MICHEL MÉTIVIER

On Doleans-Föllmer’s Measure for Quasi-Martingales and a Pellaumail’s Extension Theorem

Publications des séminaires de mathématiques et informatique de Rennes, 1973, fascicule 3
« Séminaires de probabilité », p. 23-46
<http://www.numdam.org/item?id=PSMIR_1973___3_23_0>

L’accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
On Doleans-Follmer's measure for quasi-martingales
and a Pellaumail's extension theorem

by

Michel Metivier

Laboratoire de Probabilités - ERA 250 C.N.R.S. - Rennes

Let \((\Omega, (\mathcal{F}_t)_{t \in \mathbb{R}^+}, P)\) be the usual setting for studying stochastic processes. The idea of associating with every adapted process \((X_t)_{t \in \mathbb{R}^+}\) a set function \(\mu_X\), defined on the algebra of subsets of \(\mathbb{R}^+ \times \Omega\) generated by the family \([s, t] \times F; 0 < s \leq t, F \in \mathcal{F}_s\), through the formula

\[\mu_X([s, t] \times F) = \mathbb{E}[1_F \cdot (X_t - X_s)]\]

seems to have been used by C. Doleans in [2] for the first time. She proved that, if \(X\) is a supermartingale of local class \(D\), then \(\mu_X\) is \(\sigma\)-additive.

Recently Föllmer [5] proved, under particular conditions on \((\mathcal{F}_t)\) (which forbid the usual assumption of completeness on the \(\mathcal{F}_t\)'s and are of topological character), that \(\mu_X\) is always \(\sigma\)-additive as soon as \(X\) is a \(L^1\)-bounded quasi-martingale, and that the property for \(X\) to be of class \(D\) is equivalent to: every evanescent predictable subset of \(\mathbb{R}^+ \times \Omega\) is of \(\mu_X\) measure zero. Moreover, Föllmer notes that the previous decomposition theorem of quasi-martingales (\(F\)-processes in the work of Orey [10]) as got by Orey, Fisk and Rao can be received as mere immediate consequences of known decomposition theorems for measures.

\(\star\) This seminar was written during the author's stay at University of Minnesota - Minneapolis during the fall 1973.
In this lecture we intend to take over Föllmer's treatment without assuming topological properties for the \(\mathcal{F}_t \)'s, and with the usual assumptions of completeness. The results are slightly different: the measure \(\mu_X \) is only simply-additive, and the property of \(\sigma \)-additivity is in this case equivalent to the property of being of class \(D \) for \(X \).

The first paragraphs (1 to 8) study the one to one correspondence \(X \rightarrow \mu_X \) between quasi-martingales and a class of finitely additive measures with bounded variation, which is an isomorphism of the order structures defined by the positive cone of negative sub-martingales and the positive cone of positive measures respectively.

The §4 and §5 study the \(\sigma \)-additivity or pure finitely additivity of \(\mu \) in terms of the process \(X \) and states the corresponding decomposition theorem.

In §6 we have exposed the recent proof of the Doob-Meyers decomposition theorem for quasi-martingales, due to J. Pellaumail. It is simple and based upon the \(\sigma \)-additivity of the Dolean's measure, and has moreover the advantage of being immediately applicable to vector valued quasi-martingales.

1. Notations and definitions.

\((\mathcal{F}_t)_{t \in \mathbb{R}^+} \) is an increasing family of sub-\(\sigma \)-algebras of a \(\sigma \)-algebra \(\mathcal{F} \) of subsets of \(\Omega \).

\((\mathcal{G}, \mathcal{F}, \mathbb{P}) \) is a complete probability space. We set \(\mathcal{F}_\infty = \bigvee_{t \in \mathbb{R}^+} \mathcal{F}_t \) (\(\sigma \)-algebra generated by \(\bigcup_{t \in \mathbb{R}^+} \mathcal{F}_t \)) and

\[n = \{ F : F \in \mathcal{F}_\infty, \mathbb{P}(F) = 0 \} . \]
We make the following:

Assumption: $\mathcal{F}_t \supset \mathcal{A}$ for any t, and $(\mathcal{F}_t)_{t \in \mathbb{R}^+}$ is right-continuous.

We define the following systems of subsets of $\mathbb{R}^+ \times \Omega$, (where $\mathbb{R}^+ = [0, \infty]$).

A predictable rectangle is a subset $[s,t] \times F$ of $\mathbb{R}^+ \times \Omega$ such that $s < t$ and $F \in \mathcal{F}_t$.

Let $a \in [0, +\infty]$. We call \mathcal{R}_a the set of predictable rectangles in $[0,a] \times \Omega$.

\mathcal{A}_a is the algebra of subsets of $[0,a] \times \Omega$ which are finite union of predictable rectangles.

$\bar{\mathcal{A}}_a$ is the algebra of subsets of $[0,a] \times \Omega$ which are finite union of predictable rectangles.

\mathcal{P}_a is the σ-ring generated by \mathcal{A}_a.

