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MULTIDIMENSIONAL LIMIT THEOREMS FOR SMOOTHED EXTREME
VALUE ESTIMATES OF POINT PROCESSES BOUNDARIES

Ludovic Menneteau1

Abstract. In this paper, we give sufficient conditions to establish central limit theorems and moderate
deviation principle for a class of support estimates of empirical and Poisson point processes. The
considered estimates are obtained by smoothing some bias corrected extreme values of the point process.
We show how the smoothing permits to obtain Gaussian asymptotic limits and therefore pointwise
confidence intervals. Some unidimensional and multidimensional examples are provided.
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Introduction

The problem of estimating a set S given a sequence of finite sets Sn of random points drawn from its
interior arises in classification [15], clustering problems [21], discriminant analysis [2], outliers detection [6],
image analysis [25] and in econometrics [4]. In many cases, the unknown support can be written

S = {(x, y) : x ∈ E; 0 ≤ y ≤ f (x)} , (1)

where f is an unknown function and E an arbitrary set (typically a subset of R
d). Then, the problem reduces

to estimating f .
In econometrics, the data consist of pairs (Xi, Yi) where Xi represents the input, possibly multidimensional

(labor, energy or capital), used to produce an output Yi in a given firm. In such a framework, the value f(x) can
be interpreted as the maximum level of output which is attainable for the level of input x. Then, economical
considerations suggest to suppose that f is increasing and concave and an adapted estimator, called the DEA
(Data Envelopment Analysis) has been developed and studied. Its asymptotic distribution is established by [10].

In the case where we do not assume that f is monotone, Geffroy [9] proposed an estimator of f which is
a kind of histogram based on the extreme values of the sample. Geffroy’s estimator has been improved in
several directions. On one hand, piecewise polynomials estimators were introduced and their optimality in an
asymptotic minimax sense was proved under different regularity conditions on f (see [17,20,25–27,33]).

On the other hand, regularization and bias correction of Geffroy’s estimate have been considered using
different way of smoothing (see [8,11,12]). In [13], the multivariate central limit theorem has been obtained for
a general class of estimates of this type including all the above. For technical reason (the maxima on disjoint
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cell of Poisson processes are independent) the results obtained in [8,11,12] and [13] were only given when Sn is
generated by a Poisson point process. This paper encompasses the results obtained in [13] of several manners.
Central limit theorems but also moderate deviation principles are investigated for a wider class of estimators
than in [13]. Moreover, we show that our results hold in the context of Poisson process but also when Sn is
generated by an empirical point process.

In the next section, the general class of estimators is given. Section 2 contains our main results and provides
some examples of possible bias reduction. Some applications, including kernel and projection estimators are
provided in Section 3. The proofs are given in Section 4.

1. The boundary estimate

Let f : (E, E) → (R+,B (R+)) be a measurable function on a probability space (E, E , ν), where B (R+) is the
Borel σ-algebra on R

+. Consider the set

S = {(x, y) ∈ E × R, 0 ≤ y ≤ f(x)}.

Our aim is to estimate S from a sequence of S-valued random vectors

Sn = {(Xn,i, Yn,i), 1 ≤ i ≤ Nn(S)},

with associated counting process

Nn =
{
Nn (D) : D ∈ E ⊗ B (R+

)}
, n ≥ 1,

of mean measure
n c 1S (x, y) ν (dx) dy, (2)

where c > 0. Two cases are considered below:
(P) Nn is a Poisson point process,
(E) Nn is an (n-sample) empirical point process.
Let kn ↑ ∞ and denote by {In,r : 1 ≤ r ≤ kn} a measurable partition of E. For all 1 ≤ r ≤ kn, set

νn,r = ν(In,r), Dn,r = {(x, y) : x ∈ In,r, 0 ≤ y ≤ f(x)} and Nn,r = Nn(Dn,r).

We also introduce
Y ∗

n,r = max{Yn,i : (Xn,i, Yn,i) ∈ Dn,r},
if Dn,r �= ∅ and Y ∗

n,r = 0 otherwise (in the sequel, we use the convention 0 ×∞ = 0) and

fn,r = ν−1
n,r

∫
In,r

f dν,

denotes the mean value of f on In,r.
In that context, f can be estimated using Geffroy estimator

fn (x) =
kn∑

r=1

1In,r (x) Y ∗
n,r. (3)

But several improvements of fn can be considered. First, it is well-known that Y ∗
n,r estimates fn,r with a

negative bias which reveals to be of the order (ncνn,r)
−1. Hence, to reduce this bias we can introduce unbiased
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versions of ( 3):

f̂◦
n (x; ĉn) =

kn∑
r=1

1In,r (x)
(
Y ∗

n,r + (nĉnνn,r)
−1
)

, (4)

where ĉn is a convenient estimator of c. Now, the non random conterpoint of f̂◦
n is the step function

f◦
n (x) =

kn∑
r=1

1In,r (x) fn,r (5)

and if f is regular, it is clear that smoothed version of (5) can lead to more efficient estimation of f .
Therefore, we will consider estimators of f of the form

f̂n (x; ĉn) =
kn∑

r=1

νn,rκn,r(x)
(
Y ∗

n,r + (nĉn (x) νn,r)
−1
)

(x ∈ E) , (6)

where κn,r : E → R is a weighting function determining the nature of the smoothing introduced in the estimate.
In the next section, some general conditions are imposed on κn,r and ĉn in order to obtain a central limit and
a moderate deviation principle for f̂n.

2. Main results

In the following, we consider the ν-essential infimum and supremum of f on E,

m = sup{α > 0 : ν ({f < α}) = 0} and M = inf{α > 0 : ν ({f > α}) = 0}

and, for all 1 ≤ r ≤ kn, we denote by

mn,r = sup{α > 0 : ν ({f < α} ∩ In,r) = 0},
Mn,r = inf{α > 0 : ν ({f > α} ∩ In,r) = 0},

respectively the ν-essential infimum, supremum of f on In,r (in most of applications, E is a subset of R
d, ν

is absolutely continuous with respect to Lebesgue measure and f is continuous, hence all ess-inf and ess-sup
considered below are just classical inf and sup). For all x ∈ E, we set

fn (x) =
kn∑

r=1

νn,r κn,r(x) fn,r, κn(x) =

(
kn∑

r=1

κ2
n,r(x)

)1/2

wn,r(x) = κn,r (x) /κn(x) and νn = min{νn,r, 1 ≤ r ≤ kn}.
In the sequel, (εn)n≥1 denotes a sequence of positive real numbers such that (εn)n≥1 ≡ 1 or εn ↓ ∞.
The following assumptions will be needed below:

(H.1) kn ↑ ∞ and (nνn)−1 max
(
log (n) , ε−1

n

)→ 0 as n → ∞.

