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FACTORS OF TYPE IIT

MASAMICHI TAKESAKI

Today, the structure of a factor of type III is described

as follows:

THEOREM 1., Every factor I of type III is isomorphic to

*
the crossed product W (n, R,5) of & uniquely agsociated
covariant system {n,e] of a von Neumenn algebra h of type II

and & one parameter sutomorphism group {et : t €R}] such that

the restriction of o tfo the center C of n 1s ergodie, but
not isomorphic to the translations on L (R), and o transforms

some faithful semi-finite normal trace T on N in such a way

that T 9, = e'tr, t €IR. Here the uniqueness of {n,6} means

that if {n,, o) and {h, 92} are covariant systems satisfying

* *
the conditions for {n,6}, then W (hl, R, 91) W (h'&’ R, 92) is

equivalent to the conjugacy of {n), el} and {n,, 92} in the sense

that there exists an isomorphism of n_L onto hz guch that

gi =T o ei . 71"1, t ¢eR. cf. [2],(8],[12],{13],(28] and [29].

The aim of this paper is to present the background of the
above result together with some of further development. Although
it is lmpossible to elaborate here, I would like to emphasize
that the recent interaction between mathematics and theoretical

physics was indispensable in this achievement.

In 1967, ther were two very important achievements in the
theory of operator algebras: R, FPowers distinguished a continuum
of non-isomorphic factors of type III [23] and M. Tomita showed

that given a von Neumann algebra N on a Hilbert space § with

2 Net for Jorwad pullicakion.,




separating cyclivc vector & there exist a conjupate linear
unitery involution ¢ and & nea-singuler oositive self-adjoint

yrator O osneh that

I

¥ o Ty

i) JWJd = W oand o

3

After Powers' work, a rapid vrogrese in the classilication theory
of factors Foliowad: Arvakl and Woods classified the factors
obtained a5 inidinite tensor product of finite factors of type I,

abbreviated as ITPFI factor, by introducing algebraic invariants

L3] and MeDuff constructed continua of
factors of type Ti; and IT_ in 1983, 1261, which was also

12! : , ’
confirmed by Sakedi, 124}, f9he developrents along this line was

treated in a new book, by Anastasic and Willig. [11]

A quieb but steody development followed after Tomita's

—

~ey 1 " . . . . SN
work, {30}, A serious inspecting seoinar on Tomita®s work took
place and confirmed his result at the University of Pennaylvania
for 1968/(9, which was laber publiskhed as leciure notes [26]

by the present author. The major discovery in the seminar was

that the one paramster auvtomorpbhism g

5ooef I oplven
, At A1t ) , s
by Ut(x) = N e 0 , 0B oand x oo in, and the normal

-

functional ¢ gpiven by ¢lx) = (®i, 1 2.3, 2 ¢ @, ocatisfy the

Kubo-Martin-Sohwingay

for any Palir X,y & I
there exists a continuous bounded function Flx) on 0 «Imz < 1

holomorpbic inside the shrip asuch thet

Pt} = o (x)yi and Flo+ 1) = olye, (x)),
L



(3)

and that {Ut} is uniquely determined by o subject to the KMS
condition; hence it is denoted by {aé} and called the modular

gubomorphism group. The notion of the KMS-condition came from
physics as the name suggests. Haag, Hugenholtz and Winnink

showed in 1947, [16], that the eyclic representation W¢ of a
C*~algebra A induced by a state ¢ satisfylng the KMS-~condition
with respect to & given one parameter automorphism group {Gf}

on A iz standerd: there exists a unitary involution J such
that I (A) 3 =7 (A) end JaT - o, a e m(A)" nmA). It

is widely believed that an equilibrium state in guantum statisiical

mechanics is characterized by the KMS-condition.

As an illustration, let us consider an example. A faithful
normal positive lineamr functicnal ¢ on the algebra () of all

bounded operators is given by

@(x) = Tr(xh), z ¢ £(9);

with some non-singular positive operator h of the trace class,
If dim@<+o and h = Al, X >0, then we have o{xy) = olyx)
for every x,y € §(®), that is, ¢ is a trace. If this is the
case, then the involution x - x* in (%) is & witary invol-
ution J in the Hilbert space structure in §(%) induced by ®,
which gives rise to a symmetry between the left multiplication
representation and the right multiplication representation of
(%) on this Hilbert spuce &(%). In general, olxy) # olyx)
because x h # hx. However, xh and hx are homotopic under

the homotopy: t ¢ [0,1] - nbantt, an analytic expression ¥



of this hemotopy is notbing bub the BE-condition, that is, if

« N - y .}t “'i
we conaider the one paremeter automorphism group Dt(x; h™ "ah R

then the $£{z)-valusd function £{t) = o (») is extended

[

analytically to the strip, 0 < Imz « ;3 and we have

Thus, we see that the KMS-condition or the modular automorphism
group measures end compensates the non-trace like behavior of .