\mathcal{P}_a is the σ-ring generated by $\bar{\mathcal{A}}_a$.

The elements of \mathcal{P}_a (resp \mathcal{P}_a) are called the predictable subsets of $[0,a] \times \Omega$ (resp $[0,a] \times \Omega$).

The subsets of $\mathbb{R}^+ \times \Omega$ included in some $[0,a] \times \Omega$ with $a < \infty$, will be said bounded.

For all the processes $X=(X_t)_{t \in \mathbb{R}^+}$ which will be considered we will define $X_\infty = 0$ (X_∞ is to be distinguished from $X_\infty = \lim_{t \to \infty} X_t$ p.s. if such a limit exists).

\mathcal{A} will be the algebra generated $\bigwedge \mathcal{A}_\infty$, and the sets $\{(\omega) \times F; F \in \bigcup_{t \in \mathbb{R}^+} \mathcal{A}_t\}$.

We recall that \mathcal{A}_a consists of those so-called "stochastic intervals" $]0,1] = \{(u,w) : \sigma(w) < u \leq \tau(w)\}$ where σ and τ are two finitely valued stopping times.
A function \(f \) on \(\mathbb{R}^+ \times \Omega \) is said to be evanescent if
\[
P\left(\{ w : f(t,w) = 0 \text{ for all } t \in \mathbb{R}^+ \} \right) = 1.
\]
A subset \(G \) of \(\mathbb{R}^+ \times \Omega \) is called evanescent if its indicator function \(1_A \) is evanescent.

Two processes \(X \) and \(Y \) are said indistinguishable if \(X - Y \) is evanescent.

2. Simply additive measures associated with quasi-martingales.

2.1 Definition

An adapted process \(X \) is said to be an \(F \)-process (Orey's definition) or a quasi-martingale on a compact interval \([0,a]\) if
\[
K_a = \sup_{0 \leq t_1 < \ldots < t_k \leq a} \sum_{i=0}^{k-2} \left| \mathbb{E}\left[X_{t_{i+1}} - \mathbb{E}(X_{t_{i+1}} \mid \mathcal{F}_t) \right] \right| < +\infty
\]
where the \(\sup \) is to be taken on all the increasing finite sequences \(t_1 < \ldots < t_k \) in \([0,a]\).

Remark.

Such a process is clearly bounded in \(L^1 \) on \([0,a]\).

2.2. Measures associated with a general adapted process.

We define the following functions \(m^a_X \) and \(\mu^a_X \) (resp. \(\overline{m}^a_X \) and \(\overline{\mu}^a_X \)) on \(\mathcal{A}_a \) (resp. \(\overline{\mathcal{A}}_a \)), for every adapted real process \(X \) such that \(\forall t \), \(X_t \in L^1(\Omega, \mathcal{F}_t, \mathbb{P}) \).

\(2.2.1 \)
\[
m^a_X([s,t] \times F) = \mathbb{1}_F \cdot (X_t - X_s) \in L^1 \quad (\text{resp. } \overline{m}^a_X \ldots)
\]

\(2.2.2 \)
\[
\mu^a_X([s,t] \times F) = \mathbb{E}\left[\mathbb{1}_F \cdot (X_t - X_s) \right] \in \mathbb{R} \quad (\text{resp. } \overline{\mu}^a_X \ldots)
\]

It is quite immediate that this function can be extended into simply additive measures on the algebra \(\mathcal{A}_a \) (resp. \(\overline{\mathcal{A}}_a \)). It is clear that, if \(X \)
is a Banach valued process (in Banach space E), we can still define m_x^a and μ_x^a through formula (2.2.1) and (2.2.2). In this case m_x^a takes its values in $L^1_E(F, \mathcal{F}_a, \mathbb{P})$ and μ_x^a takes its values in E.

The following proposition follows immediately from the definition.

Proposition 1.

μ_x^a is positive (resp. negative, resp. zero) if and only if X is a submartingale (resp. a supermartingale, resp. a martingale), on $[0, a]$. Same statement for μ_x^a and $[0, a]$.

Remark.

From the convention $X_0 = 0$, it follows that μ_x^a is positive, (resp. negative, resp. zero) if and only if X is a negative submartingale on $[0, a]$, (resp. a positive supermartingale, resp. a null-process).

Proposition 2.

For two finitely valued stopping time σ and τ, $\sigma \leq \tau$

\[\mu_x^a[\sigma, \tau] = E(X_\tau - X_\sigma) \quad m_x^a[\sigma, \tau] = x_\tau - x_\sigma \]

Proof.