(H.2) 0 < m ≤ M < +∞ and

δn := max
1≤r≤kn

νn,r(Mn,r − mn,r) = o (1/n) as n → ∞.

There exists F ⊂ E such that:
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(H.3) For each {x1, ..., xp} ⊂ F , there exists a covariance matrix Σ(x1,...xp) = [σ(xi, xj)]1≤i,j≤p in R
p such that

for all 1 ≤ i, j ≤ p,
kn∑

r=1

wn,r(xi)wn,r(xj) → σ (xi, xj) as n → ∞.

(H.4) For all x ∈ F ,
ε−1/2

n max
1≤r≤kn

|wn,r(x)| → 0 as n → ∞.

(H.5) For all x ∈ F ,
ε1/2

n nκn(x)−1 |fn (x) − f (x)| → 0 as n → ∞.

(H.6) For all x ∈ F ,

ε1/2
n

kn∑
r=1

|wn,r(x)| (nδn)2 = o (1) as n → ∞.

(C.1) For all x ∈ F , and any η > 0,

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

wn,r (x)

∣∣∣∣∣ ∣∣∣ĉn (x)−1 − c−1
∣∣∣ ≥ η

)
= −∞.

(C.2) For all x ∈ F , and any η > 0,

lim sup
n→∞

εn log P (|ĉn (x) − c| ≥ η) = −∞.

Before proceeding, let us comment on the assumptions. (H.1)–(H.4) are devoted to the control of the condition-
ally centered estimator f̂n −E

(
f̂n | Nn

)
. Assumption (H.1) imposes that the number of terms of the partition

goes to infinity not to quikly so that the mean number of points in each Dn,r goes to infinity. (H.2) requires
the unknown function f to be bounded away from 0. It also imposes that the mean number of points in Dn,r

above mn,r converges to 0. Note that (H.1) and (H.2) force the ν-essential oscillation of f on In,r to converge
uniformly to 0: δn → 0 as n → ∞. (H.3) is devoted to the multivariate aspects of the limit theorems. (H.4)
imposes to the weight functions κn,r(x) in the linear combination (6) to be approximatively of the same order.
This is a natural condition to obtain an asymptotic gaussian behavior. These assumptions are easy to verify
in practice since they involve either f or κn,r without mixing these two quantities. Assumptions (H.5) and

(H.6) are devoted to the control of the residual conditional bias term E

(
f̂n | Nn

)
− f . (H.5) is natural since it

implies that the non random part of the bias fn−f vanishes. (H.6) control of the residual conditional bias term
E

(
f̂n | Nn

)
− fn. These two assumptions involve both the unknown function f and the weight functions κn,r

and (H.6) can be looked at as a stronger version of (H.2). Condition (C.1) imposes the speed of convergence
of ĉn to the unknown parameter c to cancel the bias terms (ncνn,r)

−1. It appears as a minimal condition
needed to estimate c in the debiasing procedure without affecting the limit properties of f̂n in terms of central
limit theorem and moderate deviation principle. Assumption (C.2) allows to replace c by its estimator in the
asymptotic variance of f̂n.

2.1. Central limit theorem

Our first result states the multivariate central limit theorem for f̂n:

Theorem 2.1. Assume that (H.1) − (H.6) hold for (εn)n≥1 ≡ 1, that (C.1) holds for ĉ1,n and that (C.2) holds
for ĉ2,n. Then, for all {x1, ..., xp} ⊂ F ,{

κn (xj)
−1

nĉ2,n (xj)
(
f̂n (xj , ĉ1,n) − f (xj)

)
: 1 ≤ j ≤ p

}
→
D

N
(
0, Σ(x1,...xp)

)
,
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where →
D

denotes the convergence in distribution and N
(
0, Σ(x1,...xp)

)
is the centered gaussian law in R

p, with

covariance matrix Σ(x1,...xp).

This result can be used to obtain explicit asymptotic γ% confidence interval for f(x) of the form:[
f̂n (x, ĉ1,n) − zγκn(x) (nĉ2,n (x))−1

, f̂n (x, ĉ1,n) + zγκn(x) (nĉ2,n (x))−1
]
,

where zγ is the (γ + 1)/2th quantile of the N(0, 1) distribution.

2.2. Moderate deviation principle

We will now establish a family of large deviation principles for f̂n which is sometimes referenced in the
litterature as a moderate deviation principle. Recall that a sequence of random variable (Wn)n≥1 is said to
follow the large deviation principle in R

p with speed εn ↓ 0 and good rate function I : R
p �→ [0,∞], whenever,

for every set A ∈ B (Rp),

− inf
{

I (u) : u ∈
◦
A

}
≤ lim inf

n→∞ εn log P (Wn ∈ A)

≤ lim sup
n→∞

εn log P (Wn ∈ A) ≤ − inf
{
I (u) : u ∈ A

}
,

where
◦
A (resp. A) denotes the interior (resp. closure) of A in R

p. This will denoted by (Wn) ∈ LDP (εn, I) in
the sequel. We refer to [7] for general informations about large deviation theory.

Theorem 2.2. Assume that (H.1)–(H.6) hold for some εn ↓ 0, that (C.1) holds for ĉ1,n and that (C.2) holds
for ĉ2,n. Then, for all {x1, ..., xp} ⊂ F such that Σ(x1,...,xp) is regular,{

ε1/2
n κn (xj)

−1
nĉ2,n (xj)

(
f̂n (xj , ĉ1,n) − f (xj)

)
: 1 ≤ j ≤ p

}
∈ LDP

(
εn, I(x1,...xp)

)
where

I(x1,...xp) : u ∈ R
p �→ 2−1 tuΣ−1

(x1,...xp)u.

Let us mention some applications of Theorem 2.2. First, it entails that for all s > 0 and all x ∈ F ,

P

(
ε1/2

n n
∣∣∣κn (x)−1 ĉ2,n (x)

(
f̂n (x, ĉ1,n) − f (x)

)∣∣∣ ≥ s
)
� exp

(−2−1s2 ε−1
n

)
(here un � vn means that log un/ log vn → 1 as n → ∞). This fact and the Borel-Cantelli Lemma can be used
to prove that under (H.1)–(H.6) with εn = log (n)−1, we have, for all x ∈ F ,

lim sup
n→∞

(
(2 log (n))1/2

κn (x)
)−1

nĉ2,n (x)
∣∣∣f̂n (x, ĉ1,n) − f (x)

∣∣∣ ≤ 1 a.s.

