 and

that |∂NFm/∂uk|Dp(b,tm),r is less the η. Then |∂am
j (u)/∂uk|Dp(b,tm),r is less than 1 and

maxj |am
j (u)|Dp(b,tm),r is less than η1. The last statement of the lemma is proved by es-

timates (7.1.1) applied to a2m−1
j − am

j instead of am
j . ��

7.2. The image of Dn(0, r) × Dp(b, tm) by Φ̃m and its inclusions

The aim of this section is to prove the following proposition:

Proposition 7.2.1. — Let 1/2 < r ≤ 1 and let b belongs to Kk. We assume that

max
j

∥∥D
(
am

j

)∥∥
Dp(b,tm)

< 1 and max
j

∥∥a2m
j − am

j

∥∥
Dp(b,tm)

< 2l|L−1|.

If m is sufficiently large then, for any positive numbers ν, ν′ and ν′′ such that ν < 2ν′ and

ν′ + 1/6 < ν′′ ≤ 1 and for any integer q = 0, 1, we have

Dn(0, rq+2) × Dp(b, t2m) ⊂ Φ̃m

(
Dn(0, rq+1) × Dp(b, tm)

)
.
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Lemma 7.2.2. — Let q be a nonnegative integer. Under the assumptions of Proposition 7.2.1

and if m is sufficiently large (say m ≥ m2(q)) then, for all 0 ≤ ν′, ν′′ ≤ 1 such that 84ν′′ −
36ν′ > 9, the ε-neighborhood of Dn(0, rq+1)×Dp(b, ν′t2m) is included in Dn(0, rq)×Dp(b, ν′′tm)

with

ε = γωk+1

24lΛ(2m + 1)
.

Proof. — First of all, let us show that rp − rp+1 is greater than ε. In fact, since r
is less than 1/2, we have

θ
p
k r − θ

p+1
k r = θ

p
k r(1 − θk)

= (
γkm−2/m

)p
r
(
1 − γkm−2/m

)
=

(
γ 2ω2

k+1

c1

)p/m

m−2p/mr

(
1 −

(
γ 2ω2

k+1

c1

)1/m

m−2/m

)

> 1/2
(

γ 2ω2
k+1

c1

)p/m

m−2p/m

(
1 −

(
γ 2ω2

k+1

c1

)1/m

m−2/m

)
.

We want to show that, if m is sufficiently large,

2d
24plΛ(2m + 1)

< m−2p/m

(
d2

c1

)p/m
(

1 −
(

d2

c1

)1/m

m−2/m

)
(7.2.1)

where we have set d := γωk+1. By assumption, the serie

−
∑
k∈N∗

ln ωk+1

2k

converges; thus its general term tends to zero as k tends to infinity. By applying the
logarithm, we conclude that

lim
k→+∞

(
γ 2ω2

k+1

c1

)1/m

= 1.

We recall that m = 2k. Therefore, there exists an integer m1 = 2k1 such that, for any
m = 2k ≥ m1, we have(

d2

c1

)1/m

> 1/2.

On the other hand, we have(
d2

c1

)1/m

m−2/m < 1.
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Thus, in order to prove inequality (7.2.1), it is sufficient to prove, that if m ≥ m1 is
sufficiently large, then

2d
24plΛ(2m + 1)

<
m−2p/m

2p

(
1 −

(
d2

c1

)1/m

m−2/m

)
.

Let f be the function of x > 0 defined to be

f (x) = 2
24plΛ(2x + 1)

+ 1
2p

x−2p/x
(
x−2/x − 1

)
.

Since d2/c1 ≤ 1 and d ≤ 1, we have, for all m ∈ N∗,

2d
24plΛ(2m + 1)

+ m−2p/m

2p

((
d2

c1

)1/m

m−2/m − 1

)
≤ f (m).

Since both x−2/x and x−2p/x tends to 1 as x tends to plus infinity, we conclude that
f (x) tends to zero as x tends to plus infinity. The computation of the derivative of f
shows that:

x2f ′(x) = 1
2p

(−2(p + 1)(1 − ln x)x−2( p+1)/x + 2p(1 − ln x)x−2p/x
)

− 2d
12plΛ(2 + 1/x)2

= (1 − ln x)x−2p/x(2p − 2(p + 1)x−2/x) − 2d
12plΛ(2 + 1/x)2

.

Therefore when x tends to plus infinity, so does x2f ′(x), so f is increasing from a cer-
tain point on and vanishes at infinity. Thus, there is a nonnegative integer m0 from
which f is negative; m0 depends only on l, Λ and p.

As a conclusion, if m is greater than or equal to m2 = sup(m0, m1), then

2d
24plΛ(2m + 1)

+
(

d2

c1

)( p+1)/m m−2( p+1)/m

2p
<

(
d2

c1

)p/m m−2p/m

2p
.

This means that rp − rp+1 is greater than ε. Since

ν′/(4m + 1) + 1/(12(2m + 1)) < ν′′/((2m + 1))

and ωk+2 ≤ ωk+1, we have

ν′t2m + ε ≤
(

ν′

4m + 1
+ 1

12(2m + 1)

)
γωk+1

2lΛ
< ν′′tm.

This concludes the proof. ��
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Lemma 7.2.3. — Let q be a nonnegative integer. Under the assumptions of Proposition 7.2.1

and if m sufficiently large (say m ≥ m3) then, for any 0 ≤ ν′, ν′′ ≤ 1 such that 84ν′′ −36ν′ > 9,

we have

Φ̃−1
m (Dn(0, rq+2) × Dp(b, ν′t2m)) ⊂ Dn(0, rq+1) × Dp(b, ν′′tm).

Proof. — First of all, for any (u, x) ∈ Dn(0, rp+2) × Dp(b, ν′t2m), we have

|Um(x, u)| ≤ |Um|Dp(b,ν′t2m),rp+2 ≤ |Um|Dp(b,tm),rp+2

≤
(
θ

p+2
k

)m+1 |Um|Dp(b,tm),r

≤ θ
p(m+1)+2
k

(
γ 2

k m−4/m
)m |Um|V 1

m,b,r
(7.2.2)

≤ θ
p+2
k

(
γ 2

k m−4/m
)m |Um|Dp(b,tm),r

≤ θ
p+2
k

(
γ 2

k m−4/m
)m

γ−m
k

≤ θ
p+2
k γ m

k m−4

≤ θ
p+2
k

γ 2ω2
k+1

c1m4
.(7.2.3)

The third (resp. fifth, sixth) inequality is due to the fact that Um is of order greater than
or equal to m + 1 (resp. θ

p(m+1)

k less than or equal to θ
p
k , |Bm+1,2m|Dp(b,tm),r less than 1).

Let us set

M := sup
x∈Dn(0,1)

n|Dπ(x)|.(7.2.4)

If m is sufficiently large (say m greater than or equal to m′
2), we have

max(1, M)
(
γ 2

k m−4/m
) γ 2ω2

k+1

c1m4
<

γωk+1

24lΛ(2m + 1)
= ε,

since ωk+1 is less than or equal to 1. On the other hand, we have

|π(x + Um(u, x)) − π(x)| ≤ M|Um(u, x)|
since the point x + Um(u, x) belongs to Dn(0, 1).

Let us set m3 = max(m2, m′
2). We can conclude the proof by applying the previ-

ous lemma to

Φ̃m(u, x) = (x + Um(u, x), u + π(x + Um(u, x)) − π(x)).
��
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7.3. Estimates from the induction process

Let us assume that X̃m is normalized up to order m = 2k along Σ and let us set
pr1(X̃m) = NFm +B+C+ rΣ where B belongs to Op(Dp(b, ν′tm))⊗X m+1

n and C belongs
to Op(Dp(b, ν′tm)) ⊗ X 2m+1

n . We assume that NFm belongs to NFm(r) and that B + C
belongs to Bm+1(r).

Let Φ̃m be the normalizing diffeomorphism of the previous section. Let us set
y = pr1Φ̃m(x, u) as well as

Φ̃∗
mX( y, v) = NFm( y, v) + B′( y, v) + C′( y, v) + r ′

Σ( y, v)
=: Z( y, v) + r ′

Σ( y, v)

where B′ belongs to Op(Dp(b, ν′′tm)) ⊗ Pm+1,2m
n and C′ belongs to Op(Dp(b, ν′′tm))

⊗ X 2m+1
n . In order to give an estimate for C′, we shall use the following equality:

C′( y, v) = (
NFm

(
Φ̃−1

m ( y, v)
) − NFm(v, y)

) + (B + C)
(
Φ̃−1

m ( y, v)
)

− B′( y, v) − (
Dy(Um)( y, v) + Dv(Um)( y, v)Dπ( y)

)
Z( y, v).