As a matter of fact, we have the foullowing cheracterization:

THEOREM 2. A o-finite von Neumsrm algebra @ is semi-

g
%

s faithful normal positive iinear functicnsl o on W is

of

o ?

finite if and only if the modulsr avtonorphism group

~

implemented by & one parameter unitary group {(w(t)} in W If

the predusl Ty, 1is separable, then the imnnerness of each individual

sutomorphism 0?3 iz sufficient for W to be semi-finite., (ef.

[22]) and [28]).

This result mildly indlcates some connection between the
algebraic structure of the von Neumann algebpra v in guestion

and the behavior ¢f Lthe modular avtomorphism group.

There was another fortunate mature development in the theory

of operator algebras.

G. K. Yedersen proposed a
simultaneous generalizetion of positive linear Tunctionals and
s o L . . L oy
seml-finite traces on & C -algebra under the terminology € -
integrals, which was furtber generalized by F. Combes to the
¥
[

notion of weights on & ¢ -aigebra. {cf. (5] and [21])., It

turne out that the combination of the theory of welights and the



(5)

KMS~condition is very useful in the study of the structure of

von Neumann algebras.

DEFINITION 3. A weight on a von Neumann algebra W is a
map ¢ of the positive cone m+ to the extended positive reals

{0,] such that

cp(x + Y) = ‘P(x) + L?(:f)’ x, ¥ € m+;

o 2x) = Aplx), A >0,

with the usual convention O0(+ ) = 0. A weight ¢ is said to
be normal if ¢(sup xi) = Sup cp(xi) for every bounded increasing
net {xi} in m; semi-finite if n:p = {x : gp(x*x) <+ »} is
O~weakly dense in Iy faithful if :p(x) > 0 for every non-zero
X € n‘_;,_

A weight here means, however, always s faithful semi-finite
normal one. Through Tomita's theory of modular Hilbert algebras,
F. Combes showed, (6] » that any weight o on I gives rise to
a unique one parameter automorphism group {r{f} for which ¢
satisfies the KMS - condition in the sense that for any pair
X,y € n(p n n:; there exists a continuous bounded function F
on the strip, 0 < Im z <1, holomorphic inside such that F(t) =
:p(d_‘g(x)y) and F(t + 1)

one should note that ¢ is extended to a linear functional,

:p(yof(x)) and that o o Gf = ¢, where

denoted by ¢ again, on the linear span mcp of {x e : ¢x) <+ w}
* *
which agrees with ay Ty = fyx:x, ye “cpj' Ther Theorem 2

holds for weights without the restriction of J-finiteness.



e

N

Investigating the relation betwesn ithe Araki-Woods classification

- .

of ITPFI factors and the nM-conditions, A. Counnes showed in 1971

N

that the asymptotic ratio aet ry(?* ITEFT factor W is

indeed the interssction of the spectrum 5 (A T of the all possible

modular operators 4 ¢ thus introduced s new &1gebr&ic invariant,
@

the rmodular spechrum:

62
-~

My o= (NS {5 ) ¢ g runs 2il weights on WM.

‘t‘
B

-~

He and Van Daele then showed in 1972 that S{m)\{0] 1is a closed
*
gubgroup of the multipilealions group IR+ if | is a factor;

thus & new classification of factors of type ITI. A factor N

is said to be of type IIT, 0 < » < 1, 4if 8(m = {X°

A7
of type III, if s(m) = {0,1}; of type 111, if s{m

Therefore, the factors distinguished by R. Powers were indeed
- i n . A
factors of type I1Y , 0 ¢ * « 1, with X = “LT» where o,
<y

0 <p <%, 1is a number defining a state w, on the 2 X 2 matrix

slgebras by

M, X
117 Tie
G ) SEETH SN o ST
H Al ( 4
Kopr Fop f

In 1971, A. Connes further proved that the Araki-Woods invariant
p(in) for an ITPFI factor W is giver nunder a hrivial change of

scale by the medalar period group:

¢]
™ = {6 =R 2 o) = ¢ for some weight o},

and that - T(W) is & suby The

pn+ %)y {0



(7

formila between p{in} and T(1n) for an ITPFI factor W 1is

given by
plny = {9E/Jw st oo 2wyl

By definition, T(1) is an algebraic invarient for a factor M
If Wy, is separable, the semi-finiteness of W is equivalent
to T(m) =R.