Moreover, it is well known that moderate deviation principle is a key tool to prove laws of the iterated logarithm
(see e.g. [5] Th. 1-4-1). In terms of confidence intervals, Theorem 2.2 can also be useful to compute the
logarithmic asymptotic level of confidence intervals with asymptotic level 0. More precisely, for fixed x ∈ E and
t > 0, consider the interval

In (x, t) =
[
f̂n (x, ĉ1,n) − tε−1/2

n κn(x) (nĉ2,n (x))−1
, f̂n (x, ĉ1,n) + tε−1/2

n κn(x) (nĉ2,n (x))−1
]

where εn = o (1). Then, Theorem 2.1 entails that

P (f (x) /∈ In (x, t)) → 0 as n → ∞.
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Now, if conditions of Theorem 2.2 hold for (εn) we readily obtain that

lim sup
n→∞

εn log P (f (x) /∈ In (x, t)) = −2−1t2.

In other words, (In (x, t))n≥1 is a sequence of confidence intervals for f (x) with logarithmic level 2−1t2 and
speed (εn) (see [29] Def. 1).

Finally, in estimation theory, Theorem 2.2 can be used to compute the Kallenberg efficiency of f̂n (see [22,23]).

2.3. Estimation of c

At this stage, we present two estimates of f which belong to our general class (6) with some particular
estimations of c.
The first example has been previously introduced and studied in term of central limit theorem in case (P) in [13]
and is defined by

f̂ loc
n (x) =

kn∑
r=1

κn,r(x)νn,rY
∗
n,r

(
1 + N−1

n,r

)
.

It is readily seen that f̂ loc
n can be written as in (6) with the localized estimator of c:

ĉn (x) = ĉloc
n (x) := knκn(x)

(
n

kn∑
r=1

κn,r (x)N−1
n,r νn,rY

∗
n,r

)−1

,

where

κn(x) := k−1
n

kn∑
r=1

κn,r (x) .

Now, as c is constant, it may appear interesting to use a more global estimation of it. To this aim, we consider
the global estimator

ĉglo
n = kn

(
n

kn∑
r=1

νn,r Y ∗
n,r N−1

n,r

)−1

,

leading to

f̂glo
n (x) := f̂n

(
x; ĉglo

n

)
=

kn∑
r=1

(
κn,r(x) + κn(x)N−1

n,r

)
νn,rY

∗
n,r.

The following corollary shows that Theorems 2.1 and 2.2 can be applied to f̂ loc
n and f̂glo

n .

Corollary 2.1. Theorems 2.1 and 2.2 hold when ĉn,1 ∈ {ĉloc
n ; ĉglo

n

}
and ĉn,2 = ĉglo

n .

Remark 2.1. For the limit theorems considered here, f̂ loc
n and f̂glo

n are equivalent. Nethertheless, it can be
shown that ĉglo

n is a better estimator of c than ĉloc
n and therefore f̂glo

n may be prefered to f̂ loc
n . On the other

hand, if the intensity (2) of the point process is not totally uniform, it is clear that f̂ loc
n , which is based on a

local estimation of c, is more robust than f̂glo
n .

3. Applications

We first introduce a general class of kernel estimators which will be shown to satisfy our main results given
in Theorems 2.1 and 2.2. Then, we focus on the particular cases of Parzen-Rosenblatt and Dirichlet kernels.
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3.1. General kernel estimates

Here, in order to smooth (4), a sequence Kn : E × E → R, of general smoothing kernels is introduced.
Conditions on this sequence will be imposed later. The general integrated kernel estimate is defined by

f̂n (x; ĉn) =
∫

E

Kn (x, t) f̂◦
n (t; ĉn) ν (dt)

=
kn∑

r=1

(∫
In,r

Kn (x, t) ν (dt)

)(
Y ∗

n,r + (nĉnνn,r)
−1
)

. (7)

It appears that (7) is a particular case of (6) with κn,r (x) = ν−1
n,r

∫
In,r

Kn (x, t) ν (dt). In the case where the
calculation of this mean value is computationally expansive, it can be approximated by Kn (x, xn,r) for some
xn,r ∈ In,r, leading to the simplified estimate

f̃n(x; ĉn) =
kn∑

r=1

νn,r Kn (x, xn,r)
(
Y ∗

n,r + (nĉnνn,r)
−1
)

, (8)

which is still a particular case of (6) with κn,r (x) = Kn (x, xn,r).
In order to introduce the assumptions needed on Kn, we set, for all x ∈ E,

Γn,r (x) = sup {Kn(x, t) − Kn(x, s) : (s, t) ∈ In,r × In,r} ,

Ξn (x) = kn

∣∣∣∣∣
kn∑

r=1

∫
In,r×In,r

Kn (x, t) (f (s) − f(t)) ν (dt) ν (ds)

∣∣∣∣∣ ,
and

Ψn (x) =
∣∣∣∣∫

E

Kn(x, t)f (t) ν (dt) − f (x)
∣∣∣∣ .

For the sake of simplicity, assume that, for all n ≥ 1, the partitions {In,r : 1 ≤ r ≤ kn} are such that νn,r = k−1
n

for all r ≤ kn. We also set
∆n = max

r≤kn

(Mn,r − mn,r)

and, for all function g : E → R, we note

‖g‖p =
(∫

E

|g (t)|p ν (dt)
)1/p

, and ‖g‖I = sup
t∈I

|g (t)| (I ⊂ E) .

In this context, the general assumptions (H.1) − (H.6) can be expressed as:

(H.1) kn ↑ ∞ and n−1kn max
(
log (n) , ε−1

n

)→ 0 as n → ∞.

(H.2) 0 < m ≤ M < +∞ and nk−1
n ∆n → 0 as n → ∞.

(K.1) For all n ≥ 1,
∫

E×E |Kn(x, t)| ν (dx) ν (dt) < ∞.

(K.2) For all (x1, x2) ∈ F × F ,

kn∑
r=1

Γn,r (x1)
∫

In,r

|Kn(x2, t)| ν (dt) = o (‖Kn(x1, . )‖2 ‖Kn(x2, . )‖2) as n → ∞.

(K.3) For all (x1, x2) ∈ F × F ,

〈Kn(x1, . ), Kn(x2, . )〉2 (‖Kn(x1, . )‖2 ‖Kn(x2, . )‖2)
−1 → σ(x1, x2) as n → ∞.
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(K.4) For all x ∈ F ,

(εnkn)−1/2 ‖Kn(x, . )‖−1
2 ‖Kn(x, . )‖E → 0 as n → ∞.

(K.5) For all x ∈ F ,

ε1/2
n nk−1/2

n ‖Kn(x, . )‖−1
2 max (Ψn (x) ; Ξn (x)) → 0 as n → ∞.