Therefore, we obtain the following estimate:

‖C′‖Dp(b,t2m),r3 ≤ ∥∥NFm ◦ Φ̃−1
m − NFm

∥∥
Dp(b,t2m),r3

+ ∥∥(B + C) ◦ Φ̃−1
m

∥∥
Dp(b,t2m),r3

+ ‖Dy(Um)(NFm + B′ + C′)‖Dp(b,t2m),r3 + |B′|Dp(b,t2m),r3

+ ‖Dv(Um)( y, v)Dπ( y)(B′ + C′)‖Dp(b,t2m),r3 .

According to Lemma 7.2.3, we have

Φ̃−1
m (Dn(0, r3) × Dp(b, t2m)) ⊂ Dn(0, r2) × Dp(b, ν′tm).

Therefore we have

∥∥(B + C) ◦ Φ̃−1
m

∥∥
Dp(b,t2m),r3

≤ ‖(B + C)‖Dp(b,ν′tm),r2 ≤ |(B + C)|Dp(b,ν′tm),r2

≤
( r2

r

)m+1 |B + C|Dp(b,tm),r

≤
(

γ 2ω2
k+1

c1

)2+2/m

m−4−4/m

≤ 1
m4

.
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Let us set z := Um( y, v) = x − y, w := π( y + Um( y, v)) − π( y) = u − v and M′ =
(n + p) max(1, M). For the same reason as above, we have the following estimates:∥∥NFm ◦ Φ−1

m − NFm
∥∥

Dp(b,t2m),r3

≤
∥∥∥∥
∫ 1

0
D(NFm)

(
y + tz, v + tw

)
(z, w)dt

∥∥∥∥
Dp(b,t2m),r3

≤ |D(NFm)|Dp(b,ν′tm),r2, M′|Um|Dp(b,t2m),r3

≤ M′|D(NFm)|Dp(b,ν′tm),r2

γ 2ω2
k+1γ

3
k m−6/m

c1m4
(7.3.1)

≤ M′|D(NFm)|Dp(b,ν′tm),r2

1
m4

≤ M′(2l|L−1| max
j

|Sj|1 + 1/(2l|L−1|)) 1
m4

.

The second inequality comes from Proposition 7.2.2 while the last one comes from
the fact that, by assumption,

D(NFm)( y, v) =
l∑

j=1

(aj(v)Dy(Sj)) + Dv(NFm)( y, v).

In order to get a good estimate for C′, we need to give an estimate of
‖D(Um)‖Dp(b,ν′tm),r2 . In the next few lines, we shall relate |D(Um)|Dp(b,ν′tm),r2 to
|Um|Dp(b,tm),r.

Let f belongs to Op(Dp(b, t)) ⊗ M m+1
n (Dn(0, rp)). Let us assume that | f |Dp(b,t),rp

is finite. It can be written

f ( y, v) =
∑

m+1≤|Q |
fQ (v)yQ

where the fQ ’s belong to Op(Dp(b, t)). For 1 ≤ i ≤ n and 1 ≤ j ≤ p, we have

∂f
∂yi

=
∑

m+1≤|Q |
qi fQ (v)

yQ

yi
,

∂f
∂vj

=
∑

m+1≤|Q |

∂fQ
∂vj

yQ .

According to Cauchy estimates, we have

‖ fQ ‖Dp(b,t) ≤ | f |Dp(b,t),rp

r|Q |
p

.
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Hence, ∣∣∣∣ ∂f
∂yi

∣∣∣∣
Dp(b,t),rp+2

≤ | f |Dp(b,t),rp

rp+2

∑
m+1≤|Q |

qi

(
rp+2

rp

)Q

≤ | f |Dp(b,t),rp

rp+2

∑
m+1≤|Q |

qiθ
2|Q |
k .

The number of monomials of order k in n variables is equal to (k+1)···(k+n)
n! and it is less

than or equal to (2k)n/n! if k ≥ n. In this case, we have

∑
|Q |≥m+1

qiθ
2|Q |
k ≤

∑
q≥m+1

(2q)n+1θ
2q
k

n! .

If m is large enough, (2q)n+1θ
q
k /n! is less than or equal to 1 when q ≥ m + 1. In fact,

we have

(2q)n+1θ
q
k /n! ≤ 2n+1

n!
(

−n + 1
ln θk

)
θ

−(n+1)/ lnθk
k

≤ 2n+1

n!
m(m + 1)

2 ln m + ln
(
c/γ 2ω2

k+1

) e−(m+1).

Hence, we have

∑
|Q |≥m+1

θ
2|Q |
k ≤

∑
q≥m+1

θ
q
k = θm+1

k

1 − θk
.

As a consequence, we have∣∣∣∣ ∂f
∂yi

∣∣∣∣
Dp(b,t),rp+2

≤ | f |Dp(b,t),rp

θm+1
k

rp+2(1 − θk)
.(7.3.2)

Let 0 < t ′ < t be such that t − t ′ > ε, we have∣∣∣∣ ∂f
∂vj

∣∣∣∣
Dp(b,t ′),rp

=
∑

m+1≤|Q |

∥∥∥∥∂fQ
∂vi

∥∥∥∥
Dp(b,t ′)

r|Q |
p .

By Cauchy integral formula, we obtain∥∥∥∥∂fQ
∂vi

∥∥∥∥
Dp(b,t ′)

≤ ‖ f ‖Dp(b,t)

ε
,
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hence ∣∣∣∣ ∂f
∂vi

∣∣∣∣
Dp(b,t ′),rp

≤ | f |Dp(b,t),rp

ε
.(7.3.3)

We recall that

ε = γωk+1

24lΛ(2m + 1)
.

Since B + C is of order greater than or equal to m + 1, we have

|B′|Dp(b,t2m),r3 ≤ |B + C|Dp(b,t2m),r3

≤ θ
3(m+1)

k |B + C|Dp(b,tm),r

≤ γ 6ω6
k+1

c3
1m6

|B + C|Dp(b,tm),r(7.3.4)

≤ 1
m6

.

From this estimate and using the Remark 2.1.1, we obtain:

|NF2m|Dp(b,t2m),r3 ≤ |NFm|Dp(b,t2m),r3 + |B′
|Σ|Dp(b,t2m),r3

≤ |NFm|Dp(b,tm),r + |B′|Dp(b,t2m),r3

≤ 1 − 1
(m)3

+ 1
m6

≤ 1 − 1
(2m)3

if m > 3
√

8/7.

Let us set Z := NFm + B′ + C′. On the other hand, we have∥∥DyUmZ
∥∥

Dp(b,t2m),r3
≤ n‖DyUm‖Dp(b,t2m),r3

(‖Z‖Dp(b,t2m),r3

)
≤ n (θk)

m+1

r3(1 − θk)
|Um|Dp(b,tm),r1

×
(

1 − 1
(2m)3

+ ‖C′‖Dp(b,t2m),r3

)

≤ 2n (θk)
2m−1

(1 − θk)
|Um|Dp(b,tm),r

×
(

1 − 1
(2m)3

+ ‖C′‖Dp(b,t2m),r3

)

≤ 2n (θk)
m−1

m2(1 − θk)

(
1 − 1

(2m)3
+ ‖C′‖Dp(b,t2m),r3

)
.
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The last inequality comes from the fact that |Um|Dp(b,tm),r is less than or equal to γ−m
k

as well as θm
k = γ m

k m−2. Let us show that, if m ≥ m′′
4 is sufficiently large, then we have∣∣∣∣1 − γ 2ω2

k+1

c1m2

∣∣∣∣ > θk.(7.3.5)

Since γ 2ω2
k+1

c1
≤ 1, we have∣∣∣∣1 − γ 2ω2

k+1

c1m2

∣∣∣∣ ≥ |1 − m−2|
as well as

m−2/m ≥
(

c1

γ 2ω2
k+1

)−1/m

m−2/m.

Therefore, it is sufficient to show that:

|1 − m−2| > m−2/m.

