PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

MICHAËL KEANE PIERRE MICHEL

Généralisation d'un lemme de « découpage » de Rokhlin

Publications des séminaires de mathématiques et informatique de Rennes, 1972, fascicule 2

« Probabilités », , p. 158-172

http://www.numdam.org/item?id=PSMIR_1972___2_158_0

© Département de mathématiques et informatique, université de Rennes, 1972, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

GENERALISATION D'UN LEMME DE "DECOUPAGE"

DE ROKHLIN

par

Michaël KEANE et Pierre MICHEL

Soient (Ω, β, m, T) un système dynamique apériodique et $(k_0, k_1, \ldots, k_{n-1})$ un ensemble fini d'entiers.

On constate qu'il n'est pas toujours possible de déterminer un ensemble mesurable A tel que les T i A soient deux à deux disjoints et recouvrent $^{\Omega}$ à ϵ près. On étudie alors la mesure maximale de $^{i-1}$ i A.

On donne enfin un exemple de suite infinie n-1 k $(k_0,k_1,\ldots,k_{n-1}\ldots)$ telle que la mesure maximale de $\bigcup_{i=0}^{n-1} T^{i}A$ ait une l'imite inférieure nulle.

1 - Le lemme de Rokhlin.-

Soit (Ω, β, m) un espace mesuré fini et T une transformation bi - mesurable de Ω dans lui-même, conservant la mesure.

T est apériodique si $m (\{\omega \mid \exists n \geq 1, T^n \omega = \omega\}) = 0.$

Lemme de Rokhlin:

Si T est apériodique, pour tout entier positif n et tout nombre réel positif ϵ , il existe un ensemble mesurable ℓ tel que les ensembles A , TA , T^2A , ... $T^{n-1}A$ soient deux à deux disjoints et vérifient

$$m (\Omega \setminus \bigcup_{i=0}^{n-1} T^{i}A) < \varepsilon .$$

2 - Notations.-

$$K = (k_i)_{i \in [0, n-1]}, k_i \in N, k_o = 0, k_i < k_{i+1}$$

$$\mathcal{N}_{K} = \{N, N \in \mathbb{N}; \forall k_{i} \in K, \forall k_{j} \in K \}$$

$$k_{i} \neq k_{j} \longrightarrow (N+k_{i}) \cap (N+k_{j}) = \emptyset\}.$$

 \mathcal{N}_{K} n'est pas vide car il contient la suite

$$N = (k_{n-1}+1, 2(k_{n-1}+1), 3(k_{n-1}+1) \dots)$$

La densité extérieure de N sera notée d*(N):

$$d^{*}(N) = \lim_{n \to \infty} \frac{\text{card } (N \cap [0, n-1])}{n}$$

Enfin, nous poserons :

$$A_{k} = \{A ; A \in B ; T^{k_{j}}A \cap T^{k_{j}}A = \emptyset \quad \forall i \neq j\}$$

3 - <u>Lemme 1.</u>-

Soit
$$\sigma = \sigma_K = \sup_{N \in \mathcal{N}_K} d^*N$$

Pour tout A de \mathcal{A}_K on a m(A) $\leq \sigma$ m(Ω)

Démonstration.-

Soit
$$A \in \mathcal{H}_K$$
. Posons $B = \bigcup_{i=0}^{n-1} T^i A$.

Le théorème de Birkhoff montre que

$$\frac{1}{p} \quad \sum_{i=0}^{p-1} 1_{B}(T^{k}\omega) \xrightarrow{f(\omega)} \tilde{f}(\omega) \qquad m \text{ p.p.}$$

et

$$\int \bar{f} dm = \int f dm = \int 1_B dm = m(B) = n m(A)$$

puisque m est une mesure finie.

Soit
$$N_0(\omega) = \{k \cdot | k \in \mathbb{N}, T^k \omega \in A\}$$
.

Alors

$$N_{O}(\omega) + k_{i} = \{k \mid T^{k-k}i\omega \in A\} = \{k \mid T^{k}\omega \in T^{k}iA\}$$

$$0 \le i \le n-1$$

et
$$A \in \mathcal{H}_K \longrightarrow N_o(\underline{w}) \in \mathcal{N}_K$$
.

