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Mesire Gauvain esgarde le vaissel, si le prise plus que rien 
qu'il eust veue, mais il ne puet savoir de quoi il est, kar de fast n'est 
il pas ne de nule manière de metal, ne de pierre ne rest il mie de cor 
ne d'os, et de ceu est il tos esbahis. Apres regarde la pucele, si se 
merveille plus asses de sa bialté que del vaissel, kar onques mes ne 
vit il feme qui de bialté s'apareillast a ceste: si muse a li si durement 
qu'a autre rien ne pense. Et ensi com la damoisele passe par devant 
le dois, si s'agenoille chescuns devant le saint vaissel et tantost 
sont les tables replenies de tos les biais mengiers que l'en porroit 
deviser; et li paies fu raemplis de si bones odors com se totes les 
espieces terrienes i fuissent espandues. 

Quant la damoisele fu une fois alee par devant le dois, si s'en 
retorne et entre en la chambre dont ele vint. Et mesire Gauvain le 
convoie des iex tant corn il puet et quant il ne la voit mes, si regarde 
devant lui a la table ou il seoit, mes il ne voit chose qu'il puisse 
mengier, ains est la table vuide devant lui, et il n'i a nus qui n'ait 
autresi grant plenté de viande comme s'ele sorsist Quant il voit ce, 
si en est si esbahis qu'il ne set qu'il doie dire ne que fere, kar bien set 
qu'il a mespris en aucune chose, por quoi il n'a eu a mengier ausi 
corne li autres. 
Lancelot, LXVI, 13-14, Ed. Micha, Geneve, Droz, 1978 

INTRODUCTION 

Many properties and invariants of ideals in a polynomial ring can be effectively and efficiently obtained 

once a Grôbner basis of the ideal has been computed by means of Buchberger Algorithm. This has made 

feasible a computational algebraic approach to the global study of varieties in the complex affine and 

projective spaces. 

As polynomial ideals provide an algebraic setting for the global study of varieties, the study of local 

properties of a variety finds an algebraic intepretation in local algebra (i.e. the theory of local rings). In 

this setting an exact counterpart of the notion of Grôbner bases has been long since defined under the 

name of standard bases; standard bases however don't share the same good computational properties, since 

Buchberger's Algorithm often fails to terminate when applied to this situation. 

While a general algorithm for standard basis computations is still lacking (for instance in the ring of 

formal power series, also under suitable notions of computability), there are situations in which a simple 

variant of Buchberger's Algorithm, the Tangent Cone Algorithm 0), is sufficent for the computation of 

standard bases. While the Tangent Cone Algorithm properly applies only to the case of the localization of 

a polynomial ring to the origin, elementary algebraic manipulations allow to apply it at least in the 

following two situations: 

1) the localization at a prime ideal of a coordinate ring 

2) the ring of algebraic formal power series 

Both cases have important geometrical interpretations: 

1) let II c 12 CI3 c k[Xi,...,Xn] be prime ideals; let B := k[Xi,..MX n]/Ii, p c B the image of I3 

and let A be the localisation of B at p; let I be the prime ideal in A, which is the extension of the image 

of I2 (each prime ideal in A is such for a suitable I2 c k[Xi,..„Xn], with II c I2 CI3). 
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The geometrical meaning of this situation can be roughly described as follows: we have three affine 

varieties V3 c V2 c Vi (Vi being defined by 10; A describes a neighborhood of V3 in Vi; I defines the 

variety V2 "locally", i.e. in such a neighborhood; by studying I we are attempting a description of the 

local behaviour of V2. 

2) The study of algebraic formal power series is related instead with the study of analytically 

irreducible branches at the origin of an algebraic variety and comes out naturally when studying singular 

points of algebraic varieties: for instance in Newton-Puiseux algorithm [***] for determining the analytic 

branches of a curve at a singular point and, more generally, in the study of analytic components of a 

complex algebraic variety. 

The Tangent Cone Algorithm can therefore be used as a computational tool for local algebra, at least in 

the two cases discussed above. The aim of this paper is to give a survey of such an approach. 

We start with a discussion of the local description of a variety at a point (§1), thus producing a first 

example of computational problems to which the Tangent Cone Algorithm can be successfully applied. 

In Section 2 we will recall the basic notions and the basic results realted with the Tangent Cone 

Algorithm. Then (§3) we will show how it can be used to effectively solve the problems posed in § 1. 

§4 will describe a computational model for rings of algebraic formal power series based on the Implicit 

Function Theorem and on the Tangent Cone Algorithm, which has been recently introduced and which 

allows to give effective versions of classical theorems from Weierstrass Preparation Theorem to Noether 

Normalization Lemma and which gives an algorithm for computing elimination ideals in a ring of 

algebraic power series 

Then we will enter local algebra proper after a recall of the basic notions from local algebra we will need 

(§5), we will give a computational model for localizations of cooordinate rings at prime ideals, based on 

the Tangent Cone Algorithm, which gives an effective description of the topological notions involved and 

allows for standard basis computations (§6). 

In particular the associated graded ring is explicitly presented as a polynomial ring modulo a homogeneous 

ideal given by a Grttbner basis. Because of this, algorithms relying on Grttbner bases can be applied and 

the classical "method of associated graded rings" is turned into a computational tool (§7). 

Finall we briefly discuss the applications of the Tangent Cone Algorithm to the theory of isolated 

singularities, proposed by Luengo, Pfister and Schttnemann (§8). 

None of the results presented in the paper is original ( 2 \ but we hope to have improved their presentation 

with respect to the original research contributions and to provide an updated survey of the applications of 

standard basis techniques in computational local algebra. 

1 AN INTRODUCTORY PROBLEM 

Let P denote the polynomial ring k[Xi,...,X,J with coefficients in a field k. 

If f € P - {0}, it can be uniquely written as a finite sum of non-zero homogeneous polynomials: 
f = £i=i...t fi, fi homogeneous and non-zero, deg(fi) <.. . < deg(fj) < deg(fi+i) <... 

To the polynomial f we can associate its order, oid(f) := deg(fi) and its initial form, in(f) := fj. 
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The order of f is the infinitesimal order at the origin of f as an analytic function; its initial form is the 
lowest order non-zero Taylor approximation of f at the origin. 

If I c P = k[Xi,...,Xn] is an ideal, we define in(I) := (in(f): f e P), the initial form ideal of I, to be the 

homogeneous ideal in P generated by the initial forms of the elements in I. Geometrically, (when the base 

field k is C) it is the ideal which defines the cone of the tangents at the origin (counted with the correct 

multiplicity) to the variety in C n defined by I @h we are clearly assuming that the origin is in V, i.e. I c 

(Xi,...,Xn); otherwise in(I) is the polynomial ring and the cone of tangents is void (as it should be). 

It gives therefore a kind of "lowest order approximation" to such variety. 

Let V be the variety in C n defined by the radical ideal I. Let f e P; if g € P is s.L f - g e I, then f and g 

define the same polynomial function f(xi,...,Xn) = g(xi,...,Xn) on V. What are the infinitesimal order at 

the origin and a lowest order non-zero Taylor approximation at the origin of the polynomial function 

f(xi,...,Xn)? 

LEMMA 1 Consider the set Rf := {g e P : g - f € I}. Assume there is g € Rf s.L in(g) e in(I) and let 

n := ord(g). 

Then the following hold: 

i) if h e Rf, ord(h) < n, then in(h) e in(I). 

ii) if h € Rf, ord(h) > n, then ord(h) = n, in(g) - in(h) e in(I). 