For that purpose, let f be the function of the real variable x which is assumed to be
greater than or equal to 2 and defined to be

f (x) = 1 − x−2 − x−2/x.

We have x2f ′(x) = 2x−1 + 2(1 − ln x)x−2/x. Since x2f ′(x) tends to minus infinity as x
tends to plus infinity, the function f is decreasing from a certain point on. But since
f (x) tends to zero as x tends to plus infinity, f is positive from a certain point m′′

3 on.
Therefore, if m ≥ m′′

4 ≥ m′′
3, then

2n (θk)
m−1

m2(1 − θk)
≤ 2nc1

γ 2ω2
k+1

m−2+2/m

(
γ 2ω2

k+1

c1

)1−1/m

≤ 2n
m2

.

As a consequence, if m is large enough, we have∥∥DyUmZ
∥∥

Dp(b,t2m),r3
≤ 2n

m2

(
1 − 1

(2m)3
+ ‖C′‖Dp(b,t2m),r3

)
.(7.3.6)

Using (7.3.3), we have

‖Dv(Um)Dπ(x)(B′ + C′)‖Dp(b,t2m),r3 ≤ pM
ε

|Um|Dp(b,tm),r3‖B′ + C′‖Dp(b,t2m),r3

≤ 24pMlΛ(2m + 1)θ
3(m+1)

k γ−m
k

γωk+1

(
1/m6 + ‖C′‖Dp(b,t2m),r3

)
≤ 72pMlΛ

m5c6
1

γ 5ω5
k+1

(
1/m6 + ‖C′‖Dp(b,t2m),r3

)
.
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Since B′ is of order greater than or equal to m + 1, we have

|Dv(B′
|Σ)|Dp(b,t2m),r3 ≤ ε−1|B′

|Σ|Dp(b,tm),r3

≤ ε−1θ
3(m+1)

k |B′|Dp(b,tm),r

≤ 72lΛγ 5ω5
k+1

c6
1m5

.

Therefore, we have

|Dv(NF2m)|Dp(b,t2m),r3 ≤ |Dv(NFm)|Dp(b,t2m),r3 + |Dv(B′
|Σ)|Dp(b,t2m),r3

≤ 1/(2l|L−1|) − 1/m2 + 72lΛγ 5ω5
k+1

c6
1m5

< 1/(2l|L−1|) − 1/(2m)2 if m3 >
144lΛγ 5

c6
1

.

We just have shown that NF2m ∈ NF2m(r3).
At last, we have

‖C′‖Dp(b,t2m),r3 ≤
(

1 + M′(2l|L−1| max
j

|Sj|1 + 1/(2l|L−1|))) 1
m4

+ 2n
m2

(
1 − 1

(2m)3
+ ‖C′‖Dp(b,t2m),r3

)

+ 72pMlΛ
m5c6

1

γ 5ω5
k+1

(
1/m6 + ‖C′‖Dp(b,t2m),r3

)
.

If m is large enough, we have

2n
m2

+ 72pMlΛ
m5c6

1

γ 5ω5
k+1 ≤ 1/2,

as well as

A
m4

− 2n
8m5

+ 72pMlΛ
m11c6

1

γ 5ω5
k+1 ≤ 2n

m2
,

where A := (
1 + M′(2l|L−1| maxj |Sj|1 + 1/(2l|L−1|))). Hence, we have

‖C′‖Dp(b,t2m),r3 <
2n
m2

.



144 LAURENT STOLOVITCH

Using Cauchy estimates with C′, which is of order greater than or equal to 2m + 1,
we have

|C′|Dp(b,t2m),r5 ≤
∑

|Q |≥2m+1

‖cQ ‖Dp(b,t2m),r5 r
Q
5

≤ ‖C′‖Dp(b,t2m),r3

∑
|Q |≥2m+1

(
r5

r3

)Q

≤ ‖C′‖Dp(b,t2m),r3

∑
|Q |≥2m+1

θ
2|Q |
k

≤ ‖C′‖Dp(b,t2m),r3θ
2m+1
k

1 − θk

≤ ‖C′‖Dp(b,t2m),r3

c1m2

γ 2ω2
k+1

θ2m
k

≤ ‖C′‖Dp(b,t2m),r3

1
m2

≤ 2n
m4

.

8. Proof of the existence of an invariant analytic set

Let 1/2 < r ≤ 1 be a positive number and let {Rk}k≥0 be the sequence of positive
real numbers defined by induction as follows:

R0 = r

Rk+1 = γ 5
k m−10/mRk where m = 2k.

Lemma 8.0.1. — The sequence {Rk}k≥0 converges to a positive number and there exists an

integer k1 such that, for all k > k1, Rk > Rk1/2.

Proof. — We recall that

γk =
(

c1(η1)

γ 2ω2
k+1

)−1/2k

.

Since we have

Rk+1 = r
k∏

i=1

γ 5
i (2i)−2−i10

then, by applying the logarithm, we obtain

ln Rk+1 = ln r + 10
k∑

i=1

ln ωi+1

2i
− 5 ln

(
c1/γ

2
) k∑

i=1

1
2i

− 10 ln 2
k∑

i=1

i
2i

.
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The last two sums of the right hand side are convergent series, so is the first one since
ω is a diophantine sequence. Therefore, there exists an integer k1 such that

+∞∏
i=k1+1

γ 5
i (2i)−2−i10 > 1/2.

Thus, if k > k1 then, we have

Rk = Rk1

k∏
i=k1+1

γ 5
i (2i)−2−i10 >

Rm1

2
.

��

8.1. The sequence of inverse diffeomorphisms converges to a holomorphic map Θb on

Dn(0, 1/2) × {b}
Let us assume that X = X0 + RM0+1 is a perturbation of order M0 + 1 = 2K

0 + 1
of X0. Let X̃ = NFM0(x, u) + R̃M0+1(x, u) be fibered along Σ over X such that
R̃M0+1|Σ = RM0+1 and NFM0(x, u) = ∑l

j=1 aj(u)Sj(x) = X0|Σ.
We assume that X̃ is a good perturbation of NFM0 and that K∞ is not

empty. Let b ∈ K∞. Let us assume that(
NFM0, RM0+1

) ∈ NFM0,b(1) × Bm+1,b(1).

As above, we may define the sequence of positive real numbers {Rk}k≥K0 , with
RK0 = 1. Thus, for any integer k greater than K0, we have 1/2 < Rk ≤ 1. Let
us prove by induction on k ≥ K0, that there exists a fibered diffeomorphism Ψ̃k of
(Cn+p, (0, b)) such that the vector field

Ψ̃∗
k

(
NFM0 + R̃M0+1

) := NF2k+1 + R̃2k+1+1 mod Σ

is normalized up to order 2k+1 along Σ, (NF2k+1
, R2k+1+1) belongs to the space

NF2k+1,b(Rk+1) × B2k+1+1,b(Rk+1) and

∥∥Id − Ψ̃−1
k

∥∥
Dp(b,t2M0 ),RK0+1

≤ max(1, M)

k∑
p=K0

1
24p

.

Here we have set ‖ . ‖Dp(b,t2M0 ),RK0+1 := ‖ . ‖Dp(b,t2M0 )×Dn(0,RK0+1).

– For k = K0: according to Proposition 7.0.2, there exists a diffeomorphism
Φ̃M0 such that Φ̃∗

M0
(NFM0 + R̃M0+1) = NF2M0 + R̃2M0+1 mod Σ is normalized

up to order 2M0 along Σ and (NF2M0, R2M0+1) belongs to NF2M0,b(RK+1) ×
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B2M0+1,b(RK0+1). Moreover, we have∥∥Id − Φ̃−1
M0

∥∥
Dp(b,t2M0 ),RK0+1

≤ ‖(UM0, π(Id + UM0) − π)‖Dp(b,t2M0),RK0+1

≤ max(1, M)‖UM0‖Dp(b,t2M0),RK0+1

≤ max(1, M)/m4.