Besides these algebraic inveriants, he showed the following:

THEOREM 4. [8) If ¢ and V¥ are weights on a von Neumann

algebra M, then there exists a unique o-weakly continuous ons

1

parameter family {usj of unitaries in M such that

=
[~

u

v : O ‘
o' = Ad u, e U, t cIR;
t kW t° b 3

* ¥
it
¢

for any X € 0 N y and y < u

continuous function ¥ on the strip, 0 < Imz <1, holomolophic

N ﬂm there is & bounded

inside the strip such that

F(t) = o{ol(xuyy), #(t + 1) = y(yof(x)u,).

b

t]

the weight X on the tensor product £ = R:ﬁ%ﬁg of [ and the

The construction of {u is surprisingly simple. Consider

2 X 2 matrix algebra B, defined by:



It is then shown that

AT /0, 0 ‘\
a: ( ) = \ } , b oeIR.
\ 1, O Uy, 0

It T is abelian; then ¢ and ¢ are given by measures

M and Vv on a Borel space O, and mubually absolutely continuous

with respect 4o each other, let h = 4y be the Radon derivative

di
of v with respect to . Then {ut} is nething but [hlt}.
With this evidence, {ut} iz called the cocycle Radon-Nikodym

derivative of § with respect Lo ¢ and denoted by

= (Dy : D)., t ¢IR.

% 42

Considering the 2 X J-matrix algsbre over [, he showed the

chain rule:
(Dy : ﬁw}t = (Dy : Dw)t(Dw : D@)ﬁ, t eR,

for any three weights o, w and 4.

It is clear from Connes' Radon-Nikodym theorem that

T{m) = {t eR 1 o¥ & Int(m)},

a

where Int(ln) denotes the group of irner sutomerphisms; hence



(9)

T(m) is & subgroup of IR. He then showed ithat for any fixed

welght ¢ on a factor Iy

S n} = ] FAN \\'1

( ) N f—’p( {Pe/.
where e runs over the central projections of the fixed point
subalgebra mﬁP of M under of ana §, weans the restriction

of ¢ to eite. We call T{‘.m the centralizer of ¢
hd

In order to get some idea about the structure of a factor
of type III, let us consider a very special case. Suppose that a
factor M admits a faithful normal state ¢ such that mm is a
factor and G;P =, for some T » 0. The smallest such T >0
is called the period of . Connes proved, however, that every
factor of type III,, 0 <« A <l, with separable predual admits

. v. - ~ar/T

such a state with T = -2r/log A\ [81). Let A =e and

int

mn = {x e¢Mm: O;f(x) = A x}.

Of course, Wy = m@. Clearly, we have

*
n}l mmc: Wm’ “h = m‘_n, n, m €&,
Hence each Hh is & two~sided module over Pb it is not hard
to see that Wy # {0}. Let a =uh be the polar decomposition
of an a,eml. Then we have u u = e enb and uu xfenb

and

" *
pluxu’ ) = Aglom u), x ¢ Iy,
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real line IR with respect to the Lebesgue measure. We define
then one varameter unitary groups (U(t)} and {V(s)] in 8

by the following:

Ult) &(s) = (s + t);

V() £(s) = e i(s), £ e L(R), &, t cR.
It follows then that
¥ * is
u(s) V(%) uls) v(t) =e* b 1, s, t €R.

Hence the one parameter automorphism groups {Ad U(s)} and

{Ad V{t)] of B commute. Now, let W be a properly infinite
von Neumann algebra. It is easily seen almost by definition
that M= M® K. For a weight ¢ on 0, we consider the one
parameter avtomorphism groups {ci} and {et} of m®aK given

by:

cv;f’ ®% Ad U(t), t eTR;

toninnn,
[
d—
i

7 = Ad V(t).