En effet, si $k \in N_0 + k_i$ et $k \in N_0 + k_j$ on a $T^k \omega \in T^i A$ et $T^k \omega \in T^j A$ Puisque $A \in \mathcal{A}_K$, $T^i A \cap T^j A = \emptyset$ donc

$$(N_o(\omega) + k_i) \cap (N_o(\omega) + k_j) = \emptyset.$$

Done
$$l_B(T^k\omega) = 1$$
 \longleftrightarrow $T^k\omega \in B = \bigcup_{i=0}^{n-1} T^iA$
 \longleftrightarrow $k \in \bigcup_{i=0}^{n-1} N_O(\omega) + k_i$

donc

$$\frac{1}{p} \int_{0}^{p-1} 1_{B}(T^{k} \boldsymbol{w}) = \frac{1}{p} \operatorname{card} \left\{ \left[\bigcup_{i=0}^{n-1} (N_{o}(\omega) + k_{i}) \right] \cap \left[0, p-1 \right] \right\}$$

$$= \sum_{i=0}^{n-1} \frac{\operatorname{card}(N_{o}(\omega) + k_{i}) \cap \left[0, p-1 \right]}{p}$$

Mais

card
$$[N \cap [0,p-1]] = card [N \cap [0,p-k-1]] + card [N \cap [p-k-1,p-1]]$$

$$= card [(N+k) \cap (k,p-1)] + card [N \cap (p-k-1,p-1)]$$

d'où

$$\frac{\text{card } [N \cap (0,p-1)]}{p} = \frac{\text{card } [(N+k) \cap (k,p-1)]}{p} + \frac{\text{card } [N \cap (p-k-1,p-1)]}{p}$$

Comme card $[N \land (\dot{p}-k-1)p-1)] < k$

on a

$$\overline{\lim_{p}} \frac{\operatorname{card} \left[N \cap (0, p-1)\right]}{p} = \overline{\lim_{p}} \frac{\operatorname{card} \left[(N+k) \cap (k, p-1)\right]}{p}$$

donc

$$d^{*}(N) = d^{*}(N+k).$$

Comme $\frac{1}{p}$ $\frac{p-1}{s}$ $1_B(T^k\omega)$ converge vers $\overline{f}(\omega)$ m.p.p. on déduit $\hat{f}(\omega) \leq \sum_{i=0}^{n-1} d^*(N_o(\omega) + k_i) = n d^*(N_o(\omega))$

d'où

$$n m (A) = \int \vec{f} dm \leq \int n \sigma dm = n \sigma m (2).$$

4 - Lemme 2.-

Pour tout ε positif, il existe A élément de 🛧 tel que $m(A) > (\sigma - \varepsilon)m(\Omega)$.

Démonstration :

Soient N_O tel que d*(N_O) = $\sigma_O > \sigma - \frac{\varepsilon}{2}$ et M un entier vérifiant

$$\begin{cases} \frac{M}{M+k_{n-1}} > 1 - \epsilon_1 \\ \frac{\text{card } (N_0 \cap [0, M-1])}{M} > \sigma_0 - \epsilon_2 \end{cases}$$

Appliquons le théorème de Rokhlin avec

$$K' = \{0,1,2, \ldots M + k_{n-1} - 1\}$$
.

$$\forall \epsilon_3 > 0, \exists A_0 \in \mathcal{A}_{K'}, \text{ tel que}$$

si
$$0 \le i \le M + k_{n-1} - 1$$

$$0 \le j \le M + k_{n-1} - 1, i \ne j$$

on ait
$$T^{i}A_{o} \cap T^{j}A_{o} = \emptyset$$
 et

on ait
$$T^{i}A_{o} \cap T^{j}A_{o} = \emptyset$$
 et $M^{i}k_{n} = \emptyset$ m($A_{o} \cup T A_{o} \cup ... \cup T$ $A_{o} \rightarrow (1-\epsilon_{o})m(\Omega)$

On a done
$$(M+k_{n-1})$$
 m $(A_0) > (1-\epsilon_3)$ m (Ω)

soit
$$m(A_0) > \frac{7 - \epsilon_3}{M + k_{n-1}} m(\Omega)$$
.