If $\{0 = t_0, ..., t_n\}$ is a set including the values of σ and τ, σ and τ can be written.

\[\sigma = \sum_{i=0}^{n-1} (t_{i+1} - t_i) 1_{F_i} \quad F_i \in \mathcal{F}_{t_i} \]

\[\tau = \sum_{i=0}^{n-1} (t_{i+1} - t_i) 1_{G_i} \quad G_i \in \mathcal{F}_{t_i} \text{ and } G_i \supset F_i \]

Then

\[[\sigma, \tau] = \bigcup_{i=1}^{n-1} [t_i, t_{i+1}] \times (G_i - F_i) \]
and the formulas of the proposition follow immediately from the definition of \(m_X, \mu_X \) and the fact that
\[
X_t = \sum_{i=0}^{n-1} (X_{t_{i+1}} - X_{t_i}) \mathbb{1}_{G_i}.
\]

2.3. More on the correspondence \(X = \mu^\infty_X \).

From the assumption \(X = 0 \), and the relation
\[
\tilde{\mu}^\infty_X([t,s]) x F = -E(1_F \cdot X_t)
\]

it is clear that \(\tilde{\mu}^\infty_X \longmapsto X \) is a one-to-one correspondence between finitely additive measures \(\mu \) on \(\mathbb{R}^\infty \) such that for every \(t \), \(F \cdot \mu([l,t] \times x F) \) is an absolutely continuous bounded measure on \(\mathbb{R}^t \), and processes \(X \) such that \(X_t \in L^1 \) for all \(t \) (defined up to a modification).

2.3. Theorem 1.

\(\mu^\infty_X \) of bounded variation on \(\mathbb{R}^\infty \) \(\longmapsto X \) is an \(\mathbb{F} \)-process on \([0,a] \).

In this case \(|\mu^\infty_X([0,a] \times x F)| = X_a \).

Proof.

By definition, for every predictable \([s,t] \times x F \),
\begin{equation}
|\tilde{\mu}^\infty_X([s,t]) x F| = \sup \mathbb{E}|E(1_F \cdot (X_{t_i} - X_{s_i}))|
\end{equation}

where \(([s_i,t_i] \times x F_i) \) is any family of disjoint rectangles included in \([s,t] \times x F \).

By taking a finer partition if necessary, one may assume that the partition on the right-hand side of (2.3.1) is of the following form
\begin{equation}
[ts_{k}, t_{k+1}] \times x F_k, \quad s \leq t_0 < \ldots < t_n \leq t, \quad k = 1 \ldots m_k.
\end{equation}
Let us then denote

\[A_k = \{ E(X_{t_{k+l}} | F_{t_k}) - X_{t_k} > 0 \} \cdot \]

It is clear, from \(E \), that \(k, t \in F_{t_k} \), that

\[(2.3.3) \quad \sum_{k,l} |E(X_{t_{k+l}} - X_{t_k}) \cdot |F_{t_k}, t \cdot k, l | = \sum_{k,l} E |l_{k+l}, t | \cdot E(X_{t_{k+l}} - X_{t_k}) | \cdot \]

On the other hand it is trivial that for each division \(s \cdot t_0 \cdots t_{k+l-1} \),

\[\mu^1_X([s,t] \times F) \geq \sum_{k,l} E |l_{k+l}, t | \cdot E(X_{t_{k+l}} - X_{t_k}) | + E |l_{k+l}, t | \cdot E(X_{t_{k+l}} - X_{t_k}) | \cdot \]

The two last inequalities imply the theorem.

Theorem 1'.

If \(X \) is Banach valued, the same conclusions as in Theorem 1 hold
for the Banach valued finite additive-measure \(\overline{\mu_X} \).

Proof.

With the same notations as in the proof of Theorem 1

\[\overline{\mu_X}([s,t] \times F) = \sup \sum_{k,l} E(l_{k+l}, t | \cdot E(X_{t_{k+l}} - X_{t_k}) |) \]

where the \(\sup \) is taken over all the partitions of the form \((2.3.2) \).

Inequality (2.3.3) is proven exactly the same way.

For every \(\epsilon \), there exists a step function

\[q_k = \sum_{k,l} l_{k+l} \cdot x'_k, l | \cdot x'_k, l | \in K ', \| q_k \|_\infty \leq \epsilon \]
such that

$$|E(X_{t_{k+1}} - X_{t_k} \mid \mathcal{F}_k)| \geq \langle \varphi_k, E(X_{t_{k+1}} - X_{t_k}) \mid \mathcal{F}_k \rangle$$

$$\geq |E(X_{t_{k+1}} - X_{t_k} \mid \mathcal{F}_k)| - \frac{\varepsilon}{n}.$$

From here it is easily seen that for every ε

$$\mu^3([s,t] \times \mathcal{F}) \geq \sum_{k=1}^{n} |E(X_{t_{k+1}} - X_{t_k} \mid \mathcal{F}_k)| - \varepsilon.$$

And then

$$\mu^3([s,t] \times \mathcal{F}) \leq K_a$$

3. **Bounded variation of μ_X and regularity of trajectories of X.**

Theorem 2. (Orey).

Let X be a separable real quasi-martingale on $[0,a]$. Almost surely the trajectories have left and right limits.

Proof.