The last inequality is due to estimate (7.2.3).
– Let us assume that the result holds for all integers less than or equal to k − 1:

by assumptions, the vector field

(Ψ̃k−1)∗
(
NFK + R̃K+1 mod Σ

) = NF2k + R̃2k+1 mod Σ

is normalized up to order 2k along Σ. Moreover, (NF2k
, R̃2k+1) belongs to

NF2k,b(Rk)×B2k+1,b(Rk). According to Lemma 8.0.1, we have 1/2 < Rk ≤ 1
and b belongs to Kk. Thus, we may apply Proposition 7.0.2: there exists a dif-
feomorphism Φ2k such that the vector field

˜(Φ2k ◦ Ψk−1)∗
(
NFM + R̃M+1 mod Σ

) = NF2k+1 + R̃2k+1+1 mod Σ

is normalized up to order 2k+1 along Σ. Moreover, (NF2k+1
, R̃2k+1+1) belongs

to NF2k+1,b(Rk+1)×B2k+1+1,b(Rk+1). Let us set Ψ̃k = Φ̃2k ◦ Ψ̃k−1. According to
the first point of Proposition 7.0.2 and estimate (7.2.3), we have∥∥Id − Φ̃−1

k

∥∥
Dp(b,t2k+1 )×Dn(0,Rk+1)

< max(1, M)/24k.

It follows that∥∥Id − Ψ̃−1
k

∥∥
Dp(b,t2k+1 ),Rk+1

≤ ∥∥(
Id − Ψ̃−1

k−1

) ◦ Φ̃−1
2k + (

Id − Φ̃−1
2k

)∥∥
Dp(b,t2k+1 ),Rk+1

≤ ∥∥(
Id − Ψ̃−1

k−1

) ◦ Φ̃−1
2k

∥∥
Dp(b,t2k+1 ),Rk+1

+ ∥∥Id − Φ̃−1
2k

∥∥
Dp(b,t2k+1 ),Rk+1

≤ ∥∥(
Id − Ψ̃−1

k−1

)∥∥
Φ̃−1

2k (Dn(0,Rk+1)×Dp(b,t2k+1 ))

+ ∥∥Id − Φ̃−1
2k

∥∥
Dp(b,t2k+1 ),Rk+1

≤ max(1, M)

k−1∑
p=K

1
24p

+ max(1, M)

24k

≤ max(1, M)

+∞∑
p=1

1
24p

.

This ends the proof of the inductive step.
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According to Lemma 8.0.1, if RK = 1, Dn(0, 1/2) is contained in Dn(0, Rk) for
all integers k greater than or equal to K.

Let us choose a positive number ρ < 1/2 such that, if m is large enough,

tm + ρ|Ri | ≤
(

1
2

)|Ri|
, i = 1, ..., p.

It follows that Dn(0, ρ) × {b} is contained in Dn(0, Rk+1) × Dp(b, t2k+1). According to
the previous estimate, the sequence{

Ψ̃−1
k|Dn(0,ρ)×{b}

}
k≥K0

of holomorphic functions is a uniformly bounded sequence ( for the sup-norm) of holo-
morphic maps on Dn(0, ρ)×{b}. Therefore, according to Montel theorem, we can ex-
tract a subsequence which converges to a holomorphic map Θb on Dn(0, ρ) × {b}.
The set Θb(π

−1(b) ∩ Dn(0, ρ) × {b}) is included in the manifold Σ. In fact, by
construction, Φ̃m leaves Σ invariant (globally), so does Ψ̃k as well as Ψ̃−1

k .
On the other hand, we have

J2k+1

(
Ψ̃−1

k+1(x, u) −
(

x
u

))
=

∑
Q∈Nn

K0≤|Q |≤2k+1

ψQ (u)xQ .

where the ψQ ’s are vector valued functions which don’t depend on k. This follows
from the definition by induction of Ψ̃−1

k+1 and the fact that U2k+1(x, u) is of order greater
than or equal to 2k+1 + 1 (in x). Anyway, we can write

Ψ̃−1
k+1(x, u) =

∑
Q∈Nn

K0≤|Q |

ψQ ,k(u)xQ .

Let x be a point in Dn(0, ρ). Let us apply Cauchy inequalities to the ψQ ’s:

|ψQ ,k(b)| ≤
∥∥Ψ̃−1

k+1 − Id
∥∥

Dp(b,t2k+2 ),Rk+2

R|Q |
k+2

.

Therefore, we have the estimate:

∑
Q∈Nn

2k+1+1≤|Q |

∣∣ΨQ ,k(b)xQ
∣∣ ≤

∑
Q∈Nn

2k+1+1≤|Q |

∥∥Ψ̃−1
k+1 − Id

∥∥
Dp(b,t2k+2 ),Rk+2

R|Q |
k+2

|x||Q |.

According to Lemma 8.0.1, we have Rk+2 > 1/2 and |x| < 1/2. Thus, the series∑
Q∈Nn

K0≤|Q |≤2k+1

( |x|
Rk+2

)|Q |

converges.
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Therefore, the series J2k+1
(Ψ̃−1

k+1(x, b) − (x, b)) converges on Dn(0, ρ) to
Θb(x)− (x, b). Hence, Θb is a biholomorphism in a neighborhood of the origin in Cn.
We shall denote by Ψb its inverse. It follows that

Vb := Θb

(
π−1(b) ∩ Dn(0, ρ)

)
is a analytic subset of a neighborhood of the origin.

8.2. The biholomorphism Ψb conjugates the restriction of X on Vb to the restriction of

a linear diagonal vector field on π−1(b) ∩ Dn(0, ρ)

The sequence of linear vector fields{
NF2k

|Dn(0,1/2)×{b}
}

k≥K

is uniformly bounded on Dn(0, 1/2) × {b}. This is due to the second point of Propo-
sition 7.0.2 and to the fact that∣∣NF2k

|Dn(0,1/2)×{b}
∣∣ ≤ ∣∣NF2k∣∣

Dp(b,t2k ),Rk
.

Therefore, there is a subsequence which converges to a linear vector field

NFb(x) =
n∑

i=
ai(b)Si(x).

Let us show that the restriction of Ψb to Vb = Θb(π
−1(b)∩D0(ρ)×{b}) conjugates

the restriction of X̃ to Vb to the restriction of NFb( y) to the set π−1(b) ∩ D0(ρ) × {b}.
For any point y in π−1(b) ∩ Dn(0, ρ), let us set Ψ̃−1

k ( y, b) = (x, u). By construc-
tion, the point (x, u) still belongs to Σ. Moreover, we have(

Ψ̃−1
k

)
∗
(
NF2k + R̃2k+1 + r̃ k

Σ

)
(x, u) = X̃(x, u).

Hence, we have

X̃(x, u) = DΨ̃−1
k ( y, b)NF2k

( y, b) + DΨ̃−1
k ( y, b)R̃2k+1( y, b).

Since {Ψ̃−1
k ( y, b)} converges to Θb( y, b), {ÑF2k

( y, b)} converges to NFb( y) and {R̃2k+1}
converges to 0, the right hand side converges to DΘb( y, b)NFb( y). Thus, we have, for
any point y in π−1(b) ∩ D0(ρ),

(Θb)∗NFb(Θb( y, b)) = DΘb( y, b)NFb( y, b) = X̃(Θb( y, b)).

9. Diophantine approximations on complex manifold

The aim of this section is to prove Theorem 4.0.8. It gives a sufficient condition
that will ensure that the compact set K∞ is not empty. One way to achieve this, is to
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prove that it will have a positive measure. This section is an adaptation of the fourth
part of Rüssmann work [Rüs01].

9.1. The measure of diophantine points of the image of a small perturbation of nondegenerate

map is positive

The main goal of this section is to give an upper bound for the measure of the
set of points whose values by a perturbation of a nondegenerate map are “small”.

First of all, let us set some notation. Let B be an open set in Rn, let p be a non-
negative integer, and let f ∈ Cp(B, R) be a p-times continuously differentiable func-
tion on B. If x = (x1, ..., xn) ∈ Cn, we shall set

|x|2 := √|x1|2 + · · · + |xn|2.

Let a be a point in Rn, let k be a nonnegative integer less than or equal to p and let
y belongs to B. We shall set

Dkf ( y)(ak) := Dkf ( y)(a, ..., a),

‖Dkf ( y)‖ := sup
a∈Rn,|a|2=1

|Dpf ( y)(a, ..., a)|

as well as

‖ f ( y)‖p := max
0≤k≤p

‖Dkf ( y)‖, ‖ f ‖B,p = max
y∈B

‖Dkf ( y)‖.