Proof: i) since ord(h) < ord(g), in(h - g) = in(h); since h - g e I, in(h) = in(h - g) e in(I). 

ii) If ord(h) > n, then in(h - g) = in(g) e in(I); since h - g e I, in(g) = in(h - g) € in(I), a 
contradiction. 

Then if ord(h) £ n, necessarily ord(h) = n, in(h - g) = in(h) - in(g); then, since h - g € I, in(h) - in(g) = 

in(h - g) € in(I). 

It is then clear that the answer to the questions above is: oid(g) and the residue class of in(g) mod. in(I). 

However there are cases in which a g as required by the Lemma doesn't exist 

In fact consider P := C[X,Y], f = X, I the ideal generated by X - X 2, V the variety defined by I, which is 

the union of the two lines x = 0, x = 1. 

The polynomial function f(x,y) = x vanishes identically in any point of V which is sufficiently near to the 

origin, so it actually coincides locally with the polynomial function g(x,y) = 0. 

This is reflected by the fact that in the set Rf there is no g s.t in(g) € in(I) = (X): in fact if g - f € I, then 

g - X = h (X - X 2) for some polynomial h, so g = X + h (X - X 2) = X (1 + h (1 - X)) and in(g) is a 

multiple of X. However X e I. 

Remark however that the vanishing of the polynomial function x is reflected by the fact that X = (1 - X ) 1 

(X - X 2) so X belongs to the ideal generated by X - X 2 in any ring containing the inverse of (1 - X); 

introducing the inverse of (1 - X) makes sense, since "near the origin" 1 - X never vanishes so it is an 

invertible function. 

In fact we can actually find a natural solution to our problem by considering the "local" nature of both our 

problem (infinitesimal orders, lowest order approximations at a point) and of our data (functions defined 
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near a point) and so by carrying on the machinery we have developed to the larger ring of the rational 

functions which are defined in 0, 
Loc(P) := {(1+g)"1 f: f. g e P, g(0) = 0} c k(Xi X„) 

where we define, for h = (1+g)"1 f, and for an ideal I c Loc(P): 

in(h) := in(f),ord(h) := ord(f),in(I) := (in(h): he I ) c P 

preserving the geometrical meaning of these notions. 

As we will establish later, the following holds: 

FACT If I c Loc(P) is an ideal and h € Loc(P), then there is ho € Loc(P) s.L 

i) either ho = 0 or in(ho) e in(I) 

ii) h - ho e I 

As a consequence we have: 

PROPOSITION 1 Let I c Loc(P) be an ideal. Let F c I be s.L in(F) = in(I). Let h € Loc(P). 
Let ho € Loc(P) be s.t. h - ho e I and either ho = 0 or in(ho) e in(I) (whose existence is guaranteed by 

the above Fact) 
Then: 

i) h 6 I if and only if ho = 0 

ii) if ho * 0 , g - h e I and ord(g) < ord(ho), then in(g) e in(I). 

iii) if ho * 0 , g - h € I and ord(g) £ ord(ho), then ord(g) = ord(ho), in(g) - in(ho) € in(I). 

Proof: i) If ho = 0, then h = h - hoe I. If ho * 0, then ho 6 I, otherwise in(ho) e in(I); so h -

ho € I implies h e I. 

ii) and iii): The proof is the same as for Lemma 1. 

As a consequence, the infinitesimal order at the origin of the rational function h(xi,... rxn) is ord(ho), its 
lowest order Taylor approximation at the origin is the residue class of in(ho) in P/in(I). 
To go back to the example we are discussing, in Loc(P) we have X = (1 - X)"1 (X-X2) € (X - X 2), so ho 

= 0, reflecting the fact that x vanishes identically in any point of V which is sufficiently near to the 
origin. 

In the same way we could have considered P A := k[[Xi,...,Xn]]. It is clear that all the notions and the 

considerations we have carried out for P and Loc(P) could have been developped for formal power series 

too. 

In fact any f e P A - {0}, it can be uniquely written as a (perhaps infinite) sum of non-zero homogeneous 

polynomials: 

f = £i=i...t fi, fj homogeneous and non-zero, deg(fi) <.. . < deg(fi) < deg(f|+i) <... 

and so we can associate to it its order, ord(f) := deg(fi) and its initial form, in(f) := fi; also to an ideal I c 

P A , we can associate the homogeneous ideal in(I) := (in(f): f € I) c P; all these concepts have the same 

analytical meaning as in the polynomial case W. 
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So now we are considering an ideal I = (gi,...,gr) c PA, s.t I c (Xi,...,Xn), some neighbourhood U of 

the origin where the analytic functions gi(xi,...,x n),...,g r (xi,...,xn)are defined and the set V := 

{(xi,...,Xn) 6 U: gi(xi,...,Xn) = 0). Then we consider f e PA, some neighbourhood W of the origin s.t 

the analytical function f(xi,...,Xn) is defined in W and we would like to speak of the infinitesimal order at 

the origin and a lowest order non-zero Taylor approximation at the origin of the analytical function 

f(xj X n ) o n V n W 

By extending Prop. 2 to ideals in P A (having earlier extended also the corresponding Fact), we obtained 

that there is ho e P A s.t. h - ho e I, and either ho = 0 or in(ho) e in(I). Then the infinitesimal order at the 

origin of the analytical function f(xi,...,Xn) on V n W is ord(ho) and a lowest order non-zero Taylor 

approximation is the residue class of in(ho) mod. in(I). 

2 RECALLS: THE TANGENT CONE ALGORITHM <5> 

The discussion above should have made clear the interest of being able to explicitly compute a set F c I 

c Loc(P) (or PA) s.t in(F) = in(I) and for each h e Loc(P) (resp. PA) an element ho s.t h - ho € I and 

either ho = 0 or in(ho) e in(I). 

We remark immediately that the existence of such an algorithm in P A is at present an open problem (6), 

but there is a solution, based on the tangent cone algorithm, both for Loc(P) and for rings of algebraic 

formal power series [AMR1, AMR2]. 

We are going therefore to introduce the tangent cone algorithm, which will be our main tool for such 

computations. 

Let P := k[Xi„.. 9X n] be a polynomial ring over a field, let T = <Xi,..„Xn> denote the free commutative 

semigroup generated by {Xj,...,Xn}, let < be a semigroup total ordering on T. 

Then each polynomial f e P - {0} can be written in a unique way as: 

f = Xi=i.# #t ci mj, Cj e k*, mj e T, mj > m2 > ... > m t. 

Denote: T(f) := mj, M(f) := ci mj. 

T(f) is the maximal term, M(f) the maximal monomial of f. 
When we need to specify the ordering < on which the definitions above depend, we will use either the 
notation T<, M<, or < a , T a , M a . 

If F c P, denote M{F} := (M(f) : f e F - {0}}, M(F) the ideal generated by M{F}. Therefore if I is an 

ideal, M(I) is the monomial ideal generated by the maximal monomials of the elements in I. 

We say f e P-{0} has a Grdbner representation in terms of F c P - {0} if and only if it can be represented: 

f = Z gi fi, g i € P - {0}, fj G F, T(gi) T(fi) < T(f) for every i 

(such a representation will be called a Grflbner representation). 

Given f € P - ( 0 ) , F c P - {0}, an element h e P s x f - h e (F) and either h = 0 or M(h) e M(F) will 

be called a normal form of f w s.t F. 

Let NF(f,F) := {h € P : h is a normal form of f WJ .L F}. 
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In case < is a well-ordering, the result below is well-known and gives a definition of Grttbner bases; we 

just recall that an algorithm (Buchberger algorithm) is known to compute Grttbner bases, whose 

termination is proved using, in an essential way, the fact that < is a well-ordering. 