(K.6) For all x ∈ F ,

ε1/4
n nk−3/4

n ‖Kn(x, . )‖−1/2
2 ‖Kn(x, . )‖1/2

1 ∆n → 0 as n → ∞.

(K.7) For all x ∈ F ,

ε1/2
n nk−1/2

n ‖Kn(x, . )‖−1
2

(
kn∑

r=1

∫
In,r

(Kn (x, t) − Kn (x, xn,r)) ν (dt)

)
→ 0 as n → ∞.

In the following, we set

vn (x) = nk−1/2
n ‖Kn(x, . )‖−1

2 ,

and

Σ(x1,...xp) = [σ(xi, xj)]1≤i,j≤p.

The results established in Section 2 yield:

Theorem 3.1. a) If (H.1) , (H.2) and (K.1)–(K.6) hold with (εn)n≥1 ≡ 1, then, for all ĉ1,n (resp. ĉ2,n) such
that (C.1) (resp. (C.2)) hold and all (x1, ...xp) ⊂ F ,{

ĉ2,n (xj) vn (xj)
(
f̂n (xj ; ĉ1,n) − f (xj)

)
: 1 ≤ j ≤ p

}
→
D

N
(
0, Σ(x1,...,xp)

)
. (9)

b) If, moreover, (K.7) holds with (εn)n≥1 ≡ 1, then for all {x1, ..., xp} ⊂ F ,

{
ĉ2,n (xj) vn (xj)

(
f̃n (xj ; ĉ1,n) − f (xj)

)
: 1 ≤ j ≤ p

}
→
D

N
(
0, Σ(x1,...,xp)

)
. (10)

Theorem 3.2. a) For all εn ↓ 0 such that (H.1) , (H.2) and (K.1)–(K.6) hold, for all ĉ1,n (resp. ĉ2,n) such
that (C.1) (resp. (C.2)) hold and all (x1, ...xp) ⊂ F such that Σ(x1,...,xp) is regular,{

ε1/2
n ĉ2,n (xj) vn (xj)

(
f̂n (xj ; ĉ1,n) − f (xj)

)
: 1 ≤ j ≤ p

}
∈ LDP

(
εn, I(x1,...xp)

)
(11)

with

I(x1,...,xp) : u ∈ R
p �→ 2−1 tuΣ−1

(x1,...,xp)u.

b) If, moreover, (K.7) holds, then{
ε1/2

n ĉ2,n (xj) vn (xj)
(
f̃n (xj ; ĉ1,n) − f (xj)

)
: 1 ≤ j ≤ p

}
∈ LDP

(
εn, I(x1,...xp)

)
. (12)

Some illustrations of this result are now provided.

Remark 3.1. In all the applications below involving f̃n, xn,r will be defined as the center of In,r.
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3.2. Parzen kernel estimates

Here, we take E = [0, 1]d (d ∈ N
∗), ν is the Lebesgue measure on E and {In,r : 1 ≤ r ≤ kn} is an equidistant

partition of E such that In,r =
∏d

j=1 Jn,r,j where the Jn,r,j are intervals of [0, 1] of length k
−1/d
n , leading to

νn,r = k−1
n for all 1 ≤ r ≤ kn.

The multivariate Parzen kernel estimate is defined by

KPR
n (x, t) = h−d

n K
(
h−1

n (x − t)
)
,

where K : R
d → R

+ is a Parzen-Rosenblatt kernel such that K ∈ L2
(
R

d
)
, and (hn) is a sequence of positive

real numbers tending to zero (see e.g. [18]).
In a first time, we will assume that there exists α ∈ (0, 1] such that:

(PR.1a) f is α-Lipschitz,

(PR.1b) K is uniformly continuous except on a finite set D ⊂ R
d and

∫
Rd ‖u‖α

Rd K (u) du < ∞.
Denote by Ip the identity matrix of R

p. We are now in position to prove a central limit theorem and a
moderate deviation principle for f̂n.

Corollary 3.1. Assume that (PR.1) holds and

(i) n−1kn log (n) = o (1) , (ii) hd
nkn → ∞ and (iii) nk−1/2

n hα+d/2
n = o (1) .

Then, (9) holds for F = (0, 1)d, vn = nh
d/2
n k

−1/2
n and Σ(x1,...,xp) = ‖K‖2

2 Ip.

The best rate of convergence is obtained for hn = n− 1
α+d and kn = n

d
α+d u2

n, where un → ∞ arbitrarily slowly.
In this case, vn = n

α
α+d u−1

n .

Corollary 3.2. Assume that (PR.1) holds and for some εn → 0,

(i) n−1kn max
(
log (n) , ε−1

n

)
= o (1) , (ii) hd

nknεn → ∞ and (iii) nk−1/2
n hα+d/2

n ε1/2
n = o (1) . (13)

Then, (11) holds for F = (0, 1)d, vn = nh
d/2
n k

−1/2
n and Σ(x1,...,xp) = ‖K‖2

2 Ip.

In particular, if ( 13) holds for εn = log (n)−1, then for all, x ∈ F ,

lim sup
n→∞

(2 log (n))−1/2 nhd/2
n k−1/2

n ĉ2,n (x)
∣∣∣f̂n (x, ĉ1,n) − f (x)

∣∣∣ ≤ ‖K‖2
2 a.s.

Remark 3.2. a) Corollary 3.1 shows that, when f is α-lipschitzian, the speed of convergence of f̂n can be
chosen arbitrarily close to the minimax speed n− α

α+d (see [17]).
b) In the case of Poisson point process with d = 1, f̃n with Parzen Rosenblatt kernel has been studied in [12].
In particular [12] Theorem 6-2, gives a central limit theorem for f̃n with optimal rate vn = n

α
α+5/4 u−1

n . Hence,
from asymptotical point of view, f̂n is better than f̃n.

Since our approach involves regularization of Geffroy’s estimates it is natural to study the case where f is
more regular than just α-lipschitzian. In the following, for simplicity, we take E = [0, 1] and we only deal with
the central limit theorem. Assume that:

(PR.2a) f is in C2 (E)

(PR.2b), There exists a finite set D such that

K is C1 on Dc, K ′ ∈ L1 (R) and
∫

R

u2K (u) du < ∞. (14)
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Corollary 3.3. a) If (PR.2) holds and

(i) n−1kn log (n) = o (1) , (ii) hnkn → ∞, (iii) nk−7/4
n h1/4

n = o (1) and (iv) nk−1/2
n h5/2

n = o (1) ,

then, (9) is true for F = (0, 1), vn = nh
1/2
n k

−1/2
n and Σ(x1,...,xp) = ‖K‖2

2 Ip.
The choices of hn = n−5/17 and kn = n9/17u2

n, where un → ∞ arbitrarily slowly, lead to vn = n10/17u−1
n .

b) If moreover, K is even, 1-Lipschitzian and C2 on Dc with K ′′ ∈ L1 (R), then, under (i)–(iv) and
(v) nk

−5/2
n h

−3/2
n = o (1), (10) is true for F , vn and Σ(x1,...,xp) defined as above.