It is known that |Dkf ( y)(a1, ..., ak)| ≤ k k

k! ‖Dkf ( y)‖ (see [Rüs01]). First of all, let us
recall one of the results of Rüssmann.

Theorem 9.1.1 (Theorem 17.1 [Rüs01]). — Let K be a compact set Rn with diameter

d = supx,y∈K |x− y|2. Let ϑ be a positive number and let B be the ϑ-neighborhood of K in Rn.

Let g ∈ Cµ0+1(B, R) be a function such that

min
y∈K

max
0≤ν≤µ0

‖Dνg( y)‖ ≥ β

for some µ0 ∈ N and for some positive number β. Then, for any function g̃ ∈ Cµ0(B, R)

satisfying ‖g − g̃‖B,µ0 ≤ β/2, we have the estimate

mesn{ y ∈ K | |g̃( y)| ≤ ε}

≤ Bdn−1

(
1√
n

+ 2d + d
ϑ

)(
ε

β

) 1
µ0

β−1‖g‖B,µ0+1,

for all 0 < ε ≤ β

2µ0+2 and with B = 3(2πe)n/2(µ0 + 1)µ0+2[(µ0 + 1)!]−1.
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Lemma 9.1.2. — Let U be a connected open set on Cn. Let f : U → Cl be a nonde-

generate holomorphic map. Then, for any nonvoid compact set K ⊂ U , there is a positive integer

µ0 and a positive number β such that∥∥|(c, f ( y))|2
∥∥

µ0
≥ β

for all y in the compact set K and all c in the unit sphere

Sl := {c ∈ Cl | |c|2 = 1}.
Proof. — We have to show that there exists µ0 and β such that

max
0≤k≤µ0

∥∥Dk|(c, f )|2( y)
∥∥ ≥ β

for all y in the compact set K and all c in the unit sphere

Sl := {c ∈ Cl | |c|2 = 1}.
Let us assume that such µ0 and β don’t exist. Then, for any positive integer ν, there
would be cν ∈ Sl and yν ∈ K such that

max
0≤k≤ν

∥∥Dk|(cν, f )|2( yν)
∥∥ <

1
ν
;

that is

∀ν ≥ k + 1,∀a ∈ Sn,∣∣Dk
(|(cν, f )|2

)
( yν)(ak)

∣∣ ≤ ∥∥Dk|(cν, f )|2( yν)
∥∥ <

1
ν
.

Moreover, we have

Dk
(|(cν, f )|2

)
( yν)(ak)

=
k∑

i=0

Ck
i D

i
(
(cν, f )

)
( yν)(ai)Dk−i

(
(c̄ν, f̄ )

)
( yν)(ak−i)

=
k∑

i=0

Ck
i

((
cν, Dif ( yν)(ai)

))((
c̄ν, Dk−i f̄ ( yν)(ak−i)

))
.

By compactness, we can extract a subsequence of {(cν, yν)}ν≥1 which converges to
(c, y) ∈ Sl × K . Thus, for any a belonging to Sn, the associated subsequence
{Dk

(|(cν, f )|2
)
( yν)(ak)} converges to Dk

(|(c, f )|2
)
( y)(ak). According to the previous

estimates, Dk
(|(c, f )|2

)
( y)(ak) vanishes for all a ∈ Cn. Therefore, for any nonnegative

integer k, Dk
(|(c, f )|2

)
( y) = 0; that is, the real analytic function |(c, f )|2 vanishes at

y ∈ K as well as all its derivatives. Since U is connected, |(c, f )|2 vanishes identically
on U ; that is (c, f ) ≡ 0. This contradicts the nondegeneracy of f . ��
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Let U be a connected open set on Cn, f : U → Cl a nondegenerate holomor-
phic map and K ⊂ U nonvoid compact set. Let us set

β(µ, f ,K ) = min
y∈K,

c∈Sl

max
0≤k≤µ

∣∣Dk|(c, f )|2( y)
∣∣.

Clearly, {β(µ, f ,K )}µ≥0 is a nondecreasing sequence of nonnegative numbers. Ac-
cording to the previous lemma, there exists a positive integer N0 such that β(N0, f ,K )

is positive. The smallest of these integers N0 will be called the index of nondegen-
eracy (of f with respect to K ) and will be denoted by µ0 = µ0( f ,K ). The positive
number β( f ,K ) := β(µ0( f ,K ), f ,K ) will be called the amount of nondegen-
eracy.

Definition 9.1.3. — Let ω = {ωk}k≥1 be a diophantine sequence. We shall say that S is

strictly diophantine with respect to (ω,µ0) if

lim
k→+∞

(
2k + n + 1

)(n+1)

(
ωk

ωk(S)

)2/µ0

= 0.

In this case, we shall set

Mω,ω(S),2/µ0 := sup
k≥1

(
2k + n + 1

)(n+1)

(
ωk

ωk(S)

)2/µ0

< +∞,

as well as

Mω,ω(S) := sup
k≥1

ωk

ωk(S)
.

The next result shows the following: if f̃ is a small perturbation of a nonde-
generate holomorphic map f from Cn to Cl , then the set of diophantine points (with
respect to S) on the image of f̃ is big in the sense that it has a positive measure. This
kind of problems ( for real maps) is now classical and often called “diophantine ap-
proximation on manifolds” when the image of f̃ is (at least locally) a manifold. We
refer to [BD99] for an up-to-date treatment of this topic (see also [KM98] for such
a result in the real case).

We recall that S : g→ P1
n is a Lie morphism from the commutative Lie alge-

bra g. Let {g1, ..., gl} be a basis of g. We recall that W k,m
n,∗ denotes the set of nonzero

weights of S into Pk,m
n .

Proposition 9.1.4. — Let U be a connected open neighborhood of 0 in Cn, let f : U → Cl

be a nondegenerate holomorphic map and let K ⊂ U nonvoid compact set. Let µ0 be the in-

dex on nondegeneracy of f with respect to K . Assume that S is strictly diophantine relatively to
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(ω = {ωi}i≥1, µ0). For any ϑ ∈ ]0, dist(K, Cn \ U )[, let Kϑ ⊂ U denote the ϑ-neighborhood

of K . Then, for any map f̃ ∈ Cµ0(Kϑ, Cl) such that

‖ f − f̃ ‖Kϑ,µ0 ≤
−‖ f ‖Kϑ,µ0 +

√
‖ f ‖2

Kϑ,µ0
+ β

2µ0−1

2
,

the measure of the set

H ( f̃ ) :=
⎧⎨
⎩b ∈ K |∀i ∈ N∗, ∀α ∈ W 2i−1+1,2i

n,∗ ,

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

f̃j(b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωi

⎫⎬
⎭

satisfies mes2nH ( f̃ ) ≥ mes2nK − ε∗ as soon as 0 < ε∗ < mes2nK and 0 < γ ≤ γ ∗ with

γ ∗ = min

⎡
⎣(

ε∗(n − 1)!
M

(
(22 + n)na2 − (n + 1)a1 + n

4Mω,ω(S),µ0

)
)µ0/2

,

1
Mω,ω(S)

√
β

2µ0 + 2

⎤
⎦

where M = Bd2n−1( 1√
2n

+ 2d + d
ϑ
)β

− 1
µ0

−1 supc∈Sl ‖|( f , c)|2‖Kϑ,µ0+1,

B = 3(2πe)n(µ0 + 1)µ0+2 ((µ0 + 1)!)−1 and ai := ( ωi
ωi(S)

)2/µ0 for any positive integer i.

Proof. — We have

H ( f̃ ) =
⎧⎨
⎩b ∈ K | ∀i ≥ 1,∀α ∈ W 2i−1+1,2i

n,∗ ,

∣∣∣∣∣
l∑

j=1

f̃j(b)α(g j)

∣∣∣∣∣ ≥ γωi

⎫⎬
⎭ .

In order to estimate mes2nH ( f̃ ) from below, it is sufficient to estimate mes2nK −
mes2nH ( f̃ ) from above. In fact, we have

mes2nH ( f̃ ) = mes2nK − (
mes2nK − mes2nH ( f̃ )

)
.