THEOREM 1 If I c P is an ideal, and F c I - {0}, the following conditions are equivalent: 

1) M {F} generates the ideal M(I) 

2) f e I - {0} if and only if it has a Grttbner representation in terms of F 

3)foreachfeP-{0}: 

i) if f e I,thenNF(fJ5)={0} 
ii)iffe I, then NF(f,F)*0 and Vhe NF(f J3), h * 0. 

DEFINITION 1 A set F c I - {0} is called a Grdbner basis for the ideal I if and only if it satisfies the 

equivalent conditions of Theorem 1. 

We recall here an important property related to Grfibner bases (more exactly to the ideal M(I)) which we 

will use later 

LEMMA 2 Let B := (t e T : t e M(I)} and let k[B] denote the k-vector space with basis B. 

Then Vh e P, there is a unique g e k[B] s.t. h - g e I. 

Such a g is called a canonical form of the residue class of h mod. I and denoted Can(h J). 

Moreover Can(h,I) = 0 if and only if h € I, Can(ho,I) = Can(hi J) if and only if ho - hi € I. 

Also Can(h J) can be computed if a GrObner basis of I is known. 

For our applications, we must however consider a larger class of orderings, the "tangent cone orderings", 
which don't cover all possible orderings but a class sufficient for most applications. We don't give here 
the definition (for which cf. [MPT]) but we limit to explicitly present those tangent cone orderings we 
will need in the applications discussed in this paper 

if < is an ordering on T, the variables can be divided in two classes and renamed, denoting by 

{Zi,... tZm} the set of variables s.L Zj > 1 

{Yi,...,Yd} the set of variables s.t Yj < 1; 

each term m e T is then the product m = mz my of a term mz in the Z's only and of a term my in the 

Y's only (one can consider also the case in which {Zi,...Zm) is empty V\ 
The restriction <z of < to <Zi,...^m> is a well-ordering; for the restriction <y of < to <Yi,...,Yd> we 

require that a semigroup morphism w: <Yi,...,Yd> -> Z is given s.L 

i) w(m) < 0 if m * 1 

ii) w(mi) < w(m2) implies mi <y m2. 

Moreover we require that: 

m < m' if and only if my < m'y or (my = m'y and mz < m'z) 

From now on < will be a tangent cone ordering. 
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Denote by Loc(P) the following subring of k(Xi,...,Xn): 

Loc(P) := {(1 + g)-1 f, s.t. T(g) < 1}. 

We can define for h = (1 + g)"1 f and for an ideal I c Loc(P): 

T(h):= T(f),M(h):= M(f),M(I) := (M(h): h€ I ) c P 

DEFINITION 2 Given f e Loc(P) - {0}, F c Loc(P) - {0}, an element h e Loc(P) is called a norma/ 

/arm of f w.r.t. F if 
f-h = Igif i ,gi€ Loc(P)- {0},fie F 

either h = 0 or M(h) £ M(F). 

Nf(f JF) will denote the set {h e Loc(P): h is a normal form of f w.r.t. F} 

DEFINITION 3 We say h € Loc(P)-{0} has a standard representation in terms of F c Loc(P) - {0} if 

and only if it can be represented: 

f = Z g i fi, g i e Loc(P) - {0}, fi e F, T(gj) T(fj) < T(0 for every i 

(such a representation will be called a standard representation). 

DEFINITION 4 A set F c I - {0} is called a standard basis for the ideal I c Loc(P) if and only if M {F} 

generates the ideal M(I). 

THEOREM 2 The following conditions are equivalent: 

1) F is a standard basis of I 

2) f € I if and only if f has a standard representation in terms of F 

3) for each fe Loc(P)- {0}: 

i) if f e I,thenNF(f,F)={0} 

ii)iffe I, then NF(fJO^0 and Vh€ NF(f,F),h*0. 

PROPOSITION 2 Let F be a standard basis for the ideal I c Loc(P), then: 

1) let h € NF(gJO; then: 
if h = 0,theng€ I 

if h * 0 , g e I 

2) if h e NF(g,F)» h * 0, then T(h) = minlT^): g1 - g e 1} 

3) if g, gf e Loc(P) -1 are s.t. g - gf e I, then M(h) = M(hf) for each h e NF(g,F) and hf € 

NF(g'J0. 

A variant of Buchberger algorithm, the Tangent Cone Algorithm < 8\ allows to compute standard sets of 

ideals. More precisely: 

THEOREM 3 Given g, fi,...,fr e Loc(P), there is an algorithm (the Tangent Cone Algorithm) which computes 

polynomials u, h such that 

u is a unit in Loc(P) 
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u - 1 h is a normal form of g in terms of {fi,.../r} 

As a consequence, it is possible, given g, fi,...,fr

 e Loc(P): 

1) to compute polynomials gi,...,gs such that {gi,...,gs} is a standard basis for (fi,...,fr). 

2) to decide whether g e (fi,...4r). 

The notion of standard bases can be extended to submodules of Loc(P)1 in two different ways <9>, where < 

is a fixed ordering on T for which it is possible to apply the tangent cone algorithm. 
First of all, for any arbitrary choice of t terms mi,...,m t e T, we can define for each <t> := (fi,..., ft) € 

T(<|>):=max{T(f0 + mi} 

M(<|>) := (pi,..., pt) € P1, where pi := M(f0 if T(f0 + mi = T(<|>), pi:= 0 otherwise. 

If O c Loc(P)1, let us denote M{*} := (M(<|>): Q> e O - {0}} c I* M(*) the submodule of P l generated 

byM{*}. 

If U is a submodule of Loc(P)1, we say * c U is a T-standard basis for U if M(<D) = M(U). 

This notion ([G-Z]) is more suitable from an algebraic point of view but not from a computational one, 

however a suitable generalization of the tangent cone algorithm allows to compute T-standard bases. 

We can also consider ([P-S], [G-Z]) the set of terms Tt of P* to be the set of elements (pi,...,pt) e P l s.L 

there is j with pj e T, pi = 0 if i * j and impose an ordering <t on Tt s.L 

for u ' e T , (J), <t>' € T t , t £ f and $ <t <t>' implies t 4 £ t' <J>\ 

Then each <J> e P* - {0} can be written in a unique way as: 
• = 2i=l...s ci<|>i, Ci € k*,<|)i e Tt,<|>i ><t>2 > ... ><t>s-

Denote : Hterm(<» := <|>i, Hmon(<|)) := cj ^ j . 

The two functions can be obviously extended to Loc(P)1. 

If <D c Loc(P)*, denote HmonfO) := (Hmon(0): $ e O - {0}}, Hmon(0) the ideal generated by 

Hmon {<!>}. 

If U is a submodule of LocCP)1, we say $ is a standard basis for U if Hmon(<D) = Hmon(U). 

A generalization of the Tangent Cone Algorithm allows to compute standard sets of submodules of 

Loc(P)1 at least in the following two cases (10>: 

1) tl ei <t t2 ej if and only if i < j or (i = j and ti< t2) [P-S] 

2) For given mi,..., mt € T, ti ei <t t2 ej if and only if ti mi < t2 mj or (ti mi = t2 mj and i < 

j)[G-Z]. 

We will refer only to the second case, in which case we will say that <t is compatible with < and 

mi,...,mt. 

We remark that in this case a standard basis is a T-standard basis too. 

Let us now restrict to an ordering s.L for each i Xi < 1. 
Each f € P A - {0} can be uniquely written as an ordered (possibly infinite) sum of monomials: 

f = I mi, cj e k-{0), mi e T, mi > m2 > ... > mj > mj+i > ... 