The choices of hn = n−2/7 and kn = n4/7u2
n, where un → ∞ arbitrarily slowly, lead to vn = n4/7u−1

n .

3.3. Projection estimates: Dirichlet kernels

Let f ∈ L2 (E, ν) and (ej)j∈N be an orthonormal basis of L2 (E, ν). The expansion of f on this basis is

f(x) =
∞∑

j=0

ajej(x), x ∈ E,

where each aj =
∫

E ej(t)f(t)ν (dt) can be estimated by

âj,kn =
kn∑

r=1

(∫
In,r

ej(t)ν (dt)

)(
Y ∗

n,r + (nĉnνn,r)
−1
)

, 1 ≤ j ≤ bn.

This leads to an estimation of f(x) via:

f̂n(x; ĉn) =
ln∑

j=0

âj,knej(x) =
kn∑

r=1

(∫
In,r

KD
n (x, t)ν (dt)

)(
Y ∗

n,r + (nĉnνn,r)
−1
)

, (15)

where (ln) is a sequence of integers tending to infinity and KD
n the Dirichlet’s kernel associated to the orthonor-

mal basis (ej)j∈N defined by

KD
n (x, t) =

ln∑
j=0

ej(x)ej(t), (x, t) ∈ E2. (16)

It appears that (15) is a particular case of (7t) with Kn = KD
n . Of course, the, sometimes easier to handle,

estimate

f̃n(x; ĉn) =
kn∑

r=1

νn,rK
D
n (x, xn,r)

(
Y ∗

n,r + (nĉnνn,r)
−1
)

, (17)

can also be defined. Below, we focus on the trigonometric basis on E = [0, 1], ν is the Lebesgue measure on E,
and for all 1 ≤ r ≤ kn, In,r are disjoint intervals of [0, 1] of length k−1

n (and therefore νn,r = 1/kn).
This basis is defined for x ∈ [0, 1] by

e0(x) = 1, e2j−1(x) = 21/2 cos (2jπx), e2j(x) = 21/2 sin (2jπx), j ≥ 1.

It is easily seen in that case that the Dirichlet kernel is

KD
n (x, t) =

sin ((1 + ln)π (x − t))
sin (π (x − t))

for x �= t (18)

= 1 + ln if x = t.
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Besides, we assume that:f is in C2 ([0, 1]), f(0) = f(1) and f ′(0) = f ′(1). In particular,

∆n = O
(
k−1

n

)
. (19)

Corollary 3.4. a) Assume that

(i) n−1kn log (n) = o (1) , (ii) k−1
n ln log (ln) = o (1) , (iii) nk−1/2

n l−2
n = O (1) ,

(iv) nk−5/2
n l1/2

n log (ln) = o (1) and (v) nl−1/4
n k−7/4

n log (ln)1/2 = o (1) .

Then (9) holds for F = [0, 1], vn = n(lnkn)−1/2 and Σ(x1,...,xp) = Ip.
In particular, the choices of ln = n10/27 and kn = n14/27 log (n)2/7

u2
n, where un → ∞ arbitrarily slowly, lead

to vn = n5/9 log (n)−1/7
u−1

n .

b) If (i)–(iii) and (iv’) nk
−5/2
n l

3/2
n log (ln) = o (1) are true, then (10) holds for F , vn and Σ(x1,...,xp) defined as

above.
The choices of ln = n8/23 and kn = n14/23 log (n)2/5

u2
n, where un → ∞ arbitrarily slowly, lead to

vn = n12/23 log (n)−1/5
u−1

n .

Remark 3.3. a) From the asymptotical point of view, f̂n is still better than f̃n. Nevertheless, since when f is
C2, the minimax speed of convergence is n−2/3 (see [17]), the above estimates are suboptimal.

b) In the case of Poisson point process, f̃n with the trigonometric Dirichlet kernel has been introduced by Girard
and Jacob [11]. In that context, they get a pointwise central limit theorem (see [11] Cor. 3) but their result is
not sharp and Corollary 3.4 (b) constitutes a significant improvement since, instead of n12/23 log (n)−1/5

u−1
n ,

they obtain an “optimal” speed of convergence of n2/5 log (n)−1/5 (log log (n))ε (ε > 0).

3.4. Concluding remarks

In terms of applications, we have presented examples of integrated smoothed kernel estimates f̂n and of
discrete smoothed kernel estimates f̃n. In all the cases considered, f̂n is strictly better than f̃n from asymptotical
point of view (i.e. (K.7) is not implied by the other assumptions of Ths. 3.1 and 3.2). When f ∈ C2, Parzen
kernel leads to better speed of convergence than trigonometric Dirichlet kernel but it does not reach the minimax
speed.

Of course, other kernels are allowed, in particular wavelet kernels can be treated in the framework of Theo-
rems 3.1 and 3.2. This is part of our future work. More generaly, the following problem should be of interest:
given a class of function F , and assuming that f ∈ F , what is the best estimate of type ( 7) and in which case
could we raise the minimax speed of convergence?

4. Proofs

4.1. Proofs of the results of Section 2

Let us first introduce some notations useful for the sequel. For all 1 ≤ r ≤ kn, we define:
• λn,r = ncνn,r mn,r, Λn,r = ncνn,r Mn,r, µn,r = ncνn,r fn,r,

• bn,r = bn,r (εn) =
(
3µ−1

n,r

(
ε
−1/2
n (nνn,r)

1/2 + log
(
ν−1

n,r

)))1/2

, bn = bn (εn) = max
r≤kn

bn,r,

• Bn,r = Bn,r (εn) = {|Nn,r − µn,r| ≤ bn,rµn,r} , Bn = Bn (εn) = ∩
r≤kn

Bn,r,

• Z∗
n,r = ncνn,rY

∗
n,r, En,r = E

(
Z∗

n,r | Nn,r

)
, Z◦

n,r = Z∗
n,r − En,r,

• βn,r = N−1
n,r (Nn,r + 1)En,r − µn,r, ζn,r = N−1

n,r (Nn,r + 1)Z◦
n,r,

• Θn (x) =
∑kn

r=1 wn,r (x) ζn,r.
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Moreover B (n, p), P (λ) and M (n; p1, ..., pk) stand respectively for the binomial, Poisson and multinomial
distribution.

The proofs of the main results are built as follows. First, we use the fact that

κ−1
n nc

(
f̂ loc

n − f
)

= Θn + ρn, (20)

where

ρn =
kn∑

r=1

wn,rβn,r + κ−1
n nc (fn − f) ,

will be shown to be a remaining part which vanishes in terms of central limit theorem and of moderate deviation
principle (see Lem. 4.5 below). Therefore, to get the intended result for f̂ loc

n , it will be sufficient to consider
the dominant part Θn, which, as a sum of conditionally independent and centered random variables, will be
studied thanks to general results of Section 5. In a second time, it will be proved that for all ĉn such that (C.1)
holds, f̂n( . ; ĉn) and f̂ loc

n are equivalent in terms of central limit theorem and of moderate deviation principle.
The next lemma contains some useful technical results:

Lemma 4.1. Under assumptions (H.1) and (H.2):
a) For all 1 ≤ r ≤ kn, and all t ∈ [0, Mn,r],

P
(
Y ∗

n,r ≤ t | Nn,r

)
=

(∫
In,r

min (f, t) dν∫
In,r

f dν

)Nn,r

.

In particular, for all t ∈ [0, mn,r],

P
(
Y ∗

n,r ≤ t | Nn,r

)
=
(
tf−1

n,r

)Nn,r
.

b) For all large n,

max
1≤r≤kn

∣∣∣(1 − (mn,rf
−1
n,r

)Nn,r
)
− µ−1

n,rNn,r (µn,r − λn,r)
∣∣∣1Bn ≤ 2 (ncδn)2 a.s.

c) For all large n,

max
1≤r≤kn

(∫ Λn,r

λn,r

P
(
Z∗

n,r > s | Nn,r

)
ds

)
1Bn ≤ 2 (ncδn)2 a.s.

d) For all large n,

max
1≤r≤kn

|βn,r|1Bn ≤ 4 (ncδn)2 a.s.

e) For all large n,

max
1≤r≤kn

|µn,r − En,r − 1|1Bn ≤ 4 (ncδn)2 + 2
(
bn + (mcnνn)−1

)
a.s.

f) For all n large enough, all 1 ≤ r ≤ kn, and s ≥ 0:

P
(∣∣Z◦

n,r

∣∣ ≥ s | Nn,r

)
1Bn,r =

(
µ−1

n,r (En,r − s)
)Nn,r 1[0,En,r] (s) 1Bn,r

+
(
1 − (µ−1

n,r (En,r + s)
)Nn,r

)
1[0,λn,r−En,r] (s) 1Bn,r

+ P
(
Z∗

n,r > s + En,r | Nn,r

)
1[λn,r−En,r,Λn,r−En,r] (s) 1Bn,r .
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g) For all n large enough, all 1 ≤ r ≤ kn, and l ≥ 0:

E

(∣∣Z◦
n,r

∣∣l | Nn,r

)
1Bn,r = (λn,r − En,r)

l 1Bn,r

+ l!
(
µ−1

n,rEn,r

)Nn,r
Nn,r!El

n,r

(Nn,r + l)!
1Bn,r

−
∫ λn,r−En,r

0

l sl−1
(
µ−1

n,r (En,r + s)
)Nn,r ds1Bn,r

+
∫ Λn,r−En,r

λn,r−En,r

l sl−1
P
(
Z∗

n,r > s + En,r | Nn,r

)
ds1Bn,r .

Proof. a) Set

N+
n,r (t) = Nn (Dn,r ∩ (In,r × (t, Mn,r])) .

Then

P
(
Y ∗

n,r ≤ t | Nn,r

)
= P

(
N+

n,r (t) = 0 | Nn,r

)
.

But, as easily seen, conditionally to Nn,r,

N+
n,r (t)� B

(
Nn,r, 1 −

∫
In,r

min (f, t) dν∫
In,r

f dν

)
·

Hence, we get the intended result.
b) For all u ∈ [0, 1] and α ≥ 2, set ϕα (u) = (1 − u)α − (1 − αu), then, the Taylor formula entails,

0 ≤ ϕα (u) ≤ (αu)2 .

Hence, for all large n and all ω ∈ Bn,

max
1≤r≤kn

∣∣∣(1 − (mn,rf
−1
n,r

)Nn,r
)
− µ−1

n,rNn,r (µn,r − λn,r)
∣∣∣ (ω)

= max
1≤r≤kn

ϕNn,r(ω)

(
µ−1

n,r (µn,r − λn,r)
)

≤ max
1≤r≤kn

(
Nn,r (ω)µ−1

n,r (µn,r − λn,r)
)2

≤ (1 + bn)2 (ncδn)2 ,

where we have used the facts that

max
1≤r≤kn

(µn,r − λn,r) ≤ ncδn = o (1) (21)

and for all ω ∈ Bn,

max
1≤r≤kn

Nn,r (ω)µ−1
n,r ≤ 1 + bn.

Finally, we get the intended result since, by (H.1),

bn ≤
(
3 (cm)−1

(
(nνnεn)−1/2 + (nνn)−1 log

(
ν−1

n

)))1/2

= o (1) .
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c) Using (b), we get that for all large n and all ω ∈ Bn,

max
1≤r≤kn

ncνn,r

(∫ Mn,r

mn,r

P
(
Y ∗

n,r > t | Nn,r

)
dt

)
(ω)

≤ max
1≤r≤kn

ncνn,r (Mn,r − mn,r) P
(
Y ∗

n,r > mn,r | Nn,r

)
(ω)

≤ ncδn max
1≤r≤kn

(
1 − (mn,rf

−1
n,r

)Nn,r(ω)
)

≤ ncδn max
1≤r≤kn

µ−1
n,rNn,r (ω) (µn,r − λn,r) + (1 + bn)2 (ncδn)3

≤ (1 + bn) (ncδn)2 + (1 + bn)2 (ncδn)3 .

d) Using (a), we get

ncνn,r

∫ mn,r

0

P
(
Y ∗

n,r > t | Nn,r

)
dt

= ncνn,r

∫ mn,r

0

(
1 − (tf−1

n,r

)Nn,r
)

dt

= µn,rNn,r (Nn,r + 1)−1 − (µn,r − λn,r)Nn,r (Nn,r + 1)−1

+ λn,r (Nn,r + 1)−1
(
1 − (mn,rf

−1
n,r

)Nn,r
)

= µn,rNn,r (Nn,r + 1)−1 − µ−1
n,r (µn,r − λn,r)

2
Nn,r (Nn,r + 1)−1

+ λn,r (Nn,r + 1)−1
[(

1 − (mn,rf
−1
n,r

)Nn,r
)
− µ−1

n,rNn,r (µn,r − λn,r)
]
.