Let α belong to W 2i−1+1,2i

n,∗ , we set

( f̃ (b), α) :=
l∑

j=1

f̃j(b)α(g j)

as well as

|α|2 := √|α(g1)|2 + · · · + |α(gl)|2.
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Therefore, we have

K \ H ( f̃ )

=
⎧⎨
⎩b ∈ K | ∃i ≥ 1, ∃α ∈ W 2i−1+1,2i

n,∗ such that
∣∣∣∣

l∑
j=1

f̃j(b)α(g j)

∣∣∣∣ < γωi

⎫⎬
⎭

=
{

b ∈ K | ∃i ≥ 1, ∃α ∈ W 2i−1+1,2i

n,∗ such that
∣∣( f̃ (b), α)

∣∣ < γωi

}

=
{

b ∈ K | ∃i ≥ 1, ∃α ∈ W 2i−1+1,2i

n,∗ s.t.
∣∣∣∣
(

f̃ (b),
α

|α|2

)∣∣∣∣
2

<
(

γωi

|α|2

)2
}

.

Let us set c = 1
|α|2 (α(g1), ..., α(gl)). It belongs to the unit sphere Sl . Let us set g( y) =

|( f ( y), c)|2 as well as g̃( y) = |( f̃ ( y), c)|2. We have

g̃( y) − g( y) = |( f̃ ( y) − f ( y), c)|2 + 2Re
(
(c, f ( y))(c, f̃ ( y) − f ( y))

)
.

By differentiation, we obtain for any nonnegative integer ν and for any a in the unit
sphere Sn,

Dν( g̃ − g)( y)(aν)

=
ν∑

k=0

Cν
k Dk( f̃ − f , c)( y)(ak)Dν−k( f̃ − f , c)( y)(aν−k)

+ 2Re

(
ν∑

k=0

Cν
k Dk( f , c)( y)(ak)Dν−k( f̃ − f , c)( y)(aν−k)

)

=
ν∑

k=0

Cν
k

(
Dk( f̃ − f )( y)(ak), c

) (
Dν−k( f̃ − f )( y)(aν−k), c̄

)

+ 2Re

(
ν∑

k=0

Cν
k

(
Dkf ( y)(ak), c

) (
Dν−k( f̃ − f )( y)(aν−k), c

))
.

By Schwarz inequality, we obtain the following estimate for ν ≤ µ0:

|Dν( g̃ − g)( y)(aν)| ≤
(

ν∑
k=0

Cν
k

)(
max
0≤k≤ν

|Dk( f̃ − f )( y)(ak)|2
2

+2 max
0≤k≤ν

|Dk( f̃ − f )( y)(ak)|2 max
0≤k≤ν

|Dk( f )( y)(ak)|2

)
≤ 2ν

(‖ f̃ − f ‖2
Kϑ,ν + ‖ f̃ − f ‖Kϑ,ν‖ f ‖Kϑ,ν

)
≤ 2µ0

(‖ f̃ − f ‖2
Kϑ,µ0

+ ‖ f̃ − f ‖Kϑ,µ0‖ f ‖Kϑ,µ0

)
.
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Therefore, we have

‖g̃ − g‖Kϑ,µ0 ≤ 2µ0
(‖ f̃ − f ‖2

Kϑ,µ0
+ ‖ f̃ − f ‖Kϑ,µ0‖ f ‖Kϑ,µ0

)
.

Let P(X) = X2 + ‖ f ‖Kϑ,µ0X − β

2µ0+1 be a polynomial in the real indeterminate X.
Its discriminant ∆ = ‖ f ‖2

Kϑ,µ0
+ β

2µ0−1 is positive. Thus, P has two real roots r± :=
(−‖ f ‖Kϑ,µ0 ± √

∆)/2. The root r+ is positive, whereas r− is negative. Clearly, P is
negative in ]r−, r+[. As a consequence,

‖g̃ − g‖Kϑ,µ0 ≤ 2µ0
(‖ f̃ − f ‖2

Kϑ,µ0
+ ‖ f̃ − f ‖Kϑ,µ0‖ f ‖Kϑ,µ0

) ≤ β

2
,

as soon as

‖ f̃ − f ‖Kϑ,µ0 ≤
−‖ f ‖Kϑ,µ0 +

√
‖ f ‖2

Kϑ,µ0
+ β

2µ0−1

2
.

In this case, we can apply Rüssmann Theorem 9.1.1 to g̃: for any ε in ]0,
β

2µ0+2], we
have

mes2n{ y ∈ K | |( f̃ ( y), c)|2 ≤ ε} ≤ Mε
1

µ0

where

M = Bd2n−1

(
1√
2n

+ 2d + d
ϑ

)
β

−1− 1
µ0 sup

c∈Sl
‖|( f , c)|2‖Kϑ,µ0+1

B = 3(2πe)n(µ0 + 1)µ0+2[(µ0 + 1)!]−1.

We recall that

K \ H ( f̃ )

=
{

b ∈ K | ∃i ≥ 1, ∃α ∈ W 2i−1+1,2i

n,∗ s.t.
∣∣∣∣
(

f̃ (b),
α

|α|2

)∣∣∣∣
2

<
(

γωi

|α|2

)2
}

=
⋃
i≥1

⋃
α∈W 2i−1+1,2i

n,∗

{
b ∈ K |

∣∣∣∣
(

f̃ (b),
α

|α|2

)∣∣∣∣
2

<
(

γωi

|α|2

)2
}

.

Let α be a weight in W 2i−1+1,2i

n,∗ . Since, by definition, maxj |α(g j)| is greater than or
equal to ωi(S), we have

|α|2 = √|α(g1)|2 + · · · + |α(gl)|2 ≥ ωi(S).
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It follows that
γωi

|α|2
≤ γωi

ωi(S)
≤ γMω,ω(S).

If

γ ≤ 1
Mω,ω(S)

√
β

2µ0 + 2
,

then (
γωi

|α|2

)2

≤ β

2µ0 + 2
.

In this case, we obtain

mes2n

{
b ∈ K |

∣∣∣∣
(

f̃ (b),
α

|α|2

)∣∣∣∣
2

<
(

γωi

|α|2

)2
}

≤ M
(

γωi

|α|2

) 2
µ0 ;

so that

mes2nK \ H ( f̃ ) ≤ M
∑
i≥1

∑
α∈W 2i−1+1,2i

n,∗

(
γωi

|α|2

) 2
µ0

.

Since W 2i−1+1,2i

n,∗ is isomorphic to a subset of{
(Q , j) ∈ Nn × {1, ..., n} | 2i−1 + 1 ≤ |Q | ≤ 2i

}
,

we have

mes2nK \ H ( f̃ ) ≤ M
∑
i≥1

⎛
⎜⎜⎝ ∑

Q∈Nn

2i−1+1≤|Q |≤2i

1

⎞
⎟⎟⎠

( n∑
j=1

1
)(

γωi

ωi(S)

) 2
µ0

.

Let us set

Zi :=
∑

Q∈Nn

0≤|Q |≤2i

1.

It is well known that

Zi = Cn+2i

n = (n + 2i)(n − 1 + 2i) · · · (2i + 1)

n! .
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We have ∑
Q∈Nn

2i−1+1≤|Q |≤2i

1 = Zi − Zi−1.

The previous estimate can be written as

mes2nK \ H ( f̃ ) ≤ γ
2

µ0 nM
∑
i≥1

(Zi − Zi−1)

(
ωi

ωi(S)

) 2
µ0

.

Since S is strictly diophantine relatively to (ω,µ0), we have

lim
i→+∞

Zi

(
ωi

ωi(S)

) 2
µ0 ≤ 1

n! lim
i→+∞

(n + 2i)n

(
ωi

ωi(S)

) 2
µ0 = 0.

Let us set

ai :=
(

ωi

ωi(S)

) 2
µ0

.

Thus, we have

mes2nK \ H ( f̃ ) ≤ γ
2

µ0 nM

[∑
i≥1

Zi (ai − ai+1) − (n + 1)a1

]
.

Let ψ : ]1,+∞[ → R+ be the function defined to be

ψ(x) :=
∑
i≥1

ωi

ωi(S)
χ]2i−1,2i ],

where χ]2i−1,2i ] denotes the characteristic function of ]2i−1, 2i]. Since

(
ωi

ωi(S)

) 2
µ0 −

(
ωi+1

ωi+1(S)

) 2
µ0 =

∫ 2i+1

2i
−d(ψ(t)

2
µ0 ),

the previous estimate becomes

mes2nK \ H ( f̃ )

≤ γ
2

µ0
M

(n − 1)!
[
−

∫ +∞

2
(2t + n)nd(ψ(t)

2
µ0 ) − (n + 1)a1

]
.
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Since

lim
t→+∞(2t + n)nψ(t)

2
µ0 = lim

k→+∞
(2k + n)n

(
ωk

ωk(S)

) 2
µ0 = 0.