The proof goes as the traditional proof for martingales due to Doob. (cf. [11] p.). Let a and b be two real numbers $a < b$. Let $S = \{s_1 < s_2 < \ldots < s_{2n} \} \subset [0,a]$. We define the times of up crossings and down crossings over $[a,b]$, as follows:

$$c_1 = s_1 \quad c_{2k} = \begin{cases} \inf\{s : s \in S, s > c_{2k-1}, X(s) \leq a\} & \text{if } \{\} \neq \emptyset \\ c_{2k-1} & \text{if } \{\} = \emptyset \end{cases}$$

$$c_{2k+1} = \begin{cases} \inf\{s : s \in S, s > c_{2k}, X(s) \geq b\} & \text{if } \{\} \neq \emptyset \\ c_{2k} & \text{if } \{\} = \emptyset \end{cases}.$$
The condition of bounded variation on μ_X implies

$$K_n = |\mu_X|_{0,a} = \sum_{k=1}^{n-1} E|X_{2k+1} - X_{2k}|$$

Because of the positivity of $X_{2k+1} - X_{2k}$:

$$K_n \geq \sum_{k=1}^{n-1} E|X_{2k+1} - X_{2k}|$$

and

$$\geq \sum_{k=1}^{n-1} (b-a) J_{S,j}(a,b)$$

where

$$J_{S,j}(a,b) = \{ \omega : j \text{ among the } X_{2k+1} - X_{2k} \text{ on } (a,b) \}$$

We may then consider a dense denumerable set S in $[0,a]$, and an increasing sequence (S_n) of finite subsets of S such that $S = \bigcup S_n$, and the corresponding sets $F_{S_n,j}(a,b)$. From

$$P(F_{S_n,j}(a,b)) \leq \frac{K_n}{J \cdot (b-a)}$$

we deduce that the set Ω of trajectories having infinitely many crossings over $[a,b]$, on the set S, has probability 0.

The property of the theorem is deduced from there, by the usual argument.

4. Decomposition theorems.

We recall that an additive function μ on an algebra \mathcal{A} of sets is the difference of two positive additive functions μ^+ and μ^- if and only if μ is of bounded variation on any set A of \mathcal{A}, i.e.: if $\forall A \in \mathcal{A}, |\mu|(A) = \sup \{ \Sigma \mu(A_i) : (A_i) \text{ any finite partition of } A, A_i \in \mathcal{A} \} < \infty$, one has

$$|\mu|(A) = \mu^+(A) + \mu^-(A).$$
One may view this as a Riesz decomposition in the ordered space (completely reticulated: see Bourbaki Integration I §1) of relatively bounded linear forms on the space of step functions on \mathbb{N}. Every simply additive function μ, with bounded variation, is isomorphically (linearly and for the order) associated with a linear form $\tilde{\mu}$ by

$$\langle \tilde{\mu}, \sum_{i} a_{i} \mu(\delta_{i}) \rangle = \sum_{i} a_{i} \mu(\delta_{i}).$$

We recall too, that the σ-additive-functions on \mathbb{N} are easily seen to constitute a Riesz Band (cf. Bourbaki, Ref. above).

The band of the simply additive functions, which are orthogonal ("étrangères") to all σ-additive-functions is formed from all the so called "purely finitely additive functions," which may be characterized in the following way:

$$\mu \text{ is purely finitely additive, if } (0 \leq \nu \leq |\mu| \text{ and } \nu \text{ of-}\text{additive}) \Rightarrow \nu = 0.$$

Every finitely additive measures with bounded variation is the sum $\mu_{0} + \mu_{\infty}$ of a σ-additive measure and a purely finitely additive one. The decomposition is unique.

These decomposition theorems give us immediately the following

4.1. Theorem 3.

Every quasi-martingale X on $[0, a]$ is the difference of two positive L^{1}-bounded supermartingales X^{+} and $X^{-}; X_{t} = X^{+} - X^{-}$. The decomposition is unique if we assume $X_{0} = 0$ and impose $X^{+}(a) = X^{-}(a) = 0$ and: for every $\epsilon > 0$ there exists a sequence $\tau_{1} < \ldots < \tau_{n}$ of finitely valued stopping times with values in $[0, a]$ and two subsequences $(\tau_{i}^{1}), (\tau_{j}^{n})$ whose union is (τ_{i}) such that

$$\sum_{i} E(X_{\tau_{i}^{1}}^{+} - X_{\tau_{i+1}^{1}}^{+}) + \sum_{j} E(X_{\tau_{j}^{n}}^{-} - X_{\tau_{j+1}^{n}}^{-}) \leq \epsilon.$$
Proof.