Hence, by (b), for all large n and all ω ∈ Bn,

max
1≤r≤kn

∣∣∣∣ncνn,r

∫ mn,r

0

P
(
Y ∗

n,r > t | Nn,r

)
dt − µn,rNn,r (Nn,r + 1)−1

∣∣∣∣ (ω)

≤
(
(mcnνn)−1 + (1 − bn) (1 + bn)2

)
(ncδn)2

≤ 2 (ncδn)2 ,

which, combined with (c) and the fact that

En,r = ncνn,r

∫ Mn,r

0

P
(
Y ∗

n,r > t | Nn,r

)
dt,

gives the result.
e)

max
1≤r≤kn

|µn,r − En,r − 1|1Bn = max
1≤r≤kn

∣∣∣µn,r (Nn,r + 1)−1 − 1 − βn,r

(
1 + N−1

n,r

)−1
∣∣∣ 1Bn

≤ max
1≤r≤kn

∣∣∣(µn,r − Nn,r) (Nn,r + 1)−1 − (Nn,r + 1)−1 − βn,r

(
1 + N−1

n,r

)−1
∣∣∣1Bn

≤ (1 − bn)−1
(
bn + (ncνnm)−1

)
+ 4 (ncδn)2 .
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f) By (21) and (e),
lim

n→∞ min
1≤r≤kn

min
ω∈Bn

(λn,r − En,r (ω)) = 1.

Hence, eventually,
min

1≤r≤kn

min
ω∈Bn

(λn,r − En,r (ω)) > 0, (22)

and, for all large n, all 1 ≤ r ≤ kn, and s ≥ 0:

P
(∣∣Z∗

n,r − En,r

∣∣ ≥ s | Nn,r

)
1Bn

= P
(
Z∗

n,r ≥ En,r + s | Nn,r

)
1Bn + P

(
Z∗

n,r ≥ En,r − s | Nn,r

)
1Bn

=
(
µ−1

n,r (En,r − s)
)Nn,r 1[0,En,r] (s) 1Bn

+
(
1 − (µ−1

n,r (En,r + s)
)Nn,r

)
1[0,λn,r−En,r] (s) 1Bn

+ P
(
Z∗

n,r > s + En,r

)
1[λn,r−En,r,Λn,r−En,r] (s) 1Bn .

g) Follows from the fact that, by (e), for all l ≥ 1 and r ≤ kn,

E

(∣∣Z∗
n,r − En,r

∣∣l | Nn,r

)
=
∫ +∞

0

lsl−1
P
(∣∣Z∗

n,r − En,r

∣∣ > s | Nn,r

)
ds

=
∫ En,r

0

lsl−1
(
µ−1

n,r (En,r − s)
)Nn,r ds

+
∫ λn,r−En,r

0

lsl−1
(
1 − (µ−1

n,r (En,r + s)
)Nn,r

)
ds

+
∫ Λn,r−En,r

λn,r−En,r

lsl−1
P
(
Z∗

n,r > s + En,r | Nn,r

)
ds,

and that ∫ En,r

0

lsl−1
(
µ−1

n,r (En,r − s)
)Nn,r ds =

(
µ−1

n,rEn,r

)Nn,r

∫ 1

0

l ul−1 (1 − u)Nn,r du

=
(
µ−1

n,rEn,r

)Nn,r ((Nn,r + l)!)−1
l! Nn,r!El

n,r. �

We are now in position to prove all we need to study the dominant term Θn:

Lemma 4.2. Under assumptions (H.1) and (H.2):
a) There exits a non negative real numbers ηn → 0 such that, for all n ≥ 1,

max
1≤r≤kn

∣∣E (ζ2
n,r | Nn,r

)− 1
∣∣1Bn ≤ ηn a.s.

b)

max
l≥1

max
1≤r≤kn

E

(
(l!)−1 |ζn,r|l | Nn,r

)1/l

1Bn ≤ 4 a.s.

c) For all (εn) such that (H.1) holds,

lim sup
n→∞

εn log P (Bc
n) = −∞.
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Proof. a) Lemma 4.1 (g) for l = 2 entails

E
(
Z◦2

n,r | Nn,r

)
1Bn,r

= (Nn,r + 1)−2
µ2

n,r1Bn,r +
(
(λn,r − En,r)

2 − (Nn,r + 1)−2
µ2

n,r

)
1Bn,r

+ 2
(
µ−1

n,rλn,r

)Nn,r (Nn,r + 2)−1
λn,r

(
(Nn,r + 1)−1 (Nn,r + 2)En,r − λn,r

)
1Bn,r

+ 2
∫ Λn,r−En,r

λn,r−En,r

sP
(
Z∗

n,r > s + En,r | Nn,r

)
ds1Bn,r . (23)

Now, by Lemma 4.1 (c) and (e),

max
1≤r≤kn

∫ Λn,r−En,r

λn,r−En,r

2s P
(
Z∗

n,r > s + En,r | Nn,r

)
ds 1Bn,r

≤ 2 max
1≤r≤kn

(Λn,r − En,r)
∫ Λn,r

λn,r

P
(
Z∗

n,r > s | Nn,r

)
ds 1Bn,r

≤ 8 (ncδn)2 eventually. (24)

By Lemma 4.1 (d), for all large n,

max
1≤r≤kn

∣∣∣(Nn,r + 1)−1 (Nn,r + 2)En,r − λn,r

∣∣∣ 1Bn,r

= max
1≤r≤kn

∣∣∣(Nn,r + 1)−2 Nn,r (Nn,r + 2)βn,r + (µn,r − λn,r) − (Nn,r + 1)−2 µn,r

∣∣∣ 1Bn,r

≤ 4 (ncδn)2 + ncδn + (1 − bn)−2 (nmcνn)−1 = O
(
nδn + (nνn)−1

)
. (25)

Furthermore, since a2 − b2 = (a − b)2 + 2 (a − b) b, and

max
1≤r≤kn

∣∣∣λn,r − En,r − (Nn,r + 1)−1
µn,r

∣∣∣ 1Bn,r

= max
1≤r≤kn

∣∣∣(Nn,r + 1)−1
Nn,rβn,r − (µn,r − λn,r)