After integrating by part, we obtain

mes2nK \ H ( f̃ ) ≤ γ
2

µ0
M

(n − 1)!
[
(22 + n)na2 − (n + 1)a1

+ n ln 2
∫ +∞

2
2t(2t + n)n−1ψ(t)

2
µ0 dt

]
.

By assumptions, for any positive integer k, (2k + n + 1)n+1ak is less than or equal to
Mω,ω(S),2/µ0 . Thus,∫ +∞

2
2t(2t + n)n−1ψ(t)

2
µ0 dt ≤ Mω,ω(S),2/µ0

∫ +∞

2

dt
2t

= Mω,ω(S),2/µ0

4 ln 2
.

At the end, we obtain the estimate

mes2nK \ H ( f̃ )

≤ γ
2

µ0
M

(n − 1)!
[
(22 + n)na2 − (n + 1)a1 + n

4
Mω,ω(S),2/µ0

]
.

Let ε∗ be a postive number less than mes2nK . Let γ denotes a positive number such
that

γ < max

⎡
⎣(

ε∗(n − 1)!
M

[
(22 + n)na2 − (n + 1)a1 + n

4Mω,ω(S),2/µ0

]
)µ0

2

,

1
Mω,ω(S)

√
β

2µ0 + 2

⎤
⎦ .

Then, the 2n-measure mes2nK \ H ( f̃ ) is less than or equal to ε∗. Therefore, the
2n-measure mes2nH ( f̃ ) is greater than or equal to mes2nK − ε∗ and we are done. ��

9.2. Application and proof of Theorem 4.0.8

The aim of this section is to give a sufficient condition which ensures that the
sequence of compact sets {Kk}k≥1 will “converge” to a nonvoid compact set K∞. More
precisely, we shall show that if S is strictly diophantine with respect to (ω,µ0) and if
the compact set K has a positive 2p-measure, then K∞ is also of positive 2p-measure.
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Let us recall some facts: the vector field X̃ belongs to X 1
n (Dn(0, 1)) and is as-

sumed to be a good deformation of the nondegenerate vector field X0. Let γ be a pos-
itive number. Let K be a compact set of π(D0(ρ)) of positive 2r-measure. Let us con-
sider the decreasing sequence {Kk(NF, ω, γ)}k≥k0 of compact sets of π(D0(ρ)) defined
to be:

Kk0 = K

Kk =
⎧⎨
⎩b ∈ Kk−1 | ∀α ∈ W 2k+1,2k+1

n,∗

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

a2k

j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωk+1

⎫⎬
⎭ .

Here

NFm(x, u) =
l∑

j=1

aj(u)mSj(x)

denotes the Lindstedt-Poincaré normal form of X̃ of order m. We want to consider
the map a2k

(b) as a perturbation of the nondegenerate map a2k0
(b). First of all, we

shall extend this function to a fixed neighborhood B of K (independent of k). Using
a result of Rüssmann, we can bound the norm of the extension ã2k

(b) on B by a the
norm of a2k

(b) on K + t2k+1 , the t2k+1-neighborhood of K . Let µ0 be the amount of
nondegeneracy of a2k0 . We shall estimate the Cµ0-norm of the difference on some well
chosen neighborhood of Kk−1. We shall show that this estimate is small enough so that
we can apply Proposition 9.1.4. It will follow that the set H (ã2k

) has positive measure
and is contained in Kk.

Theorem 9.2.1 (Theorem 19.7 [Rüs01]). — Let K be a nonvoid set in Cn, let t be posi-

tive number and let K +t denote the t-neighborhood of K . Let f : K +t → Cp be a holomorphic

and bounded function. Then, there is a C∞ function f̃ : Cn → Cp such that f̃ (x) = f (x) for all

x ∈ K, and the estimates

sup
x∈Cn

sup
a∈Cn,|a|2≤1

∣∣Dν f̃ (x)(aν)
∣∣ ≤ C(n, ν)t−ν sup

x∈K +t
| f (x)|, ν ∈ N

hold with constants C(n, ν) not depending on f and satisfying the inequalities

1 = C(n, 0) ≤ C(n, 1) ≤ C(n, 2) ≤ · · · .

From now on, we shall define ã2k
to be the aforementioned extension of a2k

to Cn.

Lemma 9.2.2. — Let χ be a function in Cµ0(Kϑ, Cl) such that, for any integer k0 ≤
k ≤ ν, ∥∥χ − ã2k∥∥

Kϑ
≤ γωk+1

lΛ(2k+1 + 1)
.
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Assume that none of the Kk’s is nonvoid when the interger k ranges from k0 to ν. Then, Kν+1

contains ∩ν
k=k0+1Hk(χ) where

Hk(χ) :=
⎧⎨
⎩b ∈ K | ∀α ∈ W 2k+1,2k+1

n,∗ ,

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

χj(b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ 2γωk+1

⎫⎬
⎭ .

Proof. — Let b be a point in Hk(χ), for some k0 ≤ k ≤ ν. Let α be a weight in
W 2k+1,2k+1

n,∗ . We have∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

ã2k

j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∣∣∣∣∣∣α

⎛
⎝ l∑

j=1

χj(b)g j

⎞
⎠

∣∣∣∣∣∣ −
∣∣∣∣∣∣α

⎛
⎝ l∑

j=1

(
ã2k

j − χj

)
(b)g j

⎞
⎠

∣∣∣∣∣∣
∣∣∣∣∣∣

≥
∣∣∣∣∣∣2γωk+1 −

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

(
ã2k

j − χj

)
(b)g j

⎞
⎠

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Moreover, for all 1 ≤ j ≤ l, |α(g j)| ≤ Λ(2k+1 + 1). So, we obtain∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

(
ã2k

j − χj

)
(b)g j

⎞
⎠

∣∣∣∣∣∣ ≤ lΛ(2k+1 + 1)‖χ − ã2k‖K .

Since ‖χ − ã2k‖Kϑ
is less than or equal to γωk+1

lΛ(2k+1+1)
, we obtain∣∣∣∣∣∣α

⎛
⎝ l∑

j=1

ã2k

j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωk+1.

Thus, we have proved the inclusion

Hk(χ) ⊂
⎧⎨
⎩b ∈ K | ∀α ∈ W 2k+1,2k+1

n,∗ ,

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

ã2k

j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωk+1

⎫⎬
⎭ .

If k is greater than k0, we have

Kk = Kk−1 ∩
⎧⎨
⎩b ∈ K | ∀α ∈ W 2k+1,2k+1

n,∗ ,

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

ã2k

j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωk+1

⎫⎬
⎭

⊃ Kk−1 ∩ Hk(χ).

By induction on the integer k which is greater than or equal to k0, we obtain

Kk ⊃ Kk0 ∩
k⋂

j=k0+1

Hj(χ) =
k⋂

j=k0+1

Hj(χ) ⊃
k⋂

j=1

Hj(χ).
��
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We want to apply the previous lemma to ã2ν

. Let us define Bk := Kk + t2k to
be the t2k -neighborhood of Kk. The inclusion Bν ⊂ Bk holds whenever k is less than
or equal to ν and greater than or equal to k0. For any integer k0 ≤ k ≤ ν, we have

∥∥ã2ν − ã2k∥∥
Kϑ

≤
ν∑

j=k+1

∥∥ã2 j − ã2 j−1∥∥
Kϑ

≤
ν∑

j=k+1

∥∥a2 j − a2 j−1∥∥
Bj

≤
ν∑

j=k+1

2l|L−1|∣∣NF2 j − NF2 j−1∣∣
Bj ,Rj

≤ 2l|L−1|
ν∑

j=k+1

γ 6ω6
j

c3
126( j−1)

≤ 2l|L−1|γ 6ω6
k+1

c3
1

2−6k − 2−6ν

1 − 2−6
.

The third inequality is due to Lemma 7.1.1 while the fourth one is due to inequality
(7.3.4). If k is large enough, then

2l|L−1|lΛγ 5ω5
k+1

c3
1

2−6k − 2−6ν

1 − 2−6
(2k+1 + 1) ≤ 1.