Decompose \(\mu_X^a = \mu_X^a - \mu_X^b \), and take

\[
X_t^+ = \left(\frac{d\nu_t^+}{d\mathcal{F}_t} \right) \quad \text{and} \quad X_t^- = \left(\frac{d\nu_t^-}{d\mathcal{F}_t} \right)
\]

Radon-Nikodym derivatives of the measures \(\nu_t^+ \) and \(\nu_t^- \) defined on \(\mathcal{F}_t \) by

\[

\nu_t^+(F) = \mu_X^a(|t, a| \times F)
\]

and

\[

\nu_t^-(F) = \mu_X^b(|t, a| \times F)
\]

The decomposition \(X_t = X_t^- - X_t^+ \) follows from

\[
\mu_X^a(|t, a| \times F) = -\mathbb{E}(1_F \cdot X_t) = -\mathbb{E}(1_F \cdot X_t^+) + \mathbb{E}(1_F \cdot X_t^-)
\]

as to the unicity condition of the theorem, it expresses only that

\[
\inf(\mu_X^{a^+}, \mu_X^{a^-}) = 0
\]

4.2. Extension of \(\mu_X^a \)

Let us suppose that \(X \) is a \(\mathcal{F} \)-process on \([0, \infty) \) (with the convention here made that \(X_0 = 0 \)). It follows immediately from the decomposition theorem 3 that \(\forall F \in \mathcal{F}, \exists t \in \mathbb{R}^+ \) such that

\[
\lim_{t \to \infty} \mu_X^a([t, \infty] \times F) = -\lim_{t \to \infty} \mathbb{E}(1_F \cdot X_t) \text{ exists.}
\]

It is then clear that if we set

\[
\mu_X^\infty([\infty] \times F) = \lim_{t \to \infty} \mu_X^a([t, \infty] \times F)
\]

and

\[
\mu_X^\infty([s, t] \times F) = \mu_X^\infty([s, t] \times F) \text{ whenever } s < t \in [0, +\infty],
\]

we define an additive extension \(\mu_X^\infty \) of \(\mu_X^a \) to the algebra called \(\mathcal{F} \) above.
It is evident that \(\mu_X^- \) is the difference of the extensions \(\mu_X^+ \) and \(\mu_X^- \) of \(\mu_X^{\alpha^+} \) and \(\mu_X^{\alpha^-} \). As those extensions are such that \(\inf(\mu_X^+, \mu_X^-) = 0 \), they are respectively the positive part and negative part of \(\mu_X^- \).

From these definitions, follows immediately:

Proposition 3.

\((X_t)_{t \in \mathbb{R}^+} \) is a martingale if and only if \(\mu_X([0, \omega]) \times \Omega = 0 \). \((X_t)_{t \in \mathbb{R}^+} \) is a potential (i.e. a positive supermartingale such that \(\lim_{t \to \infty} E(X_t) = 0 \)) if and only if \(\mu_X^- \leq 0 \) and \(\mu_X^-(\omega) \times \Omega = 0 \).

Every quasi-martingale \(X \) can be written uniquely as

\[
X = M + V^- - V^+
\]

where \(V^- \) and \(V^+ \) are potentials verifying the condition (4.1.2) \((\mu^+ \) and \(X^- \) being replaced by \(V^+ \) and \(V^- \) in the statement of this condition), and \(M \) is a martingale.
4.3. **Theorem 4.** (Orey)

Let \((\mathcal{F}_n)\) be a decreasing sequence of \(\sigma\) algebras with \(\mathcal{F} = \bigcap_n \mathcal{F}_n\).

If the variables \(X_n\) verify

\[
\sum_{n} \mathbb{E} |\mathbb{E}(X_n - X_{n+1} | \mathcal{F}_{n+1})| < \infty ,
\]

Then they are uniformly integrable.

Proof.

We refer to [10] for the proof, or the preceding theorem may be applied, and we can then use uniform integrability properties of supermartingales.

5. **Characterization of \(\sigma\)-additive and purely finitely additive parts.**

5.1. \(\sigma\)-additivity on \(\mathcal{F}_\infty\).

We consider here the case when \(X\) being a quasi-martingale on every bounded interval \([0,a]\), \(\mu^\infty_X\) is of bounded variation only on the algebra \(\mathcal{F}_\infty\) generated by bounded predictable rectangles. So we take only its restriction \(\mu^\infty_X\) into consideration.

Definition.

We recall that a process \(X\) on \([0,\infty[\) is said to be of class \(D\) if the set \(\{X_T : T \text{ any finite-stopping time} \}\) is uniformly integrable. It is said to be locally of class \(D\) if for every \(a < \infty\), the set \(\{X_T : T \text{ any stopping time } \leq a\}\) is uniformly integrable.

Proposition 4.

\(\mu^\infty_X\) is \(\sigma\)-additive on \(\mathcal{F}_a\), \(a \in \mathbb{R}^+\), and if \(X\) is a.s. right continuous, then for every stochastic interval \([T,a]\)

\[
\mu^\infty_X([T,a]) = \mathbb{E}(X_a) - \mathbb{E}(X_T) .
\]
This proposition is trivially true for finitely valued stopping time \(T \). Define for a stopping time \(T \), an upper decreasing approximating sequence \((\tilde{T}_n) \), of finitely valued stopping time \(T \), we have then, from the \(\sigma \)-additivity,

\[
\mu^\sigma(T,a] = \lim_{n \to \infty} [E(X_{\tilde{T}_n}^a) - E(X_{\tilde{T}_n})] .
\]

But as

\[
\lim_{n \to \infty} X_{\tilde{T}_n} = X_T \quad \text{a.s.}
\]

applying Theorem 4 to the variable \(X_{\tilde{T}_n} \) and \(\sigma \)-algebras \(\mathcal{F}_{\tilde{T}_n} \), we get the convergence of \(X_{\tilde{T}_n} \) towards \(X_T \) in \(L^1 \), and from there the proposition 4.