KMMWA
o+
i

Clearly {gt} and {6} commute, so that {e_ ] gives rise to a

4]

Y

one parameter automorphism group, denoted by {6.} again, of the

D v o
3

fixed point algebra nh of ﬂﬁt}. It is not hard to see that n

is generated by 1 ® U(t) and the operators:

1¥x) 6(t) = ¥ (x) E{t), t ¢R, x e m £ € L5 R)



-

where § denobtes o Hilbort

¥* .
VEW (R, 5D, He b

LEMMA 5. The von Heumaon slgebea N adwits a faithful

s

semi-finite normal brace v

The von Heumann alﬁebra

crossed product W (h H.0) of n by B owith

action o of T,

e

THEOREM 6, [#0]. 1 1w is =z von Heumenn algebra equipped

with a one parameter auvtonor] L group (6§ and a faithful semi-

finite normal trace ¢ such that T . ¢4 = e T, then (i) the

crossed preduct o= W (1, IR, 8) is vroperly infinite; (ii) the

center CH\ of W is precisely the fixed poipt sulalgebra Gﬁ of
i

the center . of N hence 1 is a
e e e P i M| D ]

N

is ergodic on the center Cﬁ of ny (1ii) W ig semi~finite ir

and only if C conbtaing & continuous one paremeber unitary group

T
v(t)} such that M Aty w7 w{t), s, v 2Ry (Bv) i In

is of type T1I, then n ilo of wwpe I and direct

sumnand isomorphic to a multiple off T LR} e

. e . ¢ o . R
translation; (v) if ¢ .ol -is

here oxists a undtary v o2 ¢ with
) n

Az a direct consequ

&}
-3

wee of Thecorem 4, we have the following:

£ e

LEMMA 7. Suppose that N,,» . and are properly




(13)

infinite von Neumann algebras equivped with one parameter

respectively such that T, . Wom e ﬁTl and T, L 8 =e T

s €¢R. Then the following two statements are equivalent:

T

¥ 1. R -
i {n R, 8 ) FW Wy, By a )

o~
e

Sewne?
wnt

(i) There exist an isomorphism 7 of 1, onto 1, and

a continucus one parameter family {v_J in n, such that

)

1
s+t s s

¥
i

. 1
Qg =0T e Ad(vs) c g, 0T

However, the next result, together with the above lemms.,

yields the unigueness criteria in Theorem 1:

THEOREM 8. [13]. (i) If o is an automorphism of N

such that T o 8 <« AT for some A > 0 and a faithful semi-Tinite

normal trace ;. Then every unitary w ¢ n is of the form

*
v ¢{v) for some unitary v = N

(ii) If {8} is a one parameter automorphism group of h

A———

. = . - 4 ; 5 R
such that 7 - ¢_= 2"1 for some A # 1 and o faithful semi-

o

finite normal trace 7T, then for every @-cne cceycle {u ),
a

that is, a continuous one parameter fanily of unitaries in N

with U =0 gg{ut), there exists o unitary v £ such that
*
u, =V v), s ¢IR.
¢ =voalv),

his structuwre theorem and

<

Here a natural guestion 1s how t
the discrete decomposition descrived above are related. The

answer is quite simple: If M is of type III,, 0 « X <« 1, then



{CW,GE is periodic with the pariod O = <27/Logh. Hence, con-

sidering the central decomposition
ik - A f
iy )iy ),

fn  induces an antomorphism of each fibre algebra nvy). The
&

covariant systems {n(v).s,! are eguivalent to that appearing
in the above discrete decomposition., In the type 1110 case,

A. Connes proved the folliowing:

THECREM 9. [8]. If n is & von Neumann algebra with non-

Ly

atomic center and eguipped with an automorphism ¢ and a faithful

semi-finite normal trace T such that T « 8 € AT for some

D<X«<l and g isg ergodic on the center Ch of n, then the

':K' 3
crossed product T=W (n,2) of n by 8 is a factor of type

IIIO. Every factor of type IIIO iz of this form for some

{n,nj.

The unigueness criteria for factorz of type II'O requires

more preparations; zo wo omit the detail., Bubt e did give the

unigueness of this drcomposition wilivin zome eqguivalence.