Alors

$$B = \bigcup_{i \in K} T^{j} A \subset \bigcup_{i=0}^{M+k} n^{-1} T^{i} A_{o}$$

Donc B est une union disjointe de T^jA, et

$$m(A) = \left[\text{card} \left(N_{0} \cap (0, M-1) \right) \right] m(A_{0})$$

> M.
$$(\sigma_0 - \epsilon_2) \frac{(1-\epsilon_3) m (\Omega)}{M + k_{n-1}}$$

$$> (1-\epsilon_1) (\sigma_0-\epsilon_2) (1-\epsilon_3) m (\Omega)$$

$$> (\sigma_{\Omega} - \frac{\varepsilon}{2}) \text{ m } (\Omega) \geq (\sigma - \varepsilon) \text{ m } (\Omega).$$

Le recouvrement maximum de Ω a donc pour mesure $n \sigma m (\Omega)$ où σ est la $\overline{\lim}_{K} d^{*}(N)$

Le lemme de Röknlin n'est plus vrai lorsque l'on remplace l'ensemble (0,1,2...n-1) par un ensemble quelconque d'entiers : $(k_0,k_1...k_{n-1})$

Par exemple, soit

$$K = K_{q,n} = (0,1,2,...n,2n,3n,...q_n)$$

et A \in B, un sous-ensemble mesurable de Ω tel que

$$\forall i \in K, \forall j \in K, i \neq j \longrightarrow T^{i}A \cap T^{j}Q = \emptyset$$

Montrons que V r, V s, $0 \le r \le q n$

$$0 \le s \le q n$$
 r $\neq s$

implique $T^{r}A \cap T^{s}A = \emptyset$.

Soit
$$r = k n + i$$

 $s = k'n + j$.
avec
 $0 \le k' \le k < q$
 $k n + i \ne k'n + j$
 $0 \le i \le n$
 $0 \le j \le n$.
a) $i < j$. $T^{kn+i} \land \cap T^{k'n+j} \land = T^{k'n+i} (T^{(k-k')n} \land \cap T^{(j-i)} \land)$

donc $T^r A \cap T^s A = \emptyset$.

b) i > j.
$$T^{k_{n+j}} A \cap T^{k'_{n+j}} A = T^{(k'-1)n+i} [T^{(k-k'+1)n} A \cap T^{n+j-i} A]$$

Or $0 \le n+j-i \le n$ donc $n+j-i \in K$

et $(k-k'+1)n \in K$

On a encore $T^{r}A \cap T^{s}A = \emptyset$.

Il y a donc au moins (qn+1) sous-ensembles " $T^{\dot{1}}A$ " disjoints dans Ω .

Comme $m(T^{i}A) = m(A)$ on en déduit

$$m(A) \leq \frac{1}{qn+1} m (\Omega)$$

donc

m (
$$\bigcup_{i \in K} T^{i}A$$
) $\leq \frac{n+q}{qn+1}$ m (Ω) $\leq (\frac{1}{n} + \frac{1}{q})$ m (Ω)

< ε si n et q sont suffisamment grands.

On peut donc choisir K pour que le recouvrement maximum soit soit aussi petit que l'on veut.

6 - Proposition .-

Il existe un nombre σ_{K} , indépendant de (Ω,β,m,T) ,

$$0 < \sigma_{\mathbf{K}} \le \frac{1}{n}$$
 tel que :

2°)
$$\forall \epsilon > 0$$
, $\exists A \in \mathcal{A}_K$ tel que $m(A) > (\sigma_K - \epsilon) m(\Omega)$

3°) On peut choisir K de telle sorte que $n\sigma$ soit K aussi voisin de σ 0 que l'on veut.

7 - $\sigma_{\mathbf{K}}$ est un nombre rationnel.

7.1 Introduisons l'ensemble des " différences " :

$$\mathcal{D} = \mathcal{D}_{K} = \{ k_{i}-k_{j} \mid i \in \{0,n-1\}, j \in \{0,i-1\} \}$$

et notons 🗗 * le complémentaire de 🐔 dans 🔊.