Theorem 5.

Let \(X \) be a real process, right continuous in \(L^1 \), which is a quasi-martingale on every bounded interval \([0,a]\).

Then \(\mu_X^\sigma \) is \(\sigma \)-additive if and only if \(X \) is locally of class \(H \).

Proof.

Necessity.

Let \(a < \infty \) and \(\mu_X^\sigma \) the restriction of \(\mu_X^\sigma \) to \(\mathcal{F}_a = \sigma \ldots [0,a] \). If \(\mu_X^\sigma \) is \(\sigma \)-additive, its positive and negative parts are \(\sigma \)-additive too.

Let us consider the positive part associated with the positive supermartingale \(X^+ \). From the \(\sigma \)-additivity of \(\mu_X^+ \) \(\lim_{t \downarrow s} E(X_t^+ - X_s^+) = 0 \). Then there exists a right-continuous version of \(X^+ \).

We define the stopping times

\[
R_n = \inf\{t : X_t^+ > n\} .
\]
For \(u < a \)

\[
P_n(\{ R_n \wedge u, u \}) = 0 .
\]

From the \(\sigma \)-additivity and proposition 4 we deduce

\[
\lim_{n} E(X_u - X_{R_n \wedge u}) = 0 .
\]

Using the same argument as in Meyer [9], p. 13^, we will prove that this implies the uniform improbability of \(\{ X_T : T \leq u \} \).

Let us define

\[
T'(w) = T(w) \quad \text{if} \quad X_{T(w)} \geq n
\]

\[
T'(w) = u \quad \text{if} \quad X_{T(w)} < n .
\]

One has

\[
R_n \wedge u \leq T'
\]

and then

\[
E(X^{-}_{R_n \wedge u}) \geq \int [X^{-}_T \geq n] dP + \int [X^{-}_T < n] u dP .
\]

Then

\[
\int [u < R_n] X^{-}_u dP + \int [u \geq R_n] X^{-}_{R_n} dP - \int [X^{-}_T < n] u dP \geq \int [X^{-}_T \geq n] X^{-}_T dP
\]

as \([u < R_n] \subset [X^{-}_T < n] \) then the positivity of \(X^{-} \) implies

\[
\int [u \geq R_n] X^{-}_{R_n} dP \geq \int [X^{-}_T \geq n] X^{-}_T dP
\]

which proves the uniform integrability property. We do the same reasoning for \(X^{-}_T \).
We prove that for every decreasing sequence \((\{A_n\})\) of sets from \(\mathcal{A}\), such that \(\omega_n \leq \omega\)

\[
\limsup_{n \to \infty} \sup_{A \in \mathcal{A}} |\lambda_n^\omega (A)| = 0.
\]

\((5.1.1)\)

We start with a finite partition \((C_k)\) of \([0, a] \times \mathbb{N}\) such that

\[|\mathbb{E}[\lambda_k^\omega (C_k)] - |\lambda_k^\omega (0, a) \times \mathbb{N}|| \leq \varepsilon,
\]

which implies

\[|\varepsilon_k + |\lambda_k^\omega (C_k)| \leq |\lambda_k^\omega (0, a) \times \mathbb{N}|| \leq \varepsilon.
\]

\((5.1.2)\)

We will be finished if we can prove that for a suitable \(n\)

\[|\mathbb{E}[\lambda_k^\omega (C_k)]| \leq |\lambda_k^\omega (0, a) \times \mathbb{N}|| \leq \varepsilon_k \leq \varepsilon.
\]

\((5.1.3)\)

From \((5.1.2)\) it follows easily that

\[\forall A \in \mathcal{A}, \ A \subseteq C_k, \ \varepsilon_k + |\lambda_k^\omega (A)| \leq |\lambda_k^\omega (0, a) \times \mathbb{N}|| \leq 2\varepsilon_k.
\]

We can find \([\sigma, \tau]\) where \(\sigma\) and \(\tau\) are finitely valued stopping times such that \(A \subseteq C_k \cup [0, a] \times \mathbb{N}\). Then, from \((5.1.4)\)

\[|\lambda_k^\omega (A) - |\lambda_k^\omega (0, a) \times \mathbb{N}|| \leq \varepsilon_k + |\lambda_k^\omega ([0, a])| \leq \varepsilon_k + |\lambda_k^\omega ([0, a])|.
\]

\((5.1.4)\)

from the uniform integrability of the \(X_t\), it is then possible to find \(\xi\) such that \((5.1.3)\) holds. The theorem then follows from the lemma.
Lemma (Pellaumail).