Once again examining the way the 1T -von Heumann algebra
N was constructed, one roalizes thal the algebra n iz the
centralirzer of the weivht = on 2w on Me 4 where the welght

woon B 15 given b

et

wlx) = Tr(lx), € ¢ @3

a d.\
o= f:}&f}f)&”gf’;,



&£

i.e. (Dw : DIr), = Uf{t}, t ¢®., A, Connes proved inde=d, in
the course of proving the converse of the cocycle Hadon~Nikodym
theorem, that for any one-cocyele {u, ] in W, there exists

a unitary v £ m& 8 such that

¥ .
u, @ U(L) = v ct(v), t ¢ R.

In other words, for any weights ¢ and § on T, § ® « and

p @ W are conjugate under the inner automorphism group Int(m 2 8).
This means then that on a properiy infinite von Newmann algebra
there is a unigque class of weights which describes the structure

of the algebra, The weights of this class 1s characterized by

the following:

THEOREM 10. [173]. Let MW be an infinite factor with

separable predual. For a weight « on W with properly infinite

centralizer, the following two conditions are equivalent:

(i) For any A > 0, there exists o unitary w ¢ I such

- - *
thet M(x) = wlww ), x ¢ My 3

(ii) ¥or sny weight p on W, there exisis an isomerphism

m of I onto Wm® @ such thet

et

w(x) = (o @ w) o m{x), x ¢ m,

where © 1s the weight on 8 defined ahove,

DEFINITION 11. [13]. The weight « satisfying the condition

in the above theorem iz called dominant.



(15)

In other words, a dominant weight is echsrsclericed a3z one
fixed, within unitary equivalence, under the mulbiplication by

vositive scelars.

Let . denote the spuce of all weights on § and 1, the
l‘!‘fl & - Z‘\
ik H

space of all weights with propevly infinice centralizer., For

e aXIBTS

g
£]

& pair ¢,y of weights on I, we write o < ¢ if th

<.

* , #
an isometry w e M with wu & i, such thab %) = o),
hd

X £ H#‘ If the above u is unitary, then we write o ~ y. We

it n

gee then that ~ is equivalence relation asscociated with the

N '

. . g, .
partial ordering '<'. Ths space u%/"mf is then s Jecomplete
i

Boolean lattice which ig isomorphic to the lattice of all o-finite

projections of a unique abelian von Neumann algebra ()., For
et
‘ LB . o . \ .
each o ¢ “ﬁ’ there corresponds a unigue projection e) of
' 1) ¥

(M) sueh that
o < § o= pleg) < ply)

Since the multiplication by a positive scalar preserves the

ordering, to each X > 0 ‘there corrosponds a upique automorphism

%? of () such that

7 0
i) = 90, o ws

We call {P(HO, v, %)} the global flow of weights. Thecrem 10
~ A

means then that there existe the only one o«finite projection

d e p(m) invariant under 5&;
(2%

which is given by d = p(w).

Putting plq) = plep 2 Tr) for the general ¢ « W, we have the
it

following:



(7

THEOREM 2. f{i2]. Let W be an infinile factor with

separable predusl. For any ¢ € u%f the following conditions

are eguivalent:

i) @ = W

, # o
ii) The map: A.aZRt - ﬁﬂyiw)

'r
R0
o

P

i is  Cegtronsls
} 15 Gt .,I‘Ol'lgﬁ,.}.z

continuous;
131i) The integrsal g J%(x)dt =B (), x ¢ m, sxists for

g-weskly dense x's in Hi’

DEFINITION 13. A welight ¢ 1s sald to be intepgrable 1f o

satisfies any of the above conditions.

Therefore, (v }d iz the continuous part of the flow 5?.
e} 4
The restriction of {?? Lo (pxxd ﬁri ig called the smooth

\ T . , .
flow of welghts on 0, and dencted by iF)ﬁ. Since there is no

v

non-trivial invariant projection properly majorized by 4, the
smooth flow of weights iz ergodic. By nonstruciion, the assoclation:
T~ Fm of the smooth flow of weights to each infinite factor I

»
in

is e functor., The relation bebween this function F and the

-

structure theorem, Theorew &, 1s deseribed as follows:

THEGREM 1%, [12), Let W be an infinite factor with

separable vredual and {n,s] be the coveriant syctem over R

- 'k.
in Theorem 6 such that =W (n, R,s).

v e a r"‘*
(i) {Cny 9_‘1@&)‘3 5 i:)(\ [V F;’}‘ H
{ b h k b
(i1) S(WO\iO = {A eR, : F? = 2}

Therefore, the slgebraic invariant S(m), the modular

spectrum, of M is essentially the kernel of the smooth flow



. i

of weights. One should note here that the smootl Clow  F

of weights 1s defined dirsctly, hence funcitionally, Trom In

We then determine this flow for s on by the so-called

IO

group measure space coumstruction.