As a consequence, if k0 is large enough, then for all integer ν greater than or equal
to k0,

Kν+1 ⊃
ν⋂

k=k0+1

Hk(ã2ν

) ⊃
+∞⋂

k=k0+1

Hk(ã2ν

).

Let us show that the set
+∞⋂

k=k0+1

Hk(ã2ν

)

is of positive 2p-measure. In order to do this, we shall apply Proposition 9.1.4 to ã2ν

.
We have to obtain good estimates for the derivatives of the approximate function. In
order to compensate the power of t which arises in the inequality (cf. Theorem 9.2.1),
we shall “decrease” the radius on which we have obtained the estimates which led to
the proof of the existence of invariant analytic subsets.

Let µ be an integer greater than or equal to 3. Let us define the sequence of
positive numbers

1/2 < R̃0 = r ≤ 1, R̃j+1 = θ
µ

j R̃j .
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As in Lemma 8.0.1, we show that if k is greater than or equal to some positive inte-
ger k2, then R̃k > R̃k2/2. Let us set Rk2 := 1 as above. The basic sets on which the
estimates are done are now the Dn(0, R̃2k) × Dp(b, tm)’s. The convergence will follow
from the analysis done above. Using the notation of the induction process section, we
have the estimate (following (7.3.4))

|B′|Dp(b,t2m),R̃k+1
≤ |B + C|Dp(b,t2m),R̃k+1

(9.2.1)

≤ θ
µ(m+1)

k |B + C|Dp(b,tm),r

≤ γ 2µω
2µ

k+1

cµ

1 m2µ
|B + C|Dp(b,tm),r

≤ 25nγ 2µω
2µ

k+1

cµ

1 m2µ+4
.

The second inequality is due to the fact that B + C is of order greater than or equal
to m+1. Therefore, we obtain, for any nonnegative integer k less than or equal to µ0,

∥∥Dk(ã2ν − ã2k0
)
∥∥

Kϑ

≤
ν∑

j=k0+1

∥∥Dk(ã2 j − ã2 j−1
)
∥∥

Kϑ

≤
ν∑

j=k0+1

∥∥Dk(ã2 j − ã2 j−1
)
∥∥

Kϑ

≤
ν∑

j=k0+1

C(p, k)t−k
2 j

∥∥a2 j − a2 j−1∥∥
Bj

≤
ν∑

j=k0+1

2l|L−1|C(p, k)t−k
j

∣∣NF2 j − NF2 j−1∣∣
Bj ,R̃j

≤ C(p, k)2l|L−1|2
klkΛk25nγ 2µ

cµ

1 γ k

ν∑
j=k0+1

(2j+1 + 1)kω
2µ−k
j+1

2 j2µ
.

The last inequality is due to inequality (9.2.1). Moreover, the last sum is not only con-
vergent but also small if µ is well chosen (with respect to µ0). As a consequence, we
obtain

∥∥a2k0 − ã2ν∥∥
Kϑ,µ0

≤
−∥∥a2k0

∥∥
Kϑ,µ0

+
√∥∥a2k0

∥∥2

Kϑ,µ0
+ β

2µ0−1

2
.
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Hence, according to Proposition 9.1.4, the measure of the set

H (ã2ν

)

:=
⎧⎨
⎩b ∈ K | ∀i ∈ N∗, ∀α ∈ W 2i−1+1,2i

n,∗

∣∣∣∣∣∣α
⎛
⎝ l∑

j=1

ã2ν

j (b)g j

⎞
⎠

∣∣∣∣∣∣ ≥ γωi

⎫⎬
⎭

satisfies mes2pH (ã2ν

) ≥ mes2nK − ε∗. Therefore, Kν+1 is nonvoid, its 2p-measure sat-
isfies

mes2pH (ã2ν

) ≥ mes2pK − ε∗,

and we are done.

10. Where do the tori of the classical KAM theorem come from?

Let us give a taste of how we can recover the “classical” KAM theory with gen-
uine real tori. Let us consider a real analytic hamiltonian H in a neighborhood of the
origin in R2n. We assume that

H(x, y) =
N0∑
l=1

n∑
i=1

µi,l

(
x2

i + y2
i

)l + hM0+1(x, y),

where hM0+1(x, y) is a real analytic function of order greater than or equal to M0+1 ≥
2N0+1. Here, the µi,l ’s are real numbers and ω = ∑n

i=1 dxi ∧dyi denotes the canonical
symplectic form of R2n. Let us write the hamiltonian the the complex coordinates zj =
xj + iyj , j = 1, ..., n. We have

H(x, y) = H̃(z, z̄) =
N0∑
l=1

n∑
i=1

µi,l(ziz̄i)
l + h̃M0+1(z, z̄),

where h̃M0+1(z, z̄) = hM0+1(x, y).
Let us complexify the hamiltonian. We obtain a holomorphic hamiltonian G in

a neighborhood of the origin in C2n with (z, w) as complex symplectic coordinates:

G(z, w) =
N0∑
l=1

n∑
i=1

µi,l(ziwi)
l + h̃M0+1(z, w).

We recover H̃ (or H) by restricting G to the set
n⋂

i=1

{wi = z̄i}.



A KAM PHENOMENON FOR SINGULAR HOLOMORPHIC VECTOR FIELDS 163

It is assumed that G is a perturbation of the nondegenerate integrable hamiltonian

H0 =
N0∑
l=1

n∑
i=1

µi,l(ziwi)
l.

Let g be an n-dimensional commutative lie algebra. Let S be the injective semi-simple
linear morphism defined to be:

S(gi) = zi
∂

∂zi
− wi

∂

∂wi
, i = 1, ..., n.

Its nonzero weights are integers so that S is diophantine. Its ring of invariant is ÔS
2n =

C[[u1, ..., un]] with ui = ziwi and its centralizer
(
X̂ 1

2n

)S
is the C[[u1, ..., un]]-module

generated by zi
∂

∂zi
and wi

∂

∂zi
with 1 ≤ i ≤ n. We refer to our previous [Sto00, Chap. 10]

for more details. Since the vector field XG associated to G is symplectic, its
Lindstedt-Poincaré normal form of order any order m is of the form:

n∑
j=1

am
j (u1, ..., un)S(g j).

Therefore, we can apply our result: XG has invariant analytic subsets which are bi-
holomorphic to the intersection of ∩n

i=1{wizi = ci} with a fixed polydisc, for some well
chosen constants ci. The normalization process is certainly compatible with the restric-
tion to the set ∩n

i=1{wi = z̄i}; that is, it commutes with the complex conjugacy. This
can be done as in the case of Poincaré-Dulac normal form (see [Bry88] for instance).
Therefore, if one chooses a set of real constants, the hamiltonian vector field will have
invariant (real) analytic subsets analytically isomorphic to the intersection of a fixed
polydisc with (

n⋂
i=1

{wizi = ci}
)⋂(

n⋂
i=1

{wi = z̄i}
)

=
n⋂

i=1

{
ziz̄i = x2

i + y2
i = ci

}
.

for some real constants ci. These are the genuine real tori.

10.1. The volume preserving case

Let us consider a holomorphic volume preserving vector field X which is a de-
formation of a nondegenerate volume preserving polynomial vector field X0 in
a neighborhood of the origin of Cn. Let g be a (n − 1)-dimensional commutative Lie
algebra with a basis G = {g1, ..., gn−1}. Let S be the linear semi-simple and injective
morphism defined to be

S(gi) = xi
∂

∂xi
− xi+1

∂

∂xi+1
, i = 1, ..., n − 1.
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The values of the nonzero weights of S are integers; thus, S is diophantine. Moreover,
if we set u = x1 · · · xn, then the ring of invariant of S is defined to be ÔS

n = C[[u]]
whereas its centralizer

(
X̂ 1

n

)S
is the C[[u]]-module generated by the xi

∂

∂xi
’s, 1 ≤ i ≤ n.

Since the vector field X is volume preserving, its Lindstedt-Poincaré normal form of
order any order m is of the form:

n−1∑
j=1

am
j (u)S(g j).

Therefore, we can apply our result: X has invariant analytic subsets which are biholo-
morphic to to the intersection of a fixed polydisc with

{x1 · · · xn = ci}
for some well chosen constants ci.
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