Let λ be a finitely additive measure on \mathcal{B}_a, with the following properties: It is of finite variation and

(i) $\forall F : \exists s, s < t$

$$\lim_{t \downarrow s} |\lambda([s,t) \times F)| = 0$$

(ii) for every decreasing sequence (F_n) extracted from \mathcal{B}_a, such that

$$\lim_{n \to \infty} \sup_{A \in \mathcal{B}_a} |\lambda(A)| = 0$$

Then λ is σ-additive.

Proof.

We have to prove that for every decreasing sequence

$$(5.1.5) \quad (A_n), \quad A_n \in \mathcal{B}_a \quad \text{and} \quad ; A_n = \emptyset, \quad \lim_{n} \lambda(A_n) = 0.$$

Suppose that for some class C of subsets of $[0,a]$, C being stable with respect to finite unions and intersections, we have the property

$$A \in \mathcal{B}_a, \quad \forall \varepsilon > 0 \quad \exists C \in C \quad \text{and} \quad A' \in \mathcal{B}_a \quad \text{such that}$$

$$A' \subseteq C \subseteq A, \quad |\lambda(A - A')| \leq \varepsilon.$$

Then if for every decreasing sequence (C_n) such that $C_n \in C$ and $C_n = \emptyset$, we have

$$(5.1.6) \quad \lim_{n} \sup_{A \in \mathcal{B}_a} |\lambda(A)| = 0.$$
We see immediately that (5.1.5) is true: Take \(A_n \cap C_n = A_n \) with

\[
\frac{d(A_n - A')}{2^n} = \frac{\varepsilon}{2^n}.
\]

Then if we set

\[
C_n = \bigcap_{k \leq n} C_k, \quad B_n = \bigcap_{k \leq n} A_k \in \overline{\Omega}
\]

we get a decreasing sequence \((C_n')\), extracted from \(C \) with void intersection and such that

\[
\forall n \left\{ \mu(A_n - B_n) \leq \varepsilon \right\}
\]

From (5.1.6) it is clear that \(\lim_{n} B_n = 0 \) and then \(\lim \sup |A_n| \leq \varepsilon \) for all \(\varepsilon \).

We only have to prove (5.1.6) for a suitable class \(C \). We take for \(C \) the class of finite unions of rectangles of the type \([s,t] \times \mathbb{F}, \mathbb{F} \in \mathcal{F}_a\).

From property (i) it is clear that for every set \(A = [s,t] \times \mathbb{F} \) (and then for every finite union of such sets), it is possible to find \(C = [s',t] \times \mathbb{F} \subseteq A \) and \(A' = [s',t] \times \mathbb{F} \) such that

\[
|\lambda(A - A')| = |\lambda([s,s'] \times \mathbb{F})| \leq \varepsilon.
\]

Let us take a decreasing family \((C_n)\) of sets in \(C \) such that

\[n \in C_n = \emptyset. \]

As, for every \(w \), the set \(C_n(w) = \{ u : (u,w) \in C_n \} \) is compact in \(\overline{\mathbb{R}} \):

\[
U \{ w : k \in C_n(w) = \emptyset \} = \emptyset.
\]

As \(\{ w : n \in C_n(w) = \emptyset \} = \mathbb{F}_n \in \mathcal{F}_a \)

\[
\forall n \leq k \in C_n \subseteq [0,a] \times \mathbb{F}_n.
\]

Property (ii) then implies (5.1.6).
5.2. c-additivity on $\overline{\mu}_{\alpha}$.

The following theorems are mere corollaries of Theorem 5.

Theorem 5'.

Let X be a right continuous quasi-martingale on $[0, \infty)$. Then μ^c_α is c-additive if and only if X is of class D.

Theorem 5''.

Let X be a right continuous process which is a quasi-martingale on every $[0, a]$, $a < \infty$. Let T be a stopping time such that $\{X_t : 0 \leq T, \alpha \text{ stopping time}\}$ is uniformly integrable. Then μ^c_α restricted to $[0, T] \cap \overline{\mathcal{P}}$ is c-additive.

Remark. The theorem 5'' can be applied, in particular if $T = \inf\{t : X_t \geq n\}$.

5.3. Pure simple additivity of μ^c_α

Theorem 6.

Let X be a right continuous quasi-martingale on $[0, \infty)$. μ^c_α is purely singly additive if and only if X is a local martingale, such that

$$\lim_{t \to \infty} X_t = 0 \quad a.s.$$

Proof.