We can extend our definitions, denoting: 
T(f) := mi,M(f) := ci mi 
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and remarking that the definitions agree with the one previously given for elements in Loc(P) c PA: in 
fact (1 + g)*1 f has the power series expansion I&o g* f and it is easy to verify that M((l + g)"1 0 = M(f) 

Also i f F c P A , we denote M{F} := {M(f):fe F- {0}}, M(F) the ideal generated by M {F}. 

Then the generalizations of defs. 2-4, Th. 2 and Prop.2 hold for P A too. 

However no algorithm is presently known to actually compute a standard basis of a given ideal I, also 

under suitable computational restrictions, unless I is 0-dimensional [FKS.MPT]. 

3 AN INTRODUCTORY SOLUTION 

We started the previous section with the remark that it was interesting to explicitly compute a set F c I c 

Loc(P) s.t in(F) = in(I) and for each h € Loc(P) an element ho s.t h - ho e I and either ho = 0 or in(ho) 

e in(I). Here is a solution: 

Let < be a semigroup ordering on T s.t 

for mi, m2 e T, deg(mi) < deg(m2) => mi > m2. 

This is equivalent to say that the function w: T->Z defined by w(m) = -deg(m) is s.t 

w(mi) < w(nri2) mi < m2 

so < is in the class of oiderings we are considering. 

We will consider also the well-ordering < w on T which agrees with < on terms of the same degree, but is 

compatible (instead of anticompatible) with the degree, i.e. 

mi < w m2 if and only if deg(mi) < deg(m2) or (deg(mi) = deg(m2) and mi < m2) 

Finally remark that the definition of Loc(P) we gave (w.r.t < in §2) and the one we gave in §1 agree, 

since wj-.t <, T(g) < 1 if and only if g e (Xi,...^Cn) if and only if g(0) = 0. 

PROPOSITION 3 Let I c Loc(P) be an ideal. Let F c I be a standard basis of I. 
Let h € Loc(P) and let ho € Loc(P) be a normal form of h. 

Then: 

i) {in(0: f e F} generates in(I). 
ii) {in(0: f € F} is a Gitibner basis of in(I) w.r.t the well-ordering < w . 

iii) if ho = 0, then h € I 

iv)if ho*0,in(ho)e in(I) 

v) if ho ^ 0 , g - h € I and ord(g) < ord(ho), then in(g) € in(I). 

vi) if ho * 0 , g - h e I andord(g)£ord(ho),thenord(g) = ord(ho),in(g)-in(ho)e in(I). 

vii) Can(ho,in(I)) is a canonical form 

Proof: i) and ii): Since Vh € Loc(P), M(h) = M(in(h)), we can easily conclude that both M(I) = 

M(in(I)) and M(F) = M(in(F)), so that M(in(F)) = M(in(I)). 

Also, if f is a homogeneous element of P, M(f) = Mw(f). Therefore Mw(in(F)) = M(in(F)) = M(in(I)) = 

Mw(in(I)). 
So {in(0: f € F} is a GrObner basis, and therefore a basis, of I. 
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iii) It is obvious 

iv) If in(ho) e in(I), then M(ho) = M(in(ho)) € M(in(I)) = M(I) 

v) and vi): The proof is the same as for Lemma 1. 

This solves completely the problem we posed, since we are able to compute standard bases and normal 

forms in Loc(P) by means of the Tangent Cone Algorithm. 

We just make the further remark that the residue class of ho mod. in(I) (i.e. the least non-zero 

approximation of f(xi,..„Xn)) can be represented by CanQio, in(I)) c k[B]. 

We are going now to show that it is possible to do the same, and more, also in the ring of algebraic 

formal power series. 

4 COMPUTING WITH ALGEBRAIC SERIES 

In two joint recent papers ([AMR1], [AMR2]) with ME. Alonso and M. Raimondo, a computational 

model for algebraic formal power series has been proposed which relies on a symbolic codification of the 

series by means of the Implicit Function Theorem, introduced in [ALR] and on the Tangent Cone 

Algorithm. What follows is a short summary of the main results which can be obtained. 

We will use the following notation: for a ring B s.t k[Zi,...^r] c B c k[[Zi,...,Zr]], denote Bioc := {f 

g" 1 : f, g € B, g invertible in kflZi,...^]]}, and remark that for B = ktZi , . . .^] , and for each ordering < 

s . t m i l Vm, Bioc = Loc(B). We will also use "Z" as a shorthand for "Zi , . . .^" 

Let k be a computable field; k[[Xi,...,Xn]]aig denotes the ring of algebraic formal power series (i.e. the 

ring of algebraic functions vanishing and developpable in Taylor series at the origin). 

Let us fix an ordering < on the semigroup T = <Xi,...,Xn> s.t 

for mi, nt2 e T, deg(mi) < deg(m2) => mi > m2. W 

Let us consider polynomials Fi,..., F r e k[Xi,...,Xn, Yi , . . . . ,Y R ] vanishing at the origin and s.t. the 

Jacobian of the F\s with respect to the Yj's at the origin is a lower triangular non singular matrix. Under 

this assumption, by the Implicit Function Theorem, there are unique fi,..., fr e k[[Xi,...,Xn]]aig s.L 

fj(0) = 0 Vj, and Fi(X,fi fr) = 0 Vi. 

DEFINITION 5 (Fi,..., F r) is called a locally smooth system (LSS) defining fi,..., fr e 

k[[Xi X J ] ^ if: 

the Jacobian of the Fi's with respect to the Yj's at the origin is a lower triangular non singular 

matrix. 

f 1,..., fr are the unique solutions of Fi = 0,..., F r = 0 which vanish at the origin. 

Given the LSS F := (F l f...,F r) defining flf...f fr, let P := k[Xi,.... X n , Y i , Y R ] , kQLFhoc - k[X, 

fl.—t frlloc c: k[QÜ]alg. To compute in it, we consider the evaluation map Gp : Loc(P) -> ktX,F]i0 C 

defined by G F ( Y Í ) = f¡, for which Ker(Gp) = (Fi,...,Fr) Loc(P), so that kQLFJioc * Loc(P)/(Fi,...,Fr). 
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If an algebraic series g is given by assigning a polynomial G(X.T) s.t. G(X,g) = 0 and an algorithm to 

compute any truncation of g, it is possible to compute a LSS F s.t g e k[X.F]loc (cf. [A-M]). 

It is possible to show that, for suitable orderings < u on P which restricts to < on T, a locally smooth 

system (Fi,... ,Fr) is a standard basis in Loc(P) for the ideal it generates and Mu(Fi,...,F r) = (Yi,...,Yr); 

therefore, by normal form computations it is possible to modify the LSS defining the f;'s so that it 

satisfies the following assumptions, for an explicitly obtained ordering <G: 

1) F = (Fi,...,F r) is a LSS for fi,...,fr 

2)fi*0Vi 

3) Fi = Yi (1+QO - Ri with Qi, Ri e QUO, Ri e k[X,Yi,...,Yi.i,Y i +i Y r] and M a(R0 = 

M(fO 
4) {Fi,...,Fr} is a standard basis for the ideal it generates in Loc(P) w.r.t <Q and M<j(Fi) = Yj 

5) < a restricts to < on <2> 

Such an F is called a standard locally smooth system (SLSS) over <. 

By applying the tangent cone algorithm WJ .L <<J in Loc(P), given Go G s e Loc(P) and denoting gi := 

a(Gi)Vi, it is then possible: 

1) to compute H € Loc(P) which is a normal form of Go w.r.t. {Fi,... ,F r}; such an H is s.t. H = 

0 if and only if go = 0 and, if H * 0 then a(H) = go, M a(H) e kQU, Ma(H) = M(g0); H is called a 

representation of go 

2) therefore to decide whether go = 0, and, if go * 0, to compute T(go), M(go) and in(go) 

3) to compute a representation of a normal form of go WJ.L {gi,....gs} 

4) to compute Hi,...,H t s.L Hi is a representation of hi := a(H0 and {hi,...,ht} is a standard basis 

for I := (gi,...,g s) w.r.t <. 