Soit
$$N \in \mathcal{N}_{K}$$
 avec $N = \{0, n_1, n_2, \dots, n_p, \dots\}$

Alors
$$n \in \mathcal{N}_{K} \longrightarrow n_{i} - n_{j} \in \mathfrak{D}^{*}$$
 \(\mathbf{V} \text{i}, \mathbf{V} \text{j}.\)

Sinon
$$n_i - n_j = k_e - k_m$$

donc
$$n_i + k_m = n_j + k_\ell$$

or
$$n_i + k_m \in N + k_m$$
 et $n_j + k_l \in N + k_l$

Comme N + k_{m} et N + k_{ℓ} sont deux ensembles disjoints ceci est impossible.

La recherche d'une suite N de \mathcal{N}_{K} équivaut donc à celle d'une suite

$$D = \{ n_1, n_2-n_1, n_3-n_2, \dots n_p-n_{p-1} \dots \}$$

$$= \{ d_1, d_2, d_3, \dots \}$$

avec j
$$\Sigma d_{i+h} \in \mathfrak{D}^* \quad \forall i, \forall j.$$

7.2 Soit antD) la moyenne de Césaro de (d₁,d₂,...,d_n) et a (D) la limite inférieure de a_n(D) pour n tendant vers l'infini :

$$\alpha_n(D) = \frac{d_1 + d_2 + \ldots + d_n}{n}$$

$$\alpha$$
 (D) = $\frac{\lim_{n\to\infty}}{n+\infty}$ α_n (D)

Nous pouvons ne considérer que des " d_i " dans $\mathfrak{D}^* : \mathfrak{D}^* \cap (0,k_{n-1})$ car si on augmente d_i , $\alpha_n(D)$ augmente.

Nous avons
$$d_1 = n_1$$

 $d_1 + d_2 = n_2$
 $d_1 + d_2 + d_3 = n_3$

$$\sum_{i=1}^{n} d_{i} = n_{n}$$

donc $n = card \left[N \cap (0,1,2,... \sum_{i=1}^{r} d_i) \right]$ Alors $\delta_m = \frac{card \left[N \cap (0,m) \right]}{m}$ avec $\sum_{i=1}^{r} d_i < m < \sum_{i=1}^{r+1} d_i$

Puisqu'il n'y a pas d'éléments de N entre l'd et l'di, on a

$$\delta_{m} = \frac{\text{card } \left[E_{n}(0, \frac{R}{1} d_{i})\right]}{\frac{\Sigma}{1} d_{i} + \lambda}$$

avec
$$\lambda < d_{i+1} < k_{n-1}$$
 car $d_{i+1} \in \mathbb{S}^*$

$$d'où \delta_m = \delta \times \frac{1}{\sum_{i=1}^{n} d_i} \times \frac{1}{\sum_{i=1}^{n} d_i}$$

Comme λ est borné, $\lim_{n\to\infty} \frac{\frac{1}{n} d_i}{\sum_{i=1}^{n} d_i + \lambda} = 1$

donc
$$\overline{\lim} \delta_{m} = \overline{\lim} \delta_{\Sigma d_{i}}$$

Soit
$$d^*(N) = \frac{1}{\lim_{n \to \infty}} \frac{\operatorname{card} \left[N \cap (0, \frac{n}{1} d_i) \right]}{\frac{n}{\sum_{i=1}^{n} d_i}}$$

$$= \frac{1}{\lim_{n \to \infty}} \frac{n}{\sum_{i=1}^{n} d_i} = \frac{1}{\lim_{i=1}^{n} \frac{n}{i}}$$

$$= \frac{1}{\lim_{n \to \infty} a_n(L)} = \frac{1}{a(D)}$$

7.3 Nous allons maintenant montrer qu'il existe une suite D_O , périodique, telle que α (D_O) soit minimum.

Pour cela, nous allons étudier le problème suivant :

Soient m points pondérés de masses respectives a_1, a_2, \ldots, a_m tels que seuls certains "couples " a_i a_j soient "admissibles ". Nous dirons qu'une suite est "admissible si tous les couples consécutifs extraits le sont.

Alors, il existe parmi toutes les suites admissibles une suite ω_1 , ω_2 ,... ω_n , avec

$$\omega_{i} \in \{a_{i}\}$$
 $l = 1, \ldots m$

dont la limite des moyennes de Césaro soit minimale et cette suite peut être choisie périodique.

7.4 Démonstration

Formons toutes les "boucles admissibles "c'est à dire toutes les suites finies permises, sans points doubles.

Nous avons donc

$$b = b_1 b_2 \dots b_k (b_1 \dots) \text{ que nous écrirons}$$

$$b = b_1 b_2 \dots b_k \text{ avec } b_i \in \{a_k\} \text{ $k \in (1...m)$}$$

$$b_i \neq b_j \text{ si } i \neq j.$$

Il y a au plus

 $m + \frac{m(m-1)}{2} + \dots + \frac{m}{m}!$ telles boucles donc un nombre fini de boucles admissibles.

(Remarquona que pour les déterminer il suffit de corsidérer toutes les boucles débutant par a_1 , puis toutes celles débutant par a_2 et ne contenant pas a_1 , puis toutes celles débutant par a_3 et ne contenant ni a_1 , ni a_2 ...).

Soit alors

$$\Omega = \omega_1 \quad \omega_2 \quad \omega_3 \quad \ldots \quad \omega_n \quad \ldots \quad ,$$

avec $\omega_{i} \in \{a_{i}\}$ $i \in (1...m)$, une suite admissible.

Posons
$$\Omega_n = \omega_1 \omega_2 \ldots \omega_n$$

$$i_0 = i(\Omega) = \inf \{ i \mid \omega_i \in (\omega_1 \dots \omega_{i-1}) \}$$

$$j_0 = j(\Omega)$$
 défini par $\omega_{j(\Omega)} = \omega_{j(\Omega)}$

avec j (Ω) < i (Ω).

$$\lambda_{\Omega} = \lambda (\Omega) = i (\Omega) - j (\Omega)$$

$$b_0 = b(\Omega) = \omega_j(\Omega) \omega_j(\Omega) + 1 \cdots \omega_i(\Omega) - 1$$
.

et
$$\varphi(\Omega) = \omega_1 \omega_2 \cdots \omega_j (\Omega) - 1 \omega_i (\Omega) \omega_i (\Omega) + 1 \cdots \omega_n \cdots$$

Si $\alpha(\Omega_n)$ est la moyenne de Césaro de Ω_n nous avons : $\alpha(\Omega_n) = \frac{\omega_1 + \omega_2 + \ldots + \omega_n}{n}$. Donc

$$n \alpha(\Omega) = (\omega_1 + \omega_2 + \dots + \omega_{j_0} - 1) + (\omega_{j_0} + \omega_{j_0} + 1 + \dots + \omega_{j_0} - 1) + (\omega_{j_0} + \dots + \omega_{j_0})$$

$$\mathbf{n} \ \alpha(\Omega_{\mathbf{n}}) = (\omega_{\mathbf{j}_{0}} \alpha \omega_{\mathbf{j}_{0}} + 1^{+ \dots + \omega_{\mathbf{i}_{0}} - 1}) + (\omega_{\mathbf{1}} + \omega_{\mathbf{2}} + \dots + \omega_{\mathbf{j}_{0}} - 1^{+ \omega_{\mathbf{i}_{0}}} + \dots + \omega_{\mathbf{n}})$$

$$= \lambda(\Omega) \ \alpha[\mathbf{b}(\Omega_{\mathbf{n}})] + [\mathbf{n} - \lambda\lambda(\Omega)] \ \alpha[\varphi(\Omega_{\mathbf{n}})]$$

$$= \lambda_{0} \ \alpha(\mathbf{b}_{0}) + (\mathbf{n} - \lambda_{0}) \ \alpha[\varphi(\Omega_{\mathbf{n}})]$$

Appliquons de nouveau "l'opérateur φ " à φ (Ω_n)

Nous obtenons

$$\left[\mathbf{n} - \lambda_{o}(\Omega_{\mathbf{n}}) \right] \propto \left[\boldsymbol{\varphi}(\Omega_{\mathbf{n}}) \right] = \lambda_{1} \propto (\mathbf{b}_{1}) - \left[\mathbf{n} - \lambda_{o} - \lambda_{1} \right] \propto (\boldsymbol{\varphi}^{2}(\Omega_{\mathbf{n}}))$$

$$d'où m \alpha(\Omega_n) = \lambda_0 \alpha(b_0) + \lambda_1 \alpha(b_1) + (n - \lambda_0 - \lambda_1) \alpha \left[\varphi^2(\Omega_n) \right]$$

et, de proche en proche, :
$$n\alpha(\Omega_n) = \sum_{i=0}^{k-1} \lambda_i \alpha(b_i) + \left[n - \sum_{i=0}^{k-1} \lambda_i\right] \alpha\left[\varphi^k(\Omega_n)\right]$$

avec $K = n - \sum_{i=0}^{k-1} \lambda_i \le m$ car comme il y a m valeurs distinctes de w_i , dans tout ensemble de longueur supérieure à m il y a au moins une boucle.

D'aù

$$n \alpha(\Omega_n) = \sum_{\substack{i=0\\k-1}}^{\Sigma} \lambda_i \alpha(b_i) + K \alpha[\varphi^k(\Omega_n)]$$

$$\geq (\sum_{i=0}^{\Sigma} \lambda_i) \alpha_0 + K \alpha[\varphi^k(\Omega_n)]$$

α représente l'infimum des moyennes de Césaro des boucles. D'autre part, $oldsymbol{\phi}^{\,k}(\Omega_n)$ comporte K termes et sa moyenne de Césaro est supérieure ou égale à inf a donc k-l

$$n \alpha (\Omega_n) \ge (\sum_{i=0}^{k-1} \lambda_i) \alpha_0 + K \inf_i (a_i)$$

$$\alpha (\Omega_n) \ge \frac{n-K}{n} \alpha_0 + \frac{K}{n} \inf_i a_i$$

$$\ge \alpha_0 - \frac{K}{n} \alpha_0 + \frac{K}{n} \inf_i a_i$$

et
$$\frac{\lim_{n\to\infty}}{n\to\infty}$$
 α $(\Omega_n) \geq \alpha_0$.

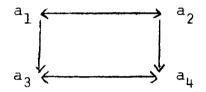
Donc, il existe une suite " minimale " qui est périodique : c'est la suite b_{α_0} b_{α_1} b_{α_0}

 b_{α_0} est une boucle vérifiant α $(b_{\alpha_0}) = \alpha_0 = \inf \alpha(b)$, l'infimum étant pris sur l'ensemble des boucles admissibles.

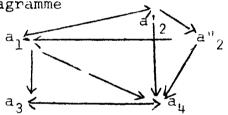
7.5 Remarque.-

Si une paire a_i a_i est admissible sans que le triplet a_i a_i ne le soit, le raisonnement précédent s'applique encore en remplaçant le point a_i par deux points a'_i et a''_i , de même poids que a_i et en considérant les nouvelles paires admissibles oonvenables.

Exemple : supposons que l'on ait quatre points, les paires admissibles étant déterminées par le diagramme suivant :



si a₂ a₂ est admissible sans que a₂ a₂ le soit, on obtiendra le nouveau diagramme



7.6 Prenons pour " a_n " tous les blocs admissibles B_{ℓ} tels que la somme des " d_i " d'un tel bloc soit supérieure ou égale à k_n , tous les blocs étant choisis de même mongueur. Ceci est toujours possible : il suffit de prendre pour longueur commune des blocs le nombre k_{n-1} + 1. En pratique, la longueur choisie pourra être très inférieure à ce nombre.

Alors si B_1 B_2 et B_2 B_3 sont admissibles, B_1 B_2 B_3 l'est car B_1 est sans influence sur B_3 puisqu'ils sont séparés par des termes dont la somme est supérieure à k_{n-1} donc appartient à \mathfrak{D}^* .

Les blocs étant choisis de même longueur, la moyenne de Césaro des d_i est la moyenne de Césaro des blocs positifs.

La suite minimale périodique trouvée dans le lemme nous fournit donc une suite minimale périodique d'éléments de D dont la limite des moyennes de Césaro est rationnelle.

Donc o est rationnel.