Let $R_n = \inf\{t : |X_t| > n\}$, and $Y^n_t = X_{t \wedge R_n}$. As $(Y^n_t, t \in \mathbb{R})$ is trivially a quasi-martingale of class D, and as

$$|\mu^c_\alpha| \leq |\mu^c_\alpha|$$

$\mu^a_\alpha = 0$ if μ^c_α is purely simply additive, which means in particular that Y^n is a martingale, and then X is a local martingale.
Let \(X = M + V^+ - V^- \) be the decomposition of \(X \) as the sum of a martingale, and the difference of two potentials. It is known (and easy to check) that the \(\sigma \)-additive (and then in this case \(P \)-absolutely continuous) part of \(\mu_M \) is \(\mu_M^{\infty} \), where \((M^t_t)_{t \in \mathbb{R}^+}\) is the uniformly integrable martingale

\[
M_t = \mathbb{E}(\lim_{t \to \infty} M_t | \mathcal{F}_t).
\]

As

\[
\lim_{t \to \infty} X_t = \lim_{t \to \infty} M_t \quad P \text{ a.s.}
\]

we see that if \(\mu_X \) is purely simply additive, then \(\lim_{t \to \infty} X_t = 0 \).

Conversely, from what precedes, to prove that, for a local martingale \(X \) such that \(\lim_{t \to \infty} X_t = 0 \text{ a.s.} \), \(\mu_X \) is purely simply additive, it suffices to prove that a potential \(V \), which is a local martingale, is such that \(\mu_V \) is purely simply additive. But noticing that every process \(Y \) such that \(0 \leq \mu_Y \leq \mu_V \) and which is \(\sigma \)-additive, has to be a potential which is a local martingale of class \(D \), then a uniformly integrable martingale, is zero.

Theorem 7 (cf. [11]).

Let \(\mu \) be a positive finite measure on \(\mathcal{P}_\alpha \), such that

\[
(\alpha \in \mathcal{P}_\alpha, A \text{ evanescent}) \implies \mu(A) = 0.
\]

Then, there exists an increasing process (c.t.r.), unique up to indistinguishability, such that \(\forall s < t, V \in \mathcal{F}_s \)

\[
\mathbb{E}[1_F \cdot (V_t - V_s)] = \int_s^t \mathbb{E}(1_F | \mathcal{F}_s) \, d\gamma.
\]
denoting by \(E(l_F|F_u) \) a left continuous (then predictable) version of the martingale \((E(l_F|F_u))_{u \leq t} \).

The process \(V \) thus defined is natural in the Meyer's sense (cf. [17], Chap. VIII).

Proof.

The unicity, up to indistinguishability, is quite trivial, \(V_t \) being necessarily such that

\[
(V,F \in F_t) \quad E(l_F \cdot V_t) = \int_{(0,t] \times \Omega} E(l_F|F_u) \, da .
\]

We consider the following function on \(F_t \)

\[
a_t : F \rightarrow \int_{(0,t] \times \Omega} E(l_F|F_u) \, da .
\]

Using the martingale inequality and the Borel Cantelli lemma, we prove in a standard way, that from any decreasing sequence \(\{g_n\} \) of \(F_t \)-measurable functions, such that

\[
\lim g_n = 0 \quad \text{p.s.}
\]

we can extract a subsequence \(\{g_{n_k}\} \) such that, if

\[
Y_{k(n)} = E(g_{n_k}|F_u) ,
\]

we have

\[
\text{a.s.} \quad \lim_{k \to \infty} \sup_{0 \leq u \leq t} |Y_{k(n)}(\omega)| = 0 .
\]

The \(\sigma \)-additivity of \(a_t \) follows from this, and, denoting by \(\lambda_t \) an expression of the Radon-Nikodym derivative \(\frac{d\lambda_t}{d\mathbb{P}} \) one gets easily the following:
One then gets easily a modification V of Λ having all the required properties.

Using the relation

$$E(Y_t \cdot V_t) = E \int_0^t Y_s \cdot dV_s$$

for a positive martingale Y and an increasing process V (cf. [7], Chap. VIII), one gets immediately

$$\int_{(0,t] \times \Omega} Y_s \cdot da = \int_{(0,t] \times \Omega} E(Y_t | \mathcal{F}_s) \cdot da$$

which proves the "naturality" of the process V in the sense of P.A. Meyer (cf. [7], Chap. VIII).

Corollary. Doob-Meyer's Decomposition Theorem.

If X is a L^1-bounded process which is a quasi-martingale on every finite interval $[0,a] \subset \mathbb{R}$, and is locally of class D, there is a unique (up to indistinguishability) decomposition

$$X = M + V$$
where M is a martingale, and V a process which is the difference of two increasing natural processes, vanishing at 0.

Proof.

We take the Doléans measure \mathbb{D} associated with X and apply the preceding theorem to get V. As the Doléans measure associated with $X-V$ is zero, $X-V=M$ has to be a martingale.

7. **Extension to the case of vector valued processes.**

We have already noticed theorem 1' that some of the previous results could be restated without any change for Banach valued processes. But in this case, the notion of decomposing μ_X into a positive and negative part is meaningless.

The sufficient part of the proof of Theorem 5 can be applied without change to the vector situation. This is not the case for the necessity part of the proof.

References