∣∣∣1Bn,r

≤ 4 (ncδn)2 + ncδn eventually,

and we get that for all large n,

max
1≤r≤kn

∣∣∣∣(λn,r − En,r)
2 −

(
(Nn,r + 1)−1 µn,r

)2
∣∣∣∣1Bn,r

≤
(
4 (ncδn)2 + ncδn

)2

+ 2
(
4 (ncδn)2 + ncδn

)
max

1≤r≤kn

(Nn,r + 1)−1
µn,r

≤
(
4 (ncδn)2 + ncδn

)(
4 (ncδn)2 + ncδn + 2 (1 − bn)−1

)2

= O (nδn) . (26)
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Now, (23)–(26) lead to

max
1≤r≤kn

∣∣E (ζ2
n,r | Nn,r

)− N−2
n,rµ

2
n,r

∣∣1Bn = max
1≤r≤kn

(
1 + N−1

n,r

)2 ∣∣∣E (Z◦2
n,r | Nn,r

)− (Nn,r + 1)−2
µ2

n,r

∣∣∣ 1Bn

≤ 4 max
1≤r≤kn

∣∣∣E (Z◦2
n,r | Nn,r

)− (Nn,r + 1)−2
µ2

n,r

∣∣∣1Bn

= O
(
nδn + (nνn)−1

)
= o (1) . (27)

And we get the result by (27) and the fact that,

max
1≤r≤kn

∣∣N−2
n,rµ

2
n,r − 1

∣∣1Bn ≤ (1 − bn)−2 (2 + bn) bn = o (1) .

b) Lemma 4.1 (g) and (22) entail that, for all large n, all 1 ≤ r ≤ kn, and all l ≥ 1,

E

(
(l!)−1 ∣∣Z∗

n,r − En,r

∣∣l | Nn,r

)1/l

1Bn,r

≤
(
(Nn,r + 1)−1

En,r + (λn,r − En,r) + (Λn,r − En,r)
)
1Bn,r ≤ 4.

c) First we prove that, for all n large enough and all 1 ≤ r ≤ kn,

P
(
Bc

n,r

) ≤ 2 νn,r exp
(
−ε−1/2

n (nνn,r)
1/2
)

. (28)

In case (E), Nn,r � B (n, n−1µn,r

)
, Bernstein Inequality yields, for large n,

P (|Nn,r − µn,r| > bn,rµn,r) ≤ 2 exp

(
− b2

n,rµ
2
n,r

2µn,r + 2
3bn,rµn,r

)
≤ 2 exp

(−3−1b2
n,rµn,r

)
.

In case (P), Nn,r � P (µn,r), hence, using a classical inequality (see e.g. [31] p. 486), we get, for large n,

P (|Nn,r − µn,r| > bn,rµn,r) ≤ exp (bn,rµn,r − (1 + bn,r)µn,r log (1 + bn,r))

+ exp (−bn,rµn,r − (1 − bn,r)µn,r log (1 − bn,r))

≤ exp
(−2−1 (1 − bn,r) b2

n,rµn,r

)
+ exp

(−b2
n,rµn,r

)
≤ 2 exp

(−3−1b2
n,rµn,r

)
.

Hence we get the result since, by definition of bn,r,

exp
(−3−1b2

n,rµn,r

)
= νn,r exp

(
−ε−1/2

n (nνn,r)
1/2
)

.

Now, by (28),

P (Bc
n) ≤

∑
r≤kn

P
(
Bc

n,r

) ≤ 2 exp
(
−ε−1/2

n (nνn)1/2
)

.

And, since nνnεn → ∞,

lim sup
n→∞

εn log P (Bc
n) ≤ lim sup

n→∞
εn log (2) − (nνnεn)1/2 = −∞. �
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Corollary 4.1. a) Assume that (H.1)-(H.4) hold for (εn)n≥1 ≡ 1. Then, for all {x1, ..., xp} ⊂ F ,

(Θn (xj))1≤j≤p →
D

N
(
0, Σ(x1,...xp)

)
.

b) Assume that (H.1)–(H.4) hold for some εn → 0. Then, for all {x1, ..., xp} ⊂ F such that Σ(x1,...,xp) is regular,(
ε1/2

n Θn (xj)
)

1≤j≤p
∈ LDP

(
εn, I(x1,...xp)

)
.

Proof. Take {x1, ..., xp} ⊂ F and set Wn,r = (wn,r (xj))1≤j≤p ∈ R
p. Since

(Θn (xj))1≤j≤p =
kn∑

r=1

Wn,rζn,r,

(a) follows by Lemma 4.2 and Theorem 5.1 and (b) holds by Lemma 4.2 and Theorem 5.2. �
The next lemma will be needed in the sequel:

Lemma 4.3. Let (Mr)r≤k �M (φ; p1, ..., pk) and (Πr)r≤k �
⊗
r≤k

P (φpr).

Then, for all (a1, ..., ak) ∈ (R+)k and η > 0,

P

⎛⎝∑
r≤k

ar Mr ≥ η

⎞⎠ ≤ 2P

⎛⎝∑
r≤k

ar Πr ≥ η

⎞⎠ .

Proof. Without loss of generality, we can assume that there exit i.i.d. r.v. (ζi)i≥1 and disjoint sets (Ar)1≤r≤kn

such that pr = P (ζ1 ∈ Ar),

Mr = � {i ≤ φ : ζi ∈ Ar} and Πr = � {i ≤ Π : ζi ∈ Ar} ,

where Π� P (φ) is independent of (ζi)i≥1. By independence of Π and (Mr)r≤k,

P

⎛⎝∑
r≤k

ar Mr ≥ η

⎞⎠ ≤ P (Π < φ) P

⎛⎝∑
r≤k

ar Mr ≥ η

⎞⎠+ P

⎛⎝∑
r≤k

ar Πr ≥ η

⎞⎠ .

Hence, since P (Π ≥ φ) ≥ 1/2 (see [1] Lemma 1), we get,

P

⎛⎝∑
r≤k

ar Mr ≥ η

⎞⎠ ≤ P (Π ≥ φ)−1
P

⎛⎝∑
r≤k

ar Πr ≥ η

⎞⎠ ≤ 2P

⎛⎝∑
r≤k

ar Πr ≥ η

⎞⎠ . �

The next lemma is useful to prove Corollary 2.1 (see also [14] and [28] for other applications).

Lemma 4.4. a) Assume that (H.1) and (H.2) hold for some (εn)n≥1. Set (un,r)r≤kn
⊂ R such that

(i) ε1/2
n (nνn)−1 (nδn)2 u(1)

n = o (1) , (ii) ε−1/2
n un = o (1) and (iii) (nνn)−1

u(2)
n = o (1) ,

with

un := max
1≤r≤kn

|un,r|, u(1)
n :=

kn∑
r=1

|un,r| and u(2)
n :=

kn∑
r=1

u2
n,r.
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Then, for all η > 0,

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,r

(
N−1

n,rZn,r − 1
)∣∣∣∣∣ ≥ η

)
= −∞.

b) (H.1), (H.2), (H.4) and (H.6) , imply that (C.1) holds for ĉloc
n and ĉglo