7.7 Exemples.-

a) Reprenons l'exemple de 4.5 :

$$K = \{0, 1, 2, ..., n, 2n, 3n, ..., qn\}$$

$$\mathfrak{D} = \{0, 1, 2, \dots, qn\}$$

donc \mathfrak{D}^* = {m | m > qn+1} et la suite minimale périodique est trivialement :

D = (0, qn+1, qn+1, ...)

d'où N = (0, qn+1, 2(qn+1), 3(qn+1) ...)

et
$$\sigma_{K} = \frac{1}{qn+1}$$

b) K = {0, 3, 7}

 $\mathfrak{D} = \{0, 3, 4, 7\}$
 $\mathfrak{D}^{*} = \{1, 2, 5, 6, 8\}$

b₀ = 1, 1, 8

et α (b₀) = inf (a_i) = $\frac{10}{3}$

d'où
$$\sigma = \frac{3}{10}$$

et m (AUT³AUT⁷A)
$$< \frac{9}{10}$$
 m (Ω)

si A, T³A et T⁷A sont disjoints.

8 - Exemple d'une suite infinie (k_i) , $(k_i < k_{i+1})$ telle que la mesure maximale de $\bigcup_{i=1}^{n-1} \sum_{i=1}^{k_i} A_i$ ait une limite inférieure nulle.

Nous allons montrer que la suite ci dessous répond à la question :

$$m_1, m_1+1, m_1+2, \dots, m_1+2n, m_1+4n, m_1+6n, \dots, m_1+2^2qn,$$
 $m_2, m_2+1, m_2+2, \dots, m_2+2^2n, m_2+2\cdot 2^2n, m_2+3\cdot 2^2n, \dots, m_2+2^4qn,$
 $m_3, m_3+1, m_3+2, \dots, m_3+2^3n, m_3+2\cdot 2^3n, m_3+3\cdot 2^3n, \dots, m_3+2^6qn$
 $m_4, m_4+1, m_4+2, \dots, m_4+2^4n, m_4+2\cdot 2^4n, m_4+3\cdot 2^4n, \dots, m_4+2^8qn$

• • • • • • •

.

$$m_p, m_{p+1}, m_{p+2}, \dots, m_{p+2} p_n, m_{p+2 \cdot 2} p_n, m_{p+3 \cdot 2} p_n, \dots, m_{p+2} p_{q \cdot 2} p_n$$

.

avec
$$m_{p+1} > m_p + 2^{2p}qn$$
.

Considérons la sous suite finie K_p +

$$K_p = \{0, 1, \dots m_p + 2^{2p}qn\}.$$

et soit $\sigma_{_{
m D}}$ correspondant.

L'ensemble des différences contient l'ensemble des différences $k_j - k_i$ pour $m_p < k_i < k_j < m_{p+1}$, c'est à dire l'ensemble des différences de l'ensemble

$$0,1,2,...2^{p}$$
 $n,2.2^{p}$ $n,3.2^{p}$ $n,...,2^{p}$ $q.2^{p}$ n

Or, cet ensemble " différence " est l'ensemble de tous les nombres entiers compris entre 0 et $2^{2p}qn$.

La mexure maximale de A_p , sous ensemble associé à K_p , est donc inférieure à

$$(\frac{1}{2^{2p}qn + 1}) m (\Omega)$$

donc $\sigma_p < \frac{1}{2^{2p}qn+1} < \frac{1}{2^{2p}qn}$. Or si ρ_p est le nombre de termes de la suite K_p on a :

$$\rho_{p} = (n+1) + (q-1)$$

$$+ (2n+1) + (2q-1)$$

$$+ (2^{2}n+1) + (2^{2}q-1)$$

$$+ \dots$$

$$+ (2^{p}n+1) + (2^{p}q-1)$$

$$= n(1 + 2 + 2^{2} + \dots + 2^{p}) + q (1 + 2 + 2^{2} + \dots + 2^{p})$$

$$= (n+q) \frac{2^{p+1} - 1}{2^{p+1} - 1} = (n+q) (2^{p+1} - 1)$$

done

$$\rho_{p} \sigma_{p} < \frac{(n+q)(2^{p+1}-1)}{2^{2p}qn} < \frac{1}{2^{p-1}} \xrightarrow{n+q} \xrightarrow{p+\infty} 0$$

REFERENCE

ROKHLIN - Dobl. Akad. Nank. SSRR. - 60-1948 - p. 349-351 (en russe)