5) as a consequence (in(hi),...tin(ht)} are a Grttbner basis of in(I) WJ.L < W 

6) also, if Ho is a representation of a normal form ho of go w.r.L {hi,... ,h t}, then the residue class 

of in(ho) mod. in(I) (which has the analytical meaning discussed in §1) can be explicitly obtained. 

By applying the above techniques, one can moreover give computational versions of classical theorems: 

THEOREM 4 Given a local smooth system G := (Gi,..., G r) c k[X, Z, X] =: P defining fi,..., fr e 

k[K. Z]]alg and Go e Loc(P) s.L, denoting g := OG(GO), g(0,...,0, Z) * 0, then: 

(Weierstrass Preparation Th.) 

it is possible to compute: 
1) an ordering < on <&, Z> s.L T(g) = Z d , whiose restriction to <X> we denote <f 

2) a SLSS F := (Fi,..., F r) over < defining fi,..., fr s.L k[X, Z, F] i o c = kQLZ, G] i o c and a 

representation G e Loc(P) of g 

3) a SLSS H c K[X,X. Uo,...,Ud.i.Uio,...,Uid-i....»Uro,...,Urd-i] =:Q over <', defining hj, hy 
e K[m]alg,i=l...rj = 0...d-1 
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4) V, Vi € Loc(Q), V a unit s.t 

a) W := (H,F) is a SLSS over < 
b) Wei(g) := g Gw(V) = Ij=o...d-l hj Zi = Ej=o...d-l 0H(Uj) Zl G K[X,H]ioc[Xn] 

c) fi = a W (Vi) g + 2 j = o. . . d . i hy zi. 

(Weierstrass Division Th.) 

If moreover B e P <12> is given such that G G ( B ) =: b * 0, then it is possible to compute A e Loc(Q), 

and polynomials Aj e ktX.M. j = 0...d-l, s.L 

1) b = Wei(g) + Zj=o...d-l a H (Aj) zi 

2) £j=0...d-l GH(AJ ) Zi is the canonical form of b w.r.L (g) in k[QLZ]] *13* 
3) Gw(A), CH(AJ) are unique 

THEOREM 5 Given a local smooth system G := (Gi,... , G r) c k (X,£] =: P defining fi, . . . , fr e 

k[QL Z]]aig and Hi,. . .Ms e Loc(P) and denoting hi := GG(Hi), I = (hi,...,h s) c ktQfllalg. 

then: 

(Noether Normalization Lemma) 

it is possible to compute: 

1) a linear change of coordinates C: k[G£]]alg -» k[[X]]alg 

2)d = dim(I) 

3) a SLSS H defining algebraic series in k[[Xi,...,Xd]]aig 

4) Bi , . . . ,B N .< ] , Ai,. . . , A T € k[Xi,...^Cd»H]ioc[Xd+l,...,Xn] 

s.t denoting, with a slight abuse of notation an: k[Xi,. . . ,Xd,H]i o c[Xd+i,.. . ,X n] -> k[GSJ] alg * e 

extension of the evaluation morphism OH, bi := OH(B0» aj : = OH(AJ), one has: 

a) C(I) n k[[Xi,...,Xd]]alg = (0) 
b) Vi Bj e k[Xi,...,Xd,H]i o c[Xd+i,...,Xd+i-i][Xd+i] is a monic polynomial in Xd+i whose 

coefficients (in k[Xi,...^Cd»H]ioc[Xd+b...»Xd+i-i]) belong to (Xi,...,Xd+i-i. Yi,...,Y r) 

c) (bi,...,bn-d, ai,..., at) k[Dfl]aig = C(I) 

so that: 

d) k[QC]]aig/C(I)is an integral extension of k[[Xi,...,X p]]ai g 

(Algebraic Series Elimination) 

Moreover for each j , it is possible to compute: 

1) a linear change of coordinates C: k[[X]]alg -> kflXllalg 

2) a SLSS H defining algebraic series in k[[Xi,...,Xj]]aig 

3) Ai,. . . , A t e k[Xi,...,Xj,H]ioc 

s.L denoting J := (Ai,..., At) k[[Xi,...,Xj]]aig one has: 

J = C©K[C831aIg n KIIXi t... iXj]]ai g 

5 RECALLS: LOCAL ALGEBRA 

The analytical notions we have discussed in §1 and §3 can be stated and interpreted in algebro-topological 

terms; also they can generalized in order to allow a local study of the ring of rational functions defined on 
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a variety V "near" a subvariety V. The aim of this section is to briefly review the algebraic bases for the 

local study of an algebraic variety W\ 

Let A be a commutative ring (noetherian and with identity), L c A be an ideal s.L n L n = (0). 
For each a € A - {0}, there is n s.L a e L n - L n + 1 . We then define vL(a) := n. 
The function VL : A - {0} N, the order function, satisfies, Va,b € A - {0} (15>: 

v(a+b) £ min(v(a), v(b)) 

v(ab)£v(a) + v(b) 
Let us consider the direct sum GrL(A) := ©n=0...«> L n / L n + 1 , which is an abelian group, and a graded 

one if we consider the elements of L n / Ln+* to be the homogeneous elements of degree n. 

G I L ( A ) is turned into a graded ring by the following multiplication: 

if a € L n / L n + 1 , b € L m / L m + 1 , then there are ai e L n , bi e L m s.L a (resp. b) is the residue class of 

ai (resp. bi) mod. L n + 1 (resp. L m + 1 ) . Therefore ai bi € L m + n . Define a b € L m + n / L m + n + 1 to be the 

residue class of ai bi mod. L m + n + 1 . 

It is straightforward to verify that the above definition doesn't depend on the choice of ai and bi and that, 

with this definition of multiplication, GIL(A) is a (commutative, noetherian, with identity) graded ring. 

Let us define, for a e A - {0}, inL(a) € grL(A) to be the residue class of a mod. L n + 1 , where n = vL(a); 

and let us define inL(0) := 0. 

The function inL: A -> GrL(A), the initial form function, satisfies Va,b e A - {0}: 

in(a + b) = in(a) if v(a) < v(b) 

= in(b) ifv(a)>v(b) 

= in(a) + in(b) if v(a) = v(b) and in(a) + in(b) #0 

v(a + b) > min(v(a),v(b)) if and only if v(a) = v(b), in(a) + in(b) = 0 

in(a b) = in(a) in(b) unless in(a) in(b) = 0 

v(a b) > v(a) + v(b) if and only if in(a) in(b) = 0 

If we choose the set ( L n : n e N) as a basis of neighbourhoods of 0, then we obtain a ring topology on 

A, the L-adic topology, which is Hausdorff (since n L n = (0)). 

Under this topology the closure of an ideal I (the set of elements of A which are limits of Cauchy 

sequences of elements in I) is cl(I) := n (I + L n), which is an ideal too. 

A is complete if each Cauchy sequence of elements of A has a limit in A. By standard topological 

techniques, we can obtain AA, the completion of A, which is a topological ring under the LA-adic 

topology, where L A = L AA = (a e A A : there is a Cauchy sequence (an: n 6 N) c L converging to a). 

Since n L A n
 m (0), we have the associated graded ring G I L A ( A a ) and the functions V L a , inLA; quite 

straightforwardly one proves that G I L A ( A A ) « G I L ( A ) , and, having identified the two rings, that VLA and 

inLA coincide on A with VL and inL-

For an ideal I c A, the completion of I is the ideal (a e A A : there is a Cauchy sequence (a n : n e N) c I 

converging to a}; it is easy to prove that 
cl(I) = I A n A , IA = IA A = cl(I)AA 



188 

Notwithstanding the obvious importance of completions, they are not an easy object to deal with 

computationally, because they are rings of series unless the L-adic topology is discrete ( L n = (0) for some 

n). 

A more suitable (at least for computational purposes) overling of A is the Zariskification A I + L of A, 

i.e. the localization of A at the multiplicative closed system 1+L = {1 + g: g e L} <1 6). 

Ai+L is the ring of "formal fractions" (1+g)"1 h, h e A, g e L, with the usual identification: 

(1+g)"1 h = (1+gi)-1 hi if and only if (1+gi) h = (1+g) hi<1 7). 

It can be identified with a subring of AA, since in AA, for each g e L, (1-g) has as its inverse the limit of 

the Cauchy sequence £i=0...n 81-

Moreover L e = L A I + L = L A n A I + L induces a topology on A I + L , whose restriction to A is the L-adic 

topology; the completion of A I + L ft* this topology is again AA. 

Also, it is straightforward to verify that that GrLc(Ai+L) - GrLA(AA)« GrL(A), and, having identified the 

three rings, that vL e and inLc are the restrictions of V L * and inLA and so coincide on A with VL and inL-

Ai+L is a Zariski ring, i.e. it has the following properties: 
a) every ideal is closed for the Le-adic topology 
b) for each ideal I c A I + L . IA A n A I + L = I 

so that for each ideal I c A, cl(I) = I A I + L n A. 
Moreover it is the smallest extension of A in AA which is a Zariski ring <18). 

To each ideal I c A, the homogeneous ideal m\JX) := (inL(a): a € I) c grL(A) is associated. 

Clearly in(I) = in(cl(I)) = in(I A I + L ) = in(IA). 

An L-standard basis of I is a finite set {gi g s} c I s.L inL(I) = (inL(gl) ii*L(gs)) *19*-

Example 1 Let A := k[Xi,...,XnL L := (Xi,...,Xn). Then GrL(A) * A, with the usual grading; 

VL(0 is the order of f; HIL(0 is its initial form, UIL(I) = in(I) is the ideal defining the cone of the tangents 

at the origin of the variety defined by the ideal I; we reobtain therefore the notions of §1, so that the L-

adic topology on A is, very roughly speaking, the algebraic setting for the analytical notion of 

"infinitesimal order". 

We remark thathe completion AA of A is the formal power series ring k[[Xi,...,X n]j, while its 

Zariskification A I + L is the local ring at the origin Loc(A), which stresses in this first example the 

computational advantage of the latter on the forma*. 

Prime ideals in A correspond to irreducible algebraic varieties in the affine space k n ; prime ideals in AA 

correspond to (germs of) analytic irreducible varieties passing through the origin; prime ideals in A I + L to 

irreducible algebraic varieties passing through the origin, and can be obtained by extending to A I + L ideals 

of varieties in k n which are not irreducible but have a single and irreducible component passing through 

the origin. 

So all the notions above, in this simplest case, are related to the "local" behaviour of a variety "near" the 

origin; we can also appreciate a major difference betwenn the completion and the Zariskification: e.g. I := 

( (Y 2 - X 2 + X 3)(l + X)) c A is not prime while J = (Y 2 - X 2 + X 3) is such; in Ai+ L, I Ai+ L = J A I + L 

= (Y 2 - X 2 + X 3) is a prime ideal, since (1 + X) is invertible (corresponding to a variety not through the 
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origin); however in AA we have the factorization Y 2 - X 2 + X 3 = (Y + X g(X)) (Y - X g(X)) where g(X) 

€ k[[X]] is the formal power series corresponding to the Taylor expansion of the analytical function g(x) 

:=V(l-x). 

Example 2 This leads to a second important case we have already treated (in §4), which is related 
(20) with the analytic study of singular points of algebraic varieties, for instance in Newton-Puiseux 
algorithm for determining the analytic branches of a curve at a singular point and more generally when 
studying analytic components of a complex algebraic variety. We have A := k[[Xi,...,Xn]]alg» the ring of 
algebraic formal power series (i.e. the ring of algebraic functions which vanish and can be developed into 
Taylor series at the origin), L := (Xi,...,Xn). 

Again AA = k[[Xi,...,Xn]], while, A being local with maximal ideal L, A ] + L = A. 

The geometrical interpretation is essentially as in the example above, prime ideals in Q corresponding to 

analytically irreducible branches at the origin of an algebraic variety. 

Before introducing the next two examples we need the following: 

LEMMA 3 Let Q be a ring; let H c J c Q be two ideals, with n P = (0). Let A := Q/H, n : Q -> A 
the canonical projection, L := K(J ) . The following conditions are equivalent <21): 

1) H = n (H + J*), i.e. H = cl(H) 

2 ) n L n = (0) 

4) J contains all associated primes to H 
3) L contains all zero-divisors of A 

Proof: cf. [Z-S] V.I, ChJV, Theorems 12 and IT 

Example 3 Let Q := k[Zi,...,Zm]; let H c J c Q be two ideals. Let A := Q/H, n : Q -> A the 

canonical projection, L := TC(J). 

Let us moreover assume that J is prime and that hLP= (0). 

Under this assumption we can localize A at L, obtaining the local ring A L ; we are interested in the 

topology on A L induced by its maximal ideal a := L A L . Remark that, A L being local, it coincides with 

its Zariskification. 

Let V be the variety defined by H (assuming H is radical) and W the subvariety of V defined by J; then A 

is the ring of polynomial functions on V, while the ring of rational functions on V is obtained by 

inverting those elements of A which are not zero-divisors, i.e. it is the ring of formal fractions g"1 f, f e 

A, g e A g not zero-divisor with the usual identification 

g"1 f = g f 1 fi if and only if g fi - gi f = 0 

and the resulting arithmetics mimicking the one in Q. 

A polynomial function f e A identically vanishes on W if and only if f 6 L < 2 2 \ therefore a rational 

function g"1 f is defined on W if and only if it has a representative g r 1 fi with gi e L. So we have 

obtained that A L is exactly the ring of those rational functions on V which are defined at each point of W, 

while a is the ideal of those rational functions on V defined and vanishing on W. 
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The prime ideals of A L canonically correspond to those prime ideals of A which contain H and are 

contained in J; so (again if H is radical) they describe those irreducible algebraic varieties which are 

contained in V and which pass through the subvariety W. 

The notions related to the a-adic topology are, in a very rough sense, a generalization of the concepts 

involving the "infinitesimal order" (see Ex.1) in a "neighborhood" of W, for "germs of rational functions" 

over the topological space Spec(A) of all prime ideals (irreducible algebraic varieties) of A with the 

Zariski topology. 

Example 4 More in general, we can avoid requiring that J is prime, so: let Q := k[Zi,...,Zm], H 

c J c Q be two ideals, H = n (H + J n ), A := Q/H, n: Q -> A the canonical projection, L := n(J). 

We can study the L-adic topology of A ; in this case the Zariskification will be given by A I + L . If, as it is 

the case in applications (related to normalization), J is the radical of H, then A I + L is semilocal (i.e. it has 

finitely many maximal ideals mi, in which case A I + L = © A m i ) . 

It is important to remark, for the applications below, that if L is maximal, then A I + L = A L № \ 

If H is not closed for the J-adic topology, one should substitute cl(H) to H in the above setting: the 

algorithm we are going to discuss in the next section applies this substitution automatically. 

6 S T A N D A R D B A S I S C O M P U T A T I O N I N L O C A L R I N G S 

In §3 we have seen that by using standard bases it is possible to explicitly obtain ord(a), in(a) for a e 

Loc(P), in(I) for I c Loc(P) and also to compute the order and the initial form of the residue class of a 

modi (which are resp. the order and the canonical representativean k[B] of any normal form of a w.r.t. to 

a standard basis of I ) , so covering the situation discussed in Ex.1. In §4 we have extended this to 

k[[Xi,...,Xn]]aig (Example 2). 

We intend here to show that the same technique can be used to cover the situation discussed in Example 3; 

we will do so by solving the more general but easier case presented in Example 4. 
First of all we remark that if we are able to compute vL(a) and inL(a) for a 6 A , we have solved also the 

problem of computing "order" and "initial form" of elements modulo an ideal, because of the following 

result* 

P R O P O S I T I O N 4 Let A be a commutative ring (noetherian and with identity), L c A be an ideal s.L 

n L n = (0). 

Let I c A , 3 := cl(I) = n ( I + L n), R := A / 3 , n: A -» R the canonical projection, J := TC(L). Let a 6 A , 

b := rc(a) * 0. 

Then: 

l)Grj(R).GiL(AyinL(D 

2) there is c s.t rc(c) = b and UIL(C) e UIL(I). For such a c 

VJO>) = VL(C) 

inj(b) is the residue class of inL(c) mod. inL(D 

3) vj(b) = min{vL(c): 7t(c) = b} 
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Proof: 1) We explicitly define a homogeneous morphism n : GIL(A) -> Grj(R) whose kernel is inL(I). It 
is sufficient to define 11(a) for a homogeneous a e GrL(A) of some degree n; so a is the residue class 
mod. L n + 1 of some a e L n - L n + 1 . Then b := ic(a) e J"; let p be the residue class of b mod. J11**"1; we 
define 11(a) := p. 
It is clear that the definition doesn't depend on the choice of a (since 7 c ( L n + 1 ) c J11*1"1) and that the 

application is a morphism. 
We are left to prove that Ker(n) = iniXI) = inL(3). 
In fact if a e UIL(3) is homogeneous of degree n, then there is a 6 (3 n L n) - L n + 1 so that a = iniXa), 
but then 7i(a) = 0. 
Conversely let a 6 GriXA), homogeneous of degree n be s.L 11(a) = 0, and let a € L n - L n + 1 be s.t a = 
inL(a); since 11(a) = 0, then b := rc(a) € J 1 1 * 1 ; since T T ^ J 1 1 * 1 ) « L n + 1 + 3 f there are c € L n + 1 , d € 3 
s.t. a = c + d, but then inL(c) £ n+1 < n = inL(a), implies a = inL(a) = inL(d) e inL(3). 

2) Since 7c(a) ?fcO,a«3=n(I + L n), so there is n s.t a e I + L n and a € I + L n + 1 ; by the first 
implication we have a = d + c with c € L n , d e I, so n(c) = b; if UIL(C) e injJJ), there is di 6 I s.t. UIL(C) 

= inL(dl); but then ci := c - di € L n + 1 , a = (d + di) + c 6 I + L n + 1 . 
Since inL(c) € UIL(3), c « 3 + L n + 1 = i t ' 1 ( J n + 1 ) ; sob € J11 - J n + 1 , vj(b) = n = VL(C). Since c e L n -
L n + 1 , by the definition above n(inL(c)) = inj(ic(c)) = inj(b). 

3) Let c as above so that UIL(C) £ UIL(3), and assume there is d s.t n(d) = b and vi(d) < VL(C); 

then c - d e 3 and UIL(C) = UIL(C - d) € UIL(3), a contradiction. 

On the other hand we should be able to give a representation of the associated graded ring which is 
suitable for computations. Now if we are given a ring R and an ideal J, then we know that Grj(R) = 0 
J IYJn+1

> which is clearly not a representation very suitable for computational purposes. But since J has a 
finite basis (bi,...,bt), Grj(R) is generated as an algebra over R/J by the residue classes Pi,...,p t of 
t>i,...,b t, and so it is isomorphic to the quotient of a polynomial ring (R/J)[Xi,...,X t] modulo a 
homogeneous ideal L. Clearly a representation of Grj(R) obtained by explicitly giving R/J, Xi,...^Ct» and 
the homogenous ideal L is quite suitable for computations. 
If moreover if J is maximal and R is a finitely generated k-algebra, then R/J is a field K, which is an 
algebraic extension of k and can be effectively given by means of a Grtibner basis of J ; in this case we 
could like that the homogeneous ideal L is explicitly given by means of a Grtibner basis. 
We intend to describe in this section how, by means of standard bases and of the tangent cone algorithm, 
it is possible to obtain such an effective a representation for Grj(R) when R = AL» J - a (A and L as in 
Example 3) or R = A I + L , J = L e as in Example 4; and also to effectively compute vj(a) and inj(a) for 
each a € R, inj(I) for each I c R. 

First of all, we discuss a very trivial generalization of Example 1, which will however be our main tool 
for solving the general problem. 

Let P := k[Zi,...2m.Yi,...,Ys], let p := (Yi,...,Y s) c P; remark that gr^(P) - P, graded by degy: P 

-» N, where degy(Zi) = 0, degy(Yj) = 1. 
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We impose a well-ordering <z on <Zi, . . . ,Z m > and an ordering <y on <Yi,...,Y s> which is 

anticompatible with the degree i.e. 

deg(mi) > deg(m2) implies mi <y m2 

and we order T, the semigroup of terms in P, by the tangent cone ordering < s.t: 

m < m* if and only if my < m'y or (my = m'y and mz < m'z) 

We will consider also the well-ordering < w on T defined by: 

m < w n if and only if degy(m) < degy(n) or (degy(m) = degy(n) and m < n). 

Remark that under <, for f e P one has T(f) < 1 if and only if f e p, so that Loc(P) = Pi+p. 

Clearly if f € P, we can write it uniquely as: 
f = li=i...t fi • fi homogeneous (w.r.t degy) and non-zero, degy(fi) < ... < degy(fi) < degy(fi+i) 

then vp(f) = degy(fi), in p(f) = fi. Also: 

LEMMA 4 If G is a standard basis for I c Loc(P) w.r.t. <, then it is a p -standard basis for I and 

{inp(f): f € G} is a Grflbner basis for inp(I) wj.t < w . 

Proof: the proof of Prop.3 can be applied verbatim 

Let now (cf. Ex.4) Q := k[Zi, . . . ,Z m ]; let Ho c J c Q be two ideals, with Ho := (hi,..., ht), J := 

(fl,...,fs), let H = cl(H0) = n (H 0 + P) . 

Let R := Q/H, TC : Q -> R the canonical projection. Let P and p be as above. 

Define p : P -» Q by p(Z0 = Zi, p(Yj) = fj and let q : P -> R be the composition q = p; let A = 

Rl+n(J). L := n(J) A. 

LEMMA 6 q induces a surjective morphism (which we will still denote by q) q: Loc(P) = P i + p -> A, 

so that 

Ker(q) = (hi h t, fi - Yi fm - Y m ) =: 3 

q(P) = (Tc(fi),...,7c(fs)) = tt(J) A = L 
Proof: q: Loc(P) -> A is the composition of the extensions of p : Loc(P) Qi+j and TC : Q i + j -> A. 

The thesis follows since {hi,... Jit} is a basis of Ho Qi+j = H Qi + j = Ker(7c). 

Then, as a consequence of Proposition 4, since gq,(A) » gr^(Pi+p) / inp(3) * P / inp(3), after a 

standard set G of 3 is computed, grL(A) is explicitly given as a polynomial ring modulo a homogeneous 

ideal, which is given through a Grdbner basis. 