Let € be an abelian von Neumann algebra with separable
predual eguipged with a continuous action G of a separable
locally cowpact group G. This is equivalent 1o having a stendard
measure space (U,u] equipped with a Borel action of G, and

o . 5\ -1 . “ -
a=15L(Mw), ofa)v)=alg™v), a« ¢ g Gy [ For
simplicity, we assume that the action of G is free in the sense
that N = {y : gy = v} 1is & null set for =very g # e, although

g
s *
this restriction is not necessary, cf [17]. Let =W (QG,x).
If the action of & 1is ergodiec, then & is a factor. We have

then the following:

(i) m of type 1 #=> The zciion of ¢ on ' is transitive;

[
w

(ii) n is of type IT, <=r The mction of & on [ 1is not
transitive, and admits & finite invariant measure;

(i1i) m is of type TII_<=: The action is not transitive and
admits an infinite invariant measure;

(iv) M 1s of type III = The action doe: not admit any

invariant measure,

where the measures here are absolutely continuous with respect

to the original measure u, Let p be a positive Borel function
on G X I such that

a

/ tlevdole,auly) = / cCyiduly)s

W

olg ey = ele,edole,,v),



{199

namely olg,+) = <c—={v}. Consider the vroduct measure space

it
* *
. . ) 3 S ] O T P T, P .
P xR, where IR; is sygulpped wi tlie Lebesgue measure m. 3By
4 -+

setting

)

G and R, act on [ IR~ and commte. Hence we get a sbellan

L U i *
von Neumann algebra L (I IR, i X m) on which G and IB* ach.

THEOREM 15. {13]. In *he above gitustion, the smooth flow

Fm of weights on M is i

’ﬁ
ok

.gumorphic to the action of IZ on the

fixed point subalgebra L (T xrar)u induced naturally by {QKJ

This congtruction is known as the Apnzsi skew vroduct, or the

closure of the range of the module p by ¢. W, Mackey [18].
A recent result of W. Krisger, [171, can be interpreted in the

following way:

THECREM 16, [17). In the same wituabtion as above, if G

is given by a single crgodic transformation, then the smooth flow

o : o ‘ . N " : ;
FUoof welghts on W 1s & complete dnvariant for the algebralic

ghruchure of I

Thug, we have the foliowing sguivalence in different problems
"The
~ "The classification of the factors given by the group measure
space construction frow an ergodic transformation”

~ "Ihe conjugacy cluossification of the ergodic Flows™.

weak equivalence classification of the ergodic transformations”



The weak enuivalence clessiflicabticn of ergodic transformation
grovps was Uirst introduced by H. A. Dye 115], and he proved in

~
o

fact thal 2ll countable abelian ergodic transformation groups with

finite dinvariant mesaure are weskly cguivelent snd glve rise to

feation was later reformilated

hyperfinite ljl~faators. This elassi
by G. W. ¥ackey as the igomorphiszm clasoification of virtual
subgroups. The relation belweorn the weak egulvalence classification
of ergodic transformation groups and the isomerphism classification
of the assceciated factors has been puzzled since Dye's work., In
faet, H. Choda showed that 1f an isomorphism of the two factors

agsocisted with ergodic transformation groups preserves the maximal

l_.(

abelian subalgebras canonically attached te the constructions,

then the groups are indeed weakly squivalent. [h],

The conjugacy classification of ergodic transformetions and
flows is, of courze, one of the central problems in ergodic theory.
Apparently, the weak equivalence clasgification looks wuch coarser
than the conjugacy classification. Bul the above menticned fact
says thal they are indeed the same rroblem.

Unlike the discrete crossed product, the relative commutant
of the original algetra in the cressed product behaves mysteriously

in general., We do have, howover, the followl

THREOREM 17. [1:l. If ¢ is an integrable weight on a

factor I with separable predual, then bhe relative commutant

W m of the cenferalizer Wb of @ ds contained in W as
1 ¢ oe—— % Y L
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the center C .
Lae centel -
+

This result, together with the construction of antomorphisms

similar to that of [29], enables us to vrove the rollowing:






