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RANDOM THRESHOLDS FOR LINEAR MODEL SELECTION
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Abstract. A method is introduced to select the significant or non null mean terms among a collection
of independent random variables. As an application we consider the problem of recovering the signifi-
cant coefficients in non ordered model selection. The method is based on a convenient random centering
of the partial sums of the ordered observations. Based on L-statistics methods we show consistency of
the proposed estimator. An extension to unknown parametric distributions is considered. Simulated
examples are included to show the accuracy of the estimator. An example of signal denoising with
wavelet thresholding is also discussed.
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1. Introduction

Consider the following model
yi = µi + εi, i = 1, . . . , n

where (µi) is a sequence of unknown constants some of which are zero and (εi) are centered, independent
random variables with common cumulative distribution Fε. The problem we study in this article is choosing
the significant, non zero mean, coefficients based on the observations (yi). Based on the data, it only seems
reasonable to choose index i if

|yi| > τ, (1)

for some appropriate threshold. Thus the problem is the choice of τ in (1), which will depend on the distribution
of the sequence (εi).

In practice τ must be calibrated in terms of the data. A usual technique is to consider a sequence of thresholds
(τj) for values ranging from very small (many significant coefficients) to very big (few significant coefficients) and
study the point where a substantial decrease in the number of significant coefficients occurs. Of course choosing
the “right” τ is equivalent to choosing the “right” number k of significant coefficients, with the advantage that
this can be done independently of the choice of (τj) by looking at the relative size of the observations. Indeed, a
jump in the relative size of the observations should indicate the existence of significant (not noise) coefficients.

This has been considered by a number of authors (see, for example, [12,13,17]) and many adaptive procedures
aimed at studying the correct “jump point” have been developed.
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One method that has proved to work remarkably well in practice in many settings including non ordered
model selection for regression problems is to consider not only the individual observations, but instead the
partial sums of the absolute (or squared) observations ordered decreasingly, and study the fluctuations of these
partial sums around their expectation conditional to the total sum. Even when this conditional expectation
cannot be computed in a closed form, an exponential change of variable makes this centering possible. The
estimated “jump point” is obtained by minimization of a certain functional of the conditionally centered partial
sums. Intuitively, each ordered observation from the null mean subset should account for a certain expected
proportion of the observable total sum. If non null mean terms exist, this proportion changes and can thus be
detected. Centering the partial sums by their non conditional expectations introduces an additional variance
term.

Our main result, Theorem 2.2 proves the method will consistently select this “jump point” under mild
assumptions over the gap between significant and non significant coefficients.

Our method requires previous knowledge of Fε. In a parametric setting, Fε = Fε( · ; θ�), we show that the
case θ� unknown can also be successfully considered introducing a consistent estimator of θ�. When θ� is a
scale parameter, an appropriate modification of the estimating procedure yields a scale free statistic, which is
also shown to be consistent.

We then apply our method to the problem of estimating the significant coefficients for the regression problem

yi = f(xi) + ηi, i = 1, . . . , n

where f is an unknown function in some function space S and ηi are independent random variables with
variance σ2. A usual estimation procedure is to consider f ∈ L2(µ) and a finite orthonormal system {φλ}Λ,
with |Λ| = Mn. Denoting by 〈y, φj〉n = 1/n

∑n
i=1 yiφλ(xi) the empirical coefficients, Donoho and Johnstone

[10] in their seminal article proposed choosing only those coefficients whose absolute value exceeded a certain

threshold u =
√

τσ2 log(n)
n . This procedure has since been refereed to as hard thresholding.

In a very interesting reinterpretation, Barron et al. [4] study the problem of hard thresholding in the context
of non ordered model selection based on the addition of a penalization term. Their arguments are combinatorial
based on the complexity of the underlying linear spaces: the size of the set of all possible models of size k out of
K is bounded by (eK/k)k and a logarithmic factor depending on K must be introduced in order to bound the
probabilities. In terms of (1) our observations would now be the empirical coefficients 〈y, φj〉n. Of course, except
for the case ηi ∼ N(0, σ2), the empirical coefficients will not be necessarily independent, although uncorrelated,
so that the problem does not comply to our assumptions. However, in practice the method works well. As
discussed in Section 6.1, our method can be interpreted as a random threshold procedure.

Although closely related to the problem of estimating the proportion of false null hypothesis [9,14], our goals
are different. We are more interested in finding a consistent estimator for the jump point as well as convergence
rates than in establishing an overall test for the proportion of false null hypothesis. In the latter case the main
goal is establishing lower bounds that assure a specified confidence level. In terms of the proposed methodology,
in our procedure we look at the fluctuations of the conditionally centered ordered data and not at the number
of individual rejected tests. However, the connection between both approaches remains an interesting research
topic.

The article is organized as follows: in Section 2 we introduce the problem and basic notation as well as the
proposed test procedure. In Section 3 we state and prove theoretical results that justify our procedure, namely
consistency of the selected subset of significant coefficients. In Section 4 we consider certain extensions which
include the parametric distribution case, an application to the problem of non ordered linear model selection
for the regression setting and interpret out testing scheme in terms of a random penalization procedure. In
Section 5 we present simulated examples. An application to signal denoising with wavelet thresholding is
proposed Section 6.
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2. Describing the procedure

2.1. A first hypothesis testing procedure

Assume we observe yi = µi + εi. Variables εi are assumed to be centered, independent and identically
distributed with common cumulative distribution Fε. We begin by assuming that the cumulative distribution
function F|ε| of the |εi|’s is known. In Section 4 we will deal with the unknown F|ε| case.

Given the collection (yi; 1 ≤ i ≤ n), we are interested in this section in testing if all the µi’s are null or not.
Thus, we introduce the following hypothesis:
Null hypothesis:

H0: µi ≡ 0 for i = 1, . . . , n.
Alternative hypothesis:

H1: there exists a non empty subset I of {1, 2, . . . , n} such that µi �= 0 for i ∈ I.
Then, the test procedure is defined as follows:

i) Order the observations |y(1)| ≥ |y(2)| ≥ . . . ≥ |y(n)|.
ii) For i = 1, . . . , n, let X(i) = − log

(
1 − F|ε|(|y(i)|)

)
.

iii) Let Tj =
∑j

i=1 X(i) and Qj = EH0 (Tj|Tn).
iv) Define the test statistic Dn = maxj |Tj −Qj |/√n. We will reject the null hypothesis if Dn > dα, where

dα is defined in Section 3.
Remark 1. Under the null hypothesis, the sequence (X(i)) is a decreasing sequence of exponential random
variables with parameter 1. Then, the conditional expectation EH0 (Tj|Tn) can easily be computed using the
following proposition (the proof is given in the Appendix):

Proposition 2.1. Assume X(1), X(2), . . . , X(n) is an ordered sequence of Exp(1) random variables, with
X(1) ≥ X(2) ≥ . . . X(n). For any 1 ≤ j ≤ n, let Tj =

∑j
i=1 X(i). Then, for any j ≤ K ≤ n,

E
(
X(i)

)
=

n∑
�=1

1
�

(2)

E (Tj) = j + j

n∑
i=j+1

1
i

(3)

E (Tj|TK) =
E (Tj)
E (TK)

TK . (4)

Remark 2. The distribution of the test statistic Dn cannot be computed in a closed form. Nevertheless, the
following standard result will allow us to construct probability tables (the proof is given in the Appendix):

Theorem 2.1. Assume X(1), X(2), . . . , X(n) is an ordered sequence of Exp(1) random variables, with X(1) ≥
X(2) ≥ . . . X(n). For any 1 ≤ j ≤ n, let Tj =

∑j
i=1 X(i). Introduce for t ∈ [0, 1] the random process dn(t) =

T[nt] − E
(
T[nt]|Tn

)
. Then, 1√

n
dn(t), as a stochastic process indexed on t ∈ [0, 1], converges in distribution to a

zero mean Gaussian process ∆ with covariance function defined by

E (∆(t)∆(s)) =
∫ 1

0

∫ 1

0

[(1 − u) ∧ (1 − v) − (1 − u)(1 − v)][1I[0,t](u) − t + t log(t)]

×[1I[0,s](v) − s + s log(s)]dG−1(u)dG−1(v),

where G(x) is the distribution function of an exponential r.v.

Using Theorem 2.1, we can conclude that statistic Dn defined in the test procedure converges weakly to
∆∞ = supt ∆(t). Then, dα is defined as the α quantile of ∆∞.
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Remark 3. Instead of assuming that the distribution of the |εi| is known, we can assume that there exists
an increasing continuous function h : R

+ → R
+ such that the cumulative distribution function Fh of h(|ε|) is

known. Then, X(i) is defined as − log
(
1 − Fh(h(|y(i)|))

)
. Without any loss of generality, we will consider the

case h = id in the following.
Remark 4. A uniform change of variable can also be used, by setting X(i) = F|ε|(|y(i)|). Indeed, the conditional
expectation of Tj can also be computed here:

E (Tj|TK) =
j(K − j)
K + 1

+
j(j + 1)

K(K + 1)
TK .

2.2. Choosing the right coefficients

If we reject the null hypothesis, the next step is to select the significant coefficients. For this we define the
following procedure:

i) For i = 1, . . . , n, let X(i) = − log
(
1 − F|ε|(|y(i)|)

)
.

ii) Let Kn be some positive integer. For 1 ≤ k ≤ n − Kn and 1 ≤ j ≤ Kn, set

Bk,j,n =
j
(
1 +

∑n−k
i=j+1 1/i

)
Kn

(
1 +

∑n−k
i=Kn+1 1/i

) (5)

and compute

Tk,j =
k+j∑

i=k+1

X(i), (6)

Qk,j = Bk,j,n Tk,Kn , (7)

ηk = max
1≤j≤Kn

|Tk,j − Qk,j |√
n

. (8)

iii) Let
k̂ = Arg min

1≤k≤n−Kn

ηk.

Remark 2.1. The �1 or the �2 norms can be used instead of the �∞ norm to define η by setting

ηk = n− 3
2

Kn∑
j=1

|Tk,j − Qk,j |

or

ηk = n−2
Kn∑
j=1

(Tk,j − Qk,j)2.

In the spirit of Section 2.1, it is possible to reinterpret the above procedure in a data-dependent “Hypothesis
testing” setting. Let s be the (data-dependent) one to one mapping from {1, 2, . . . , n} to {1, 2, . . . , n} defined
by Ys(i) = Y(i) (recall that (Y(i)) is a decreasing sequence).

Then, define the set of alternative hypotheses:
Alternative hypothesis:

H1(k): there exists a subset Ik ⊂ {1, 2, . . . , n}, with |Ik| = k, such that,
– for any i ∈ Ik, s(i) ≤ k and EH1(k) (Yi) �= 0,
– for any i �∈ Ik, s(i) ≥ k + 1 and EH1(k) (Yi) = 0.
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Under H1(k), there are k significant coefficients and |y(k+1)|, . . . , |y(n)| have distribution F|ε|. We will denote
Ek () the expectation under H1(k) (instead of EH1(k) ()). That is,

Ek (Tk,j) := j

⎛⎝1 +
n−k∑

i=j+1

1/i

⎞⎠ . (9)

So that,

Bk,j,n =
Ek (Tk,j)

Ek (Tk,Kn)

and Qk,j can be thought of as Qk,j = Ek (Tk,j |Tk,Kn) using the results of the previous section and Proposition 2.1.
Our main consistency result requires bounding deviations of the k−th order statistic, among n observations,

for k = n and k = nd, for some d < 1/2. For this, two general results are required. The first concerning
the asymptotic behavior of the maximum of n independent variables, and the second related to the limiting
Gaussian behavior of intermediate order statistics. In order to unify notation and simplify the presentation both
results will be given under the assumption that there exist w = w(Fε) and x0 < w such that the distribution
of the errors, Fε has a differentiable density fε over (x0, w). We also assume fε satisfies one of the Von-Misses
type conditions we give below.
Condition VM.

1. We assume w = ∞ that fε is positive near infinity and that there exists α > 0 such that

lim
x→∞

xfε(x)
[1 − Fε(x)]

= α.

2. We assume w < ∞, fε is positive near infinity and that there exists α > 0 such that

lim
x↑w

(w − x)fε(x)
1 − Fε(x)

= α.

3. We assume that fε(x) is positive and that

lim
x↑w

f(x)
∫ w

x (1 − Fε(t))dt

[1 − Fε(x)]2
= 1,

for x ∈ (x0, w).
We then have the following result

Proposition 2.2.

1. (Convergence of extremes, de Haan [8], Ths. 2.7.1, 2.7.2, 2.7.3.) Assume one of the VM conditions
hold. Then, Fε(an + bnx)n → G, for G = G(i, θ) the generalized extreme value function, and some
choice of constants an, bn. The parameters of the GEV function G depend on the VM condition that
holds.

2. (Convergence of intermediate extreme values, Falk [11], Th.2.1.) Assume one of the VM conditions
hold. Assume k → ∞, k/n → 0 and set

an,k = F−1
ε (1 − k/n); bn,k = k1/2/(nfε(an,k)).

Then, if |ε|(k,n) is the n − k order statistic

P (|ε|(k,n) ≤ dn + cnx) → Φ(x),
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where Φ stands for the standard normal distribution function and cn, dn are any sequences that satisfy

lim
n

cn/bn,k = 1 and lim
n

(dn − an,k)/bn,k = 0.

We now state our asymptotic framework:
AF1. There exists t� ∈ (0, 1) and a subset Ik�

n
of {1, 2, . . . , n}, with k�

n = [t�n] and |Ik�
n
| = k�

n, such that
µi �= 0 if i ∈ Ik�

n
. For all other index, µi = 0.

AF2. For any i ∈ Ik�
n
, |µi| ≥ αn, where αn → ∞ is such that

αn = 2an + rnbn (10)

for rn → ∞.
AF3. Kn/n → c such that 0 < c < 1 − t�.

We have the following result

Theorem 2.2. Let (un) be any positive and decreasing sequence such that
√

n un → ∞. Then, under the
asymptotic framework defined by VM, AF1, AF2, AF3,

P

(∣∣∣∣∣ k̂n − t�

∣∣∣∣∣ > un

)
→ 0. (11)

Moreover, for a > 0 there exist constants c1, c2 which depend on a such that if

un =
c1αn

√
log n

2
√

n
+

c2αn log(n)
2n

,

then

PH1(k�
n)

(∣∣∣∣∣ k̂n − t�

∣∣∣∣∣ > un

)
≤ 2e−a log(n) + 2P

(
max

1≤i≤n
|εi| > αn

)
. (12)

The proof of Theorem 2.2 is given in Section 3.

Remark 2.2. No overlapping is ensured with high probability when n → ∞ under Condition AF2. This
condition can be weakened assuming that the minimum gap between both subsets is such that the overlap
between both ordered sequences is not any larger than nd, for some d < 1/2. In this case we would require the
alternative condition
AF2’. For any i ∈ Ik�

n
, |µi| ≥ αn, where αn → ∞ is such that

αn = an + r1,nbn + and,n−k�
n

+ r2,nbnd,n−k�
n
,

for ri,n → ∞ for i = 1, 2 and some d < 1/2.
Thus the condition over αn in [AF2’] yields a slight improvement with respect to [AF2] in terms of

the constant since and,n−k�
n

+ r2,nbnd,n−k�
n

is smaller than 2an + r1,nbn. However it is not possible to have
αn ≤ an + r1,nbn + an1/2,n−n1/2 if rates as in Theorem 2.2 are sought. This fact yields an important insight as
to the minimal signal to noise ratio that should be required.

3. Proof of Theorem 2.2

Our procedure is based on two facts: a) under our assumptions over the error distribution, if the null
hypothesis is rejected, that is, if there is a group of significant coefficients and one of non significant coefficients,
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both groups of observations will not mix with high probability under assumption AF2) and b) if both groups are
separated at index k�

n, then Tkn,j −Qkn,j will only converge at rate
√

n for index kn such that |kn−k�
n| = o(

√
n).

Set ui = yi for i ∈ Ik�
n

and vi = yi for i �∈ Ik�
n
. Thus (vi) is an i.i.d. sequence with distribution Fε.

We have the following lemma that assures that both collections are stochastically in order with high proba-
bility:

Lemma 3.1. Let (u(i)) and (v(i)) be the sequences (|ui|) and (|vi|) in a decreasing order. Then

P
(
v(1) > u(k�

n)

)→ 0

and

P

(
v(1) >

αn

2

)
→ 0.

Proof. Let (ṽi) be a sequence of i.i.d. r.v. with distribution Fε. Then,

P
(
v(1) > u(k�

n)

) ≤ P
(
v(1) + ṽ(1) > αn

)
≤ P

(
v(1) > αn/2

)
+ P

(
ṽ(1) > αn/2

)
≤ 2P

(
v(1) > αn/2

)→ 2W

(
αn/2 − an

bn

)
→ 0. �

Lemma 3.1 yields the (u(i)) and (v(i)) are stochastically in order with high probability. Let Ωn be the subset of
Ω where v(1) < αn/2 and u(k�

n) > αn/2. Clearly P (Ωn) → 1. In what follows we will restrict our proof to Ωn.
Let Ek (Tk,j) be as defined in equation (9). Also let ai = E0

(
X(i)

)
=
∑n

�=1 1/�.
1) Consider first the case k > k�

n. On Ωn,

Tk,j − Qk,j = Tk,j − Bk,j,n Tk,Kn

=
(
Tk,j − Ek�

n
(Tk,j)

)− Bk,j,n

(
Tk,Kn − Ek�

n
(Tk,Kn)

)
+ Ek�

n
(Tk,j) − Bk,jEk�

n
(Tk,Kn)

= Rk,j + Sk,j .

We have decomposed the statistics Tk,j − Qk,j into a random part Rk,j and a deterministic part Sk,j . Remark
over Ωn, Rk,j is a function of v(k), . . . , v(Kn). First, let k = [tn] and j = [sn] for t ≤ s. As in Theorem 2.1,
Rk,j1IΩn (normalized by

√
n) as a process indexed by (t, s) ∈ (0, 1)2 converges in distribution to a zero-mean

Gaussian process Γt,s = (1 − t�)[∆(s − t�) − ∆(t − t�)].
On the other hand,

Sk,j = Ek�
n

(Tk,j) − Ek (Tk,j)
Ek (Tk,Kn)

Ek�
n

(Tk,Kn)

= Ek�
n

(Tk,j) − Ek (Tk,j) − Ek (Tk,j)
Ek (Tk,Kn)

(
Ek�

n
(Tk,Kn) − Ek (Tk,Kn)

)
=

j+k−k�
n∑

i=j+1

ai −
k−k�

n∑
i=1

ai + Bk,j,n

⎛⎝Kn+k−k�
n∑

i=Kn+1

ai −
k−k�

n∑
i=1

ai

⎞⎠
=

k−k�
n∑

i=1

(
ai+j − ai + Bk,j,n(ai+Kn − ai)

)
.
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Thus, there exists a constant, γ > 0, which depends on c in [AF3], such that supj |Sk,j | ≥ γ(k − k�
n) and

Pk�
n

(
k�

n − k̂ > n un

)
≤ P

(
ηk�

n
> sup ηk , (k − k�

n) > n un

)
(13)

≤ P

(
2 sup

k
sup

j
Rk,j > inf

k
sup

j
|Sk,j | , (k − k�

n) > n un

)
+ P(Ωc

n)

≤ P

(
2 sup

k
sup

j
Rk,j > γ n un

)
+ P(Ωc

n) .

Because of the weak convergence of Rk,j1IΩn the above probability tends to zero when n goes to infinity.
2) Consider now the case k < k�

n. On Ωn,

Tk,j − Qk,j = Tk,j − Bk,j,n Tk,Kn

= (1 − Bk,j,n)Tk,k�
n−k +

(
Tk�

n,j − E
(
Tk�

n,j

))− Bk,j,n

(
Tk�

n,Kn − E
(
Tk�

n,Kn

))
+E

(
Tk�

n,j

)− Bk,j,nE
(
Tk�

n,Kn

)
= Ak,j + Rk�

n,j + Uk,j

where Ak,j = (1 − Bk,j,n)Tk,k�
n−k. Observe that over Ωn, |y(i)| > αn/2. Then, there exists c(αn) > 0 such that

Tk,k�
n−k > c(αn)(k�

n − k), thus Ak,j = O(k�
n − k). On the other hand, Rk�

n,j1IΩn converges in distribution to a
zero-mean Gaussian process Γt�,s. Consider now the bias term Uk,j :

Uk,j = Ek�
n

(
Tk�

n,j

)− Ek (Tk,j)
Ek (Tk,Kn)

Ek�
n

(
Tk�

n,Kn

)
= Ek�

n

(
Tk�

n,j

)− Ek

(
Tk�

n,j

)− Ek

(
Tk�

n,j

)
Ek (Tk,Kn)

(
Ek�

n

(
Tk�

n,Kn

)− Ek (Tk,Kn)
)

+
Ek�

n

(
Tk�

n,Kn

)
Ek (Tk,Kn)

Ek

(
Tk,k�

n

)
=

j−k∑
i=j+k−k�

n+1

ai −
k�

n−k∑
i=1

ai +
Ek

(
Tk�

n,j

)
Ek (Tk,Kn)

Kn∑
i=Kn+k−k�

n+1

ai − Ek�
n

(
Tk�

n,Kn

)
Ek (Tk,Kn)

k�
n−k∑
i=1

ai.

Thus, there exists a constant δ > 0, which depends on c in [AF3], such that supj |Uk,j | ≥ δ(k − k�
n) and

Pk�
n

(
k̂ − k�

n > n un

)
→ 0 when n → ∞. The latter together with (13) shows (11).

In order to show (12), sharper bounds on Pk�
n

(
supk supj Rk,j > C n un

)
are required for any given constant

C. As above, we will restrict our attention to the set Ωn ∩ Ω′
n and drop this fact from the notation. Consider

first as above the case k > k�
n. Write,

Rk,j =
(
Tk,j − Ek�

n
(Tk,j)

)− Bk,j,n

(
Tk,Kn − Ek�

n
(Tk,Kn)

)
= R

(1)
k,j + R

(2)
k,j .

Since supj Bk,j,n = 1, we have that supj |R(2)
k,j | = |Tk,Kn − Ek�

n
(Tk,Kn) |.

Let G denote the common distribution function of the collection (Xi). We can rewrite

Tk,Kn − Ek�
n

(Tk,Kn) =
∑

i

[Xi − Ek�
n

(Xi)]1I{G−1(1−Kn/n)<Xi}.
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Thus, recalling wn = αn − (an − r1,nbn),

Tk,Kn − Ek�
n

(Tk,Kn)
wn

is the sum of independent bounded r.v. with variance bounded by 1, so that by Bennet’s inequality

P

(
supj |R(2)

k,j |
wn

>
γ/2nun

wn

)
≤ P

( |Tk,Kn − Ek�
n

(Tk,Kn) |
wn

>
c1γ

4
√

2

√
2n logn +

3c2γ

4
log n

3

)
≤ e−(a+1) log(n),

choosing c2 ≥ 4(a+1)
3γ and c1 ≥ 4

√
2
√

a+1
γ .

Hence, adding in k

P

(
sup

k
sup

j<k+Kn

R
(2)
k,j >

γ

2nun

)
≤ e−a log n.

For R
(1)
k,j we have

Tk,j − Ek�
n

(Tk,j)
wn

=
∑

i

[Xi − Ek�
n

(Xi)]1I{G−1(1−j/n)<Xi}
wn

.

Hence in this case we must use a functional version of Bennet’s inequality (Th. 7.3 in [6]) which yields

P

(
supj |R(2)

k,j |
wn

> E

(
supj |R(2)

k,j |
wn

)
+
√

2xv +
x

3

)
≤ e−x,

for v ≥ n + 2E

(
supj |R(2)

k,j |
wn

)
. Thus it remains to bound A = E

(
supj |R(2)

k,j |
wn

)
. This can be done using standard

symmetrization and entropy techniques to obtain, A ≤ 4
√

n log n, as the random entropy of the class A =
{1IG−1(1−t), t ∈ [0, 1]} (as it is a collection of increasing functions) is bounded by 2 log n.

As above,

P

(
supj |R(1)

k,j |
wn

>
γ/2nun

wn

)
≤ P

( |Tk,j − Ek�
n

(Tk,j) |
wn

> 4
√

n log n

+
√

2(a + 1) log n(n + 4
√

n log n) + (a + 1)
log n

3

)
≤ e−(a+1) log(n),

choosing ci, i = 1, 2 appropriately.
The case k < k�

n follows analogously.

4. Some extensions

4.1. Unknown distribution

Assume now that the distribution Fε of the εi’s is a parametric distribution Fε(· ; θ�), but where the
parameter θ� is unknown. For any 0 ≤ k ≤ n − 1, let θ̂k = θ̂(y(k+1), y(k+2), . . . , y(n)) be an estimator of θ. Let
F|ε|(· ; θ�) be the distribution of the |εi|’s. We will consider the following assumptions:
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F1. The cumulative distribution function F|ε| is two times differentiable as a function of θ with a.e. strictly
positive derivative at θ = θ�.

F2. θ� belongs to some compact set Θ and there exists, under Hk�
n
, a consistent estimator θ̂k�

n
= θ̂(y(k�

n+1),
y(k�

n+2), . . . , y(n)) of θ�.
F3. There exists (a, b) such that 0 < a < t� < b < 1 and a Lipschitz continuous function θ̃ defined on [a, b]

such that, under Hk�
n
, (θ̂[tn]) converges uniformly on [a, b] in probability to (θ̃(t)).

Remark 1. Under hypothesis F2 and F3, θ̂k�
n

is a consistent estimator of θ̃(t�) = θ�.
Remark 2. When t < t�, convergence of θ̂[tn] can be difficult to check with any estimator, since θ̂[tn] depends
on some yi’s that are not distributed under distribution Fε. Nevertheless, it is possible to use an estimator
based on some empirical quantiles and that only depends on the smallest observations, that is, that depends
only on the observations distributed under Fε.

For any θ ∈ Θ, let Xi(θ) = − log
(
1 − F|ε|(|yi|, θ)

)
, and Tk,j(θ) =

∑k+j
i=k+1 X(i)(θ).

Then, we define the following procedure:

i) Let Kn ≤ [(1 − b) n] be some positive integer. For [a n] ≤ k ≤ n − Kn;
1. let θ̂k = θ̂(y(k+1), y(k+2), . . . , y(n));

2. for i = 1, . . . , n, let X(i)(θ̂k) = − log
(
1 − F|ε|(|y(i)|; θ̂k)

)
;

3. for 1 ≤ j ≤ Kn, compute

Tk,j(θ̂k) =
k+j∑

i=k+1

X(i)(θ̂k),

Qk,j(θ̂k) = Bk,j,n Tk,Kn(θ̂k),

ηk(θ̂k) = max
k+1≤j≤n

|Tk,j(θ̂k) − Qk,j(θ̂k)|√
n

;

ii) let

k̂ = Arg min
an≤k≤bn

ηk(θ̂k).

Remark. Here, Qk,j(θ̂k) = Bk,j,n Tk,Kn(θ̂k) is the conditional expectation of Tk,j , conditionally to Tk,Kn ,
assuming that k�

n = k and that θ� = θ̂k.
Then, we have the following result,

Theorem 4.1. Assume F1, F2, F3.
i) Introduce for t ∈ [0, 1] and s ∈ [a, b] the random process

d̂n(t, s) = Tk�
n,[Knt](θ̂[ns]) − EHk�

n

(
Tk�

n,[Knt](θ̂[ns])|Tk�
n,Kn(θ̂[ns])

)
.

Then, d̂n(t, s)/
√

n, as a stochastic process indexed on [0, 1] × [a, b], converges in distribution, under Hk�
n
, to a

zero mean Gaussian process (Λ(t, s)).
ii) Let (un) be any positive and decreasing sequence such that

√
n un → ∞. Then, under the asymptotic

framework defined by AF1, AF2, AF3,

PH1(k�
n)

(∣∣∣∣∣ k̂n − t�

∣∣∣∣∣ > un

)
→ 0. (14)

Proof. We first show i).
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With the above notation, for any θ ∈ Θ, let

Ψj(θ) = Tk�
n,j(θ) − Qk�

n,j(θ)

Ψ′
j(θ) =

∂Ψj

∂θ
(θ).

For t ∈ [0, 1] and s ∈ [a, b], let

d̂n(t, s) = Ψ[nt](θ̂[ns])

= Ψ[nt](θ̃(s)) + (θ̂[ns] − θ̃(s))Ψ′
[nt](θ̃(s)) + O((θ̃(s) − θ̂[ns])2).

Using the same proof used for the convergence of (Ψ[nt](θ�))/
√

n (see the Appendix), we show that, for s ∈
[a, b], (Ψ[nt](θ̃(s)))/

√
n and (Ψ′

[nt](θ̃(s)))/
√

n also converge to two zero-mean Gaussian processes. Then, using

hypothesis F3, θ̂[ns] → θ̃(s) uniformly over [a, b], and then, d̂n(t, s) to a zero mean Gaussian process Λ(t, s).

We show now ii). For s ∈ [a, b], let ai(θ̃(s)) = EH0

(
X(i)(θ̃(s))

)
. Following the proof of Theorem 2.2, consider

first the case k > k�
n. On Ωn, for s ∈ [a, b],

Tk,j(θ̃(s)) − Qk,j(θ̃(s)) =
(
Tk,j(θ̃(s)) − Ek�

n

(
Tk,j(θ̃(s))

))
− Bk,j,n

(
Tk,Kn(θ̃(s)) − Ek�

n

(
Tk,Kn(θ̃(s))

))
+ Ek�

n

(
Tk,j(θ̃(s))

)
− Bk,jEk�

n

(
Tk,Kn(θ̃(s))

)
= Rk,j(θ̃(s)) + Sk,j(θ̃(s)).

As in Theorem 2.2, Rk,j(θ̃(s))1IΩn (normalized by
√

n) as a process indexed by (t, w, s) ∈ (0, 1)2×(a, b) converges
in distribution to a zero-mean Gaussian process. On the other hand,

Sk,j(θ̃(s)) =
k−k�

n∑
i=1

(
ai+j(θ̃(s)) − ai(θ̃(s)) + Bk,j,n(ai+Kn(θ̃(s)) − ai(θ̃(s))

)
.

Thus, there exists a constant, γ > 0, which depends on a, b in [F3], such that supj |Sk,j(θ̃(s))| ≥ (k − k�
n)γ.

We conclude that Pk�
n

(
k�

n − k̂ > n un

)
→ 0 using the arguments used for Theorem 2.2. The case k < k�

n is
identical. �

4.2. The unknown variance case

When θ� is a scale parameter, i.e. Fε(y; θ�) = Fε(y/θ�; 1), we introduce the following procedure which is
scale invariant:

i) for i = 1, . . . , n, let X(i) = |y(i)|;
ii) let Kn be some positive integer. For 1 ≤ k ≤ n − Kn and 1 ≤ j ≤ Kn, compute

Tk,j =
k+j∑
i=1

X(i), (15)

Qk,j =
EH1(k)

(∑k+j
i=k X(i)

)
EH1(k)

(∑k+Kn

i=k X(i)

) Tk,Kn , (16)

ηk = max
1≤j≤Kn

|Tk,j − Qk,j |√
n

; (17)
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iii) let
k̂u = Arg min

1≤k≤n−Kn

ηk.

Remark. Notice, the minimization problem at hand is not changed if we consider |Tk,j−Qk,j |
σ
√

n
, so the procedure

is indeed scale invariant. We have the following result, whose proof is omitted as it resembles quite closely that
of Theorem 2.2.

Theorem 4.2. Let (un) be any positive and decreasing sequence such that
√

n un → ∞. Then, under the
asymptotic framework defined by AF1, AF2,AF3,

P

(∣∣∣∣∣ k̂u

n
− t�

∣∣∣∣∣ > un

)
→ 0.

Moreover, for a > 0 there exist constants c1, c2 which depend on a such that if un = c1αn

√
log n

2
√

n
+ c2αn log(n)

2n then

P

(∣∣∣∣∣ k̂u

n
− t�

∣∣∣∣∣ > un

)
≤ 2e−a log n + 2P

(
max

1≤i≤n

|εi|
σ

> αn

)
.

4.3. Random thresholding

It is interesting we can link this procedure to a random thresholding one, or as in [4,5] in terms of penalized
estimation. This link clearly appears when we use the �2-norm to define ηk:

ηk = n−2
k+Kn∑
j=k+1

(Tk,j − Qk,j)2.

Lemma 2.2 ensures that good choice for the cutpoint between significant and non significant coefficients is
k̂ = argmin ηk. Thus, it is reasonable to assume we are looking from left to right to the first k such that
ηk > ηk−1. We will assume coefficients are significant while ηk < ηk−1. In order to develop this idea we must
understand how ηk − ηk−1 looks like. We have

n2(ηk − ηk−1) =
Kn∑
j=1

(Tk,j − Bk,jTk,Kn)2 −
Kn−1∑
j=1

Tk−1,j − Bk−1,jTk−1,n)2

= (Xk − Bk−1,kTk−1,k−1+Kn)2 +
Kn−1∑
j=1

(Tk,j − Bk,jTk,Kn))2

−
Kn−1∑
j=1

(
Xk + Tk,j − Bk,j(Xk + Tk,Kn)(1 + o(1)

)2

≈ (Xk − Bk−1,kTk−1,k−1+Kn)2

+
Kn−1∑
j=1

X2
k(1 − Bk,j,n)2 + 2Xk(1 − Bk,j,n)(Tk,j − Bk,j,nTk,k+Kn).

Hence coefficients will be significant approximatively until the first k such that

Xk ≤ τk,n :=

∑Kn−1
j=1 (Tk,j − Bk,jTk,Kn)(1 − Bk,j,n)∑Kn−1

j=1 (1 − Bk,j,n)2
·
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Table 1. Estimated percentiles of Dn under H0 obtained with different values of n.

n \ α 0.50 0.90 0.95 0.99
20 0.27 0.55 0.67 0.93
50 0.29 0.55 0.65 0.82
500 0.29 0.56 0.65 0.83
5000 0.30 0.55 0.64 0.79

5. Numerical experiments

We consider here the model

yi = µi + εi (18)

where (εi) is a collection of i.i.d. r.v.

5.1. Testing the null hypothesis H0

The distribution of Dn = maxj |Tj − T̂j|/√n under H0 is estimated by Monte-Carlo (using 5000 simulated
samples). Here, the (yi; 1 ≤ i ≤ n) are i.i.d. N(0,1) r.v. Using h(yi) = y2

i , we set X(i) = − log(1 − Fh(y2
(i)))

where F is the cumulative distribution of a χ2(1) distribution. Then, (Tj), (T̂j) and Dn are computed as
described in Section 2.

Table 1 displays the estimated percentiles of order 0.50, 0.90, 0.95 and 0.99 obtained with different values
of n. We see in this table that the distribution of Dn (except the tail) does not depend on n for n ≥ 20. In
particular, PH0(Dn > 0.65) ≈ 0.05 for any n ≥ 20.

Using a level α = 5%, the test consists in rejecting the null hypothesis H0 if Dn > 0.65. We estimated the
power of this test, by simulating data under H1. Here, the (yi; 1 ≤ i ≤ n/5) are i.i.d. N (µ, 1) r.v. Figure 1
displays the estimated probability to reject the null hypothesis H0 for different values of µ and n.

5.2. Estimating the number of significant coefficients

5.2.1. A Gaussian example

In the following experiment, we have simulated 500 Gaussian random variables, with µi = 4 for 1 ≤ i ≤ 100,
and µi = 0 for 101 ≤ i ≤ 500. (εi) is a collection of N (0, 1) i.i.d. r.v.

Assuming that the variance of the εi’s is known, we set

Xi = − log(1 − F (y2
i ))

where F is the cumulative distribution function of a χ2 r.v.
Then, we used the procedure described in Section 2.1. Figure 2 displays the two sequences (Tk) and (Qk).

We find Dn = 14.95 and reject the null hypothesis.
After rejecting the null hypothesis, we will estimate the number of significant coefficients, following the

procedure described in Section 2.2. We use here K = 200. Then, for k = 1, 2, . . . , 300, we computed the
sequences (Tk,j , 1 ≤ j ≤ 200) and (Qk,j , 1 ≤ j ≤ 200). Figure 3 displays these two sequences for k = 70, k = 100
and k = 130. We see that (Tk,j) concentrates around its conditional expected value (EH1(k) (Tk,j |Tk,200))
only for k = 100. A bias is clearly present for k = 70 and k = 130. The sequence (ηk) defined by ηk =∑200

j=1(Tk,j − Qk,j)2/
√

n − k is displayed Figure 4. A minimum at k̂ = 97 is obvious.
Repeating the same procedure with 100 simulated sequences, we obtained 100 values of k̂. The mean value

of k̂ is 97.6 and the standard deviation is 4.8.
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Figure 1. The estimated power of the 5% level test, for different values of µ and n.

If we consider now that the variance is unknown, we use the procedure described Section 4.1, estimating the
variance under H1(k) by

θ̂k =
1

n − k

n∑
i=k+1

y2
(i).

The results obtained when the variance is unknown are very similar than those obtained when the variance is
known. The mean value of k̂ is 97.3 and the standard deviation is 5.1.

5.2.2. An exponential example

In this second example, n = 500 again, but (εi) is a collection of Expo(1) i.i.d. r.v. Here, µi is uniformly
distributed in [3, 6] for 1 ≤ i ≤ 100, and µi = 0 for 101 ≤ i ≤ 500.

When the parameter of the exponential distribution is known, we use the procedure described Section 2.1,
setting Xi = yi. Figure 5 displays the two sequences (Tk) and (Qk). We find Dn = 3.72 and reject the null
hypothesis.

The number of significant coefficients is estimated as before. Figure 6 displays these two sequences (Tk,j , 1 ≤
j ≤ 200) and (Qk,j , 1 ≤ j ≤ 200) for k = 70, k = 100 and k = 130. In this example, the sequence (ηk) displayed
Figure 7 is defined by ηk =

∑200
j=1 |Tk,j − Qk,j |/

√
(n − k)3. A minimum at k̂ = 99 is obvious.

Repeating the same procedure with 100 simulated sequences, we obtained 100 values of k̂. The mean value
of k̂ is 103.8 and the standard deviation is 6.2.

The results obtained using the procedure described Section 4.1 when θ� is unknown are very similar: the
mean value of k̂ is 102.9 and the standard deviation is 5.6.
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Figure 2. Example 1. The two sequences (Tk) and (Qk).
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Figure 3. Example 1. The two sequences (Tk,j , 1 ≤ j ≤ 200) and (Qk,j , 1 ≤ j ≤ 200).
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Figure 4. Example 1. The sequence (ηk) (in a semilog scale).
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Figure 5. Example 2. The two sequences (Tk) and (Qk).
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Figure 6. Example 2. The two sequences (Tk,j , 1 ≤ j ≤ 200) and (Qk,j , 1 ≤ j ≤ 200).
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Figure 7. Example 2. The sequence (ηk) (in a semilog scale).
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6. Wavelet thresholding for signal denoising

Assume that we observe

zi = s(ti) + ei , i = 1, . . . , N (19)

where ti = i/N and where e is a random noise. We aim to estimate the unknown signal s from the observed
sequence (zi, 1 ≤ i ≤ N) without any particular assumption on s.

Then, denoising by wavelet thresholding involves the following three steps (see [10] for example):

1. choose a level J and perform a suitable wavelet transform of the data computing the wavelet coefficients
(cjk, 0 ≤ j ≤ J, 1 ≤ k ≤ nj);

2. perform a (hard or soft) thresholding of the wavelet coefficients:

ĉjk =
{

c̃jk, if|cjk| ≥ λ
0, if|cjk| < λ.

(20)

Hard thresholding means that c̃jk = cjk and soft thresholding that c̃jk = sign(cjk)(|cjk| − λ)+;
3. perform the inverse wavelet transform of the thresholded coefficients (ĉjk) to obtain the signal estimate ŝ.

Indeed, most signals have sparse wavelet series. In other words, a very small number of wavelet coefficients
yields a very accurate reconstruction of most signals. Then, we will consider that the largest wavelet coefficients
contain information about the unknown signal s, while the smallest ones are due to the random noise e. The
problem here is the choice of the threshold λ, that is the number of significant coefficients to extract and to use
for estimating the signal.

We use here the same global threshold λ for all the levels j = 0, 1, . . . , J . Let (yi) be the sequence of the n
wavelet coefficients (with n =

∑
nj). If (ei) is a Gaussian white noise with variance σ2, then

yi = µi + εi , i = 1, . . . , n (21)

where (εi) is also a Gaussian white noise with variance σ2.
We are exactly in the context described Section 4.1: we can use our procedure for selecting the non zero

coefficients µi when the distribution of ε depends on an unknown parameter (the variance σ2 here).

6.1. An approximation result

More precisely consider the following setting.

1. Assume we observe zi = s(ti)+ ei for a fixed collection ti. Variables (ei) are assumed to be independent
and identically distributed with variance Var(ε) = σ2.

2. Associated to the collection (ti), we introduce the empirical inner product 〈w, s〉n = 1
n

∑
i w(ti)s(ti)

and its associated empirical norm ‖ · ‖n.
3. We are interested in approximating s in terms of a certain orthonormal basis {φλ}λ. We assume that

the basis is such that it is also orthonormal in the empirical norm 〈, 〉n.
4. Given the basis define the absolute empirical coefficients yj =

∣∣〈y, φj〉n
∣∣√n. More generally, we could

consider the collection of the transformed coefficients γj(h) = h(yj/σ) for any given strictly increasing
function h such that there exists β satisfying h(ax) = aβh(x) for any positive constant a.

Assume also the following assumptions are satisfied:

R1. ei are an i.i.d. collection of centered normal r.v. with variance σ2.
R2. {φ1, . . . , φn} is orthonormal w.r.t. the empirical norm 〈, 〉n.
R3. For any i ∈ Ik�

n
, | 〈s, φj〉n | > aσ

√
log 2n/

√
n, with a ≥ 2

√
2.
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Figure 8. Denoising with wavelets. The unknown Bumps signal s, the observed series (zi, 1 ≤
i ≤ N) and the wavelet coefficients (yi, 1 ≤ i ≤ n).

We have the following result,

Lemma 6.1. Assume AF1, AF3, R1, R2 and R3 hold true. Let k̂u, be the estimator defined in Section 4.2.
Then, for b > 0 there exist constants c1, c2 which depend on a and b such that if un = c1 log(n)

2
√

n
+ c2 log2(n)

2n then

P

(∣∣∣∣∣ k̂u

n
− t�

∣∣∣∣∣ > un

)
≤ 2e−b log n + 2e−(a/2−√

2) log(n).

Proof. It follows directly from Theorem 4.2 by checking that if εi, i = 1, . . . , n are independent standard normal
random variables, then

P

(
max

1≤i≤n
|εi| > a

√
2n

)
≤ e−(a/2−√

2) log(n). �

6.2. Some numerical examples

Many different approaches have been proposed for this problem (see for example, [1, 2, 7, 10]). A complete
comparison of all these methods is beyond the scope of the paper. We will illustrate our procedure with the
Donoho and Johnstone’s Bumps function. Figure 8 displays the sampled Bumps function of length 256, the
observed series (zi) and the wavelet coefficients (yi). Here the SNR (ratio of the signal and noise variances) is
2.5. We used Daubechies’ symmlet 8 wavelet in this example.

Figure 9 plots the sequence (Tk) of partial cumulative sums and the sequence (ηk). In this example, the
sequence (ηk) attains its minimum for k̂ = 39.
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Figure 9. Denoising with wavelets. The partial cumulative sums (Tk) and the sequence (ηk)
(in a semilog scale). The minimum of (ηk) is reached for k̂ = 39.

For any 0 ≤ k ≤ n, let ŝk be the reconstructed signal obtained by keeping the k largest (in absolute value)
coefficients and padding the n − k remaining coefficients to 0. The reconstruction of the signal ŝk̂ = ŝ39

obtained by keeping only the 39 largest coefficients is displayed Figure 10. It is interesting to compare this
reconstruction not only to the original signal s, but also to the ideal reconstruction that can be obtained with
such a wavelet thresholding. The so-called oracle estimator minimizes the distance between the original s and
the reconstruction. Using L1 and L2 distances, we define the L1-oracle estimator ŝk�

1
and and the L2-oracle

estimator ŝk�
2

as follows:

ŝk�
1

= min
0≤k≤n

N∑
i=1

|s(ti) − ŝk(ti)| (22)

ŝk�
2

= min
0≤k≤n

N∑
i=1

(s(ti) − ŝk(ti))
2 . (23)

In this example, our estimated signal obtained with k̂ = 39 coefficients is very close to the L1-oracle estimator
since k�

1 = 38, while the L2-oracle estimator is requires k�
2 = 54 coefficients.

Using the same Bumps signal, the same SNR = 2.5 and the same symmlet 8 wavelet, we have compared our
results with the different denoising procedures proposed in the Matlab Wavelet Toolbox. The results obtained
with 1000 replications are summarized Table 2. For each method, we have estimated from these 1000 replications
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Figure 10. Denoising with wavelets. The reconstructed signal ŝ39, the “ideal” reconstruction
ŝ54 considering the L2-risk and the “ideal” reconstruction ŝ38 considering the L1-risk.

the expected risk ratios

E

( ∑N
i=1

∣∣s(ti) − ŝk̂(ti)
∣∣∑N

i=1

∣∣s(ti) − ŝk�
1
(ti)
∣∣
)

and E

( ∑N
i=1

(
s(ti) − ŝk̂(ti)

)2∑N
i=1

(
s(ti) − ŝk�

1
(ti)
)2
)

,

and the expected differences of coefficient numbers

E

(
|k̂ − k�

1 |
)

and E

(
|k̂ − k�

2 |
)

.

Rigrsure computes an adaptive threshold using principle of Stein’s Unbiased Risk Estimate, Heursure is an
heuristic variant of the first option, Sqtwolog threshold is

√
2 ∗ log(n), Minimaxi is a minimax thresholding and

Birgé Massart uses the penalization 2σ2k(2 + log(n/k)) proposed by Birgé and Massart.
We can remark that the Heursure estimator is the best one for the L2 risk (the risk ratio is 1.06), but the

L1 risk is not so good. Furthermore, the number of wavelet coefficients used for estimating th signal with the
first four methods are very different from the number of coefficients of the ideal L1 and L2 reconstructions. For
this example, the proposed method and the penalization approach of Birgé and Massart yield almost the same
very good results for the different criteria. The L1 and L2 risks are both almost optimal and the number of
coefficients are well estimated.

This first result is very encouraging, but a more complete simulation study (using several signals of different
lengths, with different SNR) will be considered in a further work.
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Table 2. Results obtained from 1000 replications. Comparison of several thresholding methods.

Risk ratio Abs. diff. of coef. number
Algorithm L1 Oracle L2 Oracle L1 oracle L2 oracle
Rigrsure 1.35 1.20 87.03 83.17
Heursure 1.13 1.06 34.20 30.59
Sqtwolog 1.10 1.16 12.67 16.43
Minimax 1.13 1.09 22.33 18.91

Birgé-Massart 1.05 1.07 7.73 10.06
Proposed method 1.05 1.07 7.03 9.79

7. Appendix

Proof of Proposition 2.1. For any 1 ≤ i ≤ n, let

Di = Xi − Xi+1

with Xn+1 = 0. Thus, Xi =
∑n

j=i Dj . Next, let Zj = jDj . As is well known, (Zj ; 1 ≤ j ≤ n) is a sequence of
i.i.d random variables (Exp(1)), so that, for any 1 ≤ k ≤ K ≤ n,

E (Tk|TK) =
k∑

i=1

n∑
j=i

E (Dj |TK)

=

⎛⎝ k∑
i=1

n∑
j=i

1
j

⎞⎠E (Z1|TK) .

Since

E (TK |TK) =

⎛⎝ K∑
i=1

n∑
j=i

1
j

⎞⎠E (Z1|TK)

= TK

and
k∑

i=1

n∑
j=i

1
j

= k + k

n∑
j=k+1

1
j

we obtain

E (Tk|TK) =
k + k

∑n
j=k+1 1/j

K + K
∑n

j=K+1 1/j
TK =

Bk,n

BK,n
TK . (24)

�

Proof of Theorem 2.1.
Let cnt,i = 1I[0,[nt]](i). By definition E

(
T[nt]|Tn

)
= B[nt]Tn, so that E

(
T[nt]

)
=
∑n

i cnt,iE
(
X(i)

)
= nB[nt].

Thus,

dn(t) =
n∑
i

cnt,i[X(i) − E
(
X(i)

)
] −

∑n
i cnt,iE

(
X(i)

)
n

(Tn − n) = In(t) − IIn(t).



RANDOM THRESHOLDS FOR LINEAR MODEL SELECTION 195

Let Gn =
∑n

i=1 ζn−i stand for the empirical sum of uniform r.v. ζi. Then, as in [16] it can be seen that

1√
n

In(t) = − 1√
n

∫ 1

0

[Gn − I](s)1I[0,t](s)dF−1(s) + op(1)

and
1√
n

IIn(t) = −(t − t log(t))
1√
n

∫ 1

0

[Gn − I](s)dF−1(s) + op(1),

where op(1) is uniform for all t ∈ [0, 1). So that,

1√
n

dn(t) =
∫ 1

0

[Rt(u) − (t − t log(t))F−1(u)]d[Gn(s) − (1 − s)] + op(1),

with Rt(u) =
∫ u

0 dF−1(s)1I[0,t](s)ds. The result now follows because

G = {Rt − (t − t log(t))F−1, t ∈ [0, 1]}

is a Donsker class.
�
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