More exactly we have: 
grL(A) - k[Zi,...,Zm,Yi Y s]/in p(3) 

Moreover, since we have a GrObner basis of inp(3), we know the set B := {t e T : t e Mw(inp(3)} = {t 

e T : t e M(3)}. 

The vector space isomorphism between k[Zi,...2m.Yi,...,Y s]/inp(3) and k[B] can be used to impose 

on the latter vector-space a product which makes it isomorphic to k[Zi,...,Zm.Yi,...,Ys]/inp(3) and in 
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turn to grL(A). It is immediate to verify that this isomorphism is degree preserving if we just assign to 
each b € B its degree degy(b) in P. We can therefore identify gri/A) with k[B]. 

Also the projection II: P -> k[B] (cf. Prop. 4) can be easily computed by computing the canonical 
representative of an element modulo in p(3). 

Therefore we have: 

PROPOSITION 5 Let a e Q - {0} c P, and let us compute b € P and a unit u s.t. u"1 b is a local 

normal form of a wj.t G. 

Let 1 3 3 be an ideal in P, F a standard set for I w.r.t. <. 

Then: 

vL(q(a)) = vp(b) = degy(M(b)). 

inL(q(a)) =n(in^(b)) 

{q(0: f € F} is a L-standard basis of q(I). 

Example 5 Let Q := k[X,Y,Z], H := (Y 2 - XZ), J := (Y 2 - XZ, X 3 - YZ, X2Y - Z 2); since H is prime 
and contained in the prime ideal J, then H = cl(H). 
Let R := Q/H = k[x,y,z], A := Ri + K(J). L := n(J) A = (x 3 - yz, x 2y - z 2), P := k[X,Y,Z,V,T,U]. Then 3 

= Ker(q) = (Y 2 - XZ, Y 2 - X Z - V , X 3 - Y Z - U , X 2 Y - Z 2 - T ) , p := (V,T,U) c Loc(P). 

A standard basis of 3 is given by G:= {Y 2-XZ, X 3 - YZ - U, X2Y - Z 2 - T, V, YU - XT, ZU - YT} so 

that 

inp(3) = (Y 2-XZ, X 3 - YZ, X2Y - Z 2 , V, YU-XT,ZU-YT) 

gTL(A) = K[X,Y,Z]/J [T,U,V]/(V, YU - XT, ZU - YT) * K[X,Y,Z]/J [T,U]/(YU - XT, ZU - YT) 

If f := x 4 - y 3 € A, a normal form of X 4 - Y 3 ws.t G is XU, so VL(0 = 1 and UIL(0 = xu. 

A standard basis of (XU, 3) is 

G u {XU,X2T,XYT, YZT + TU,XZT + U 2 ,Z 2 T + T 2 ,U 3 } 

so that a L-standard basis of (0 is {xu, x2t, xyt, yzt + tu, xzt + u 2 , z 2t +1 2 , u3} and 

iniX (0 ) •= (xu, x 2t, xyt, yzt, xzt, z2t, u 3) 

Let us now assume, moreover, that J is prime (cf. Ex. 3). Then denoting, as in Ex. 3, a the maximal 
ideal of A L = Rn(J)« 

LEMMA 7 Let K be the field of fractions of Q/J; p : Q -> Q/J « R/rc(J) « A/L denote the canonical 

projection; a: P -> Q/J [Yi,...,Ys] c K[Yi,...,Y s] denote the morphism which coincides with p on Q 

and s.L a(Yi) = Yj. Then: 

l)J = i n p ( 3 ) n Q 

2) if F is a Grflbner basis of inp(3) w.r.t. < w , then F n Q is a GrObnw basis of J w.r.t <z and 

p(F) is a Gr6bner basis for p(inp(3)) W J . L the restriction of < w to the terms of K[Yi,...,Ys] 

3) GrL(A) - P / i n p ( 3 ) - (A/ J) [Yi,...,Ys] /p(in p (3)) 

4) Gra(AL)« K[Yi,...,Ys] / p(in p(3)) 

5) let I c A L be an ideal: if G is a L-standard basis for I n A, then it is a a-standard basis for I. 
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Proof: 1) V i, fj a inp(fi - YO, so J c inp(3) n Q. Conversely assume a e in^(3) n Q. Then there is 

b € 3 n P s.t in^(b) = a, i.e. b = a + c with c € (Yi,...,Y s); since a + c = b = I gi (fi - YO, by 

evaluating at Yi= ... = Y t = 0 we obtain a = I g'i fj so a e J. 

2) both facts are well-known properties of Grttbner bases (cf. [GTZ]) 

3) is trivial 
4) V = {UIL(0 : f e L} is a multiplicative closed system, for if ai, a2 € V, fi, f2 e L are such that 

in(fi) = aj, then fi f2 e L, since L is prime, and ai a2 = in(fi (Q) G V. 

Clearly V*1 GIL(A) « K[Yi,...,Ys] / p(in#(3)), so we have to prove that Gr a(At)« V' 1 GrL(A). 

In fact we obtain such an isomorphism in the following way: if a € A L , a = b" 1 c with b e L, we 

associate ina(a) with iniXb)"1 HIL(C). It is easy to verify that the definition doesn't depend on the choice of 

a nor on the choice of its representation and that the resulting application is bijective and a morphism. 

5) if a e I, a = b"1 c with b e L, then c = b a e I n A , so UIL(C) e (inL(g): g e G) c GrL(A) and 

ina(a) = ini/b)-1 inL(c) e (inL(g): g € G) c V-1 Gri/A). 

By means of Lemma S we obtain an explicit representation of Gr a (AL) ; in order to get computational 

results from it, we need some more insight on the way we present K. 

Let us consider Bo := {b e B : degy(b) = 0} c Q. Because F n Q is a Gr&bner basis of J w.r.t <z we 

have a k-vector space isomorphism between A/J and k[Bo], which by Grttbner basis techniques allows to 

define a domain structure on k[Bo] isomorphic to A/J and therefore to define a field structure isomorphic 

to K on the set of formal fractions {f"1 g : f, g e k[B], f 0}, so that we can identify K with the latter 

set. 

Let us now consider Bi := {b e B n k[Yi,...,Ys]}. Since p(F) is a Grttoner basis for p(inp(3)) w.r.t 

the restriction of < w to the terms of K[Yi,.. . ,Y sL it is easy to prove that Bi = {b e T : b e 

M(p(inp(3))}, so, again, we have a K-vector space isomorphism between Gra(AL)« K[Yi,...,Y s] / 

p(inp(3)) and K[Bi] and so a ring structure on the latter isomorphic to the one of Gr a(AiJ. As a 

consequence: 

COROLLARY 1 Let ao, ai e Q - {0} c P, ai e 3 , and let us compute bo, bi e P and units uo, ui 

s.t uf 1 bi is a local form of ai w.r.t to a standard basis G of 3 . 

Let 1 3 3 be an ideal in Loc(P), F a standard basis for I wjr.t <. 

Then: 

VaMao)*1 *(ai)) = vp(bi) = degy(M(b)). 

in^ao)" 17c(ai)) = Tl(mpQ>o)yl n(in^(bi)) 

{q(0: f e F} is an a-standard basis of q(I) A L . 

Example 5 (cont) Actually J is a prime ideal and one can easily remark that J = inp(3) n Q, A/L = 

Q/J = k[X,Y^]/(Y2 - XZ, X 3 - YZ, X2Y - Z 2) so that K = k£ji,Q where r\2 - Q = ^ 3 - ̂  = &r\ - C 2 

= 0. 

Since GrL(A) = K[X,Y2]/J [T,U]/(YU - XT, ZU - YT) one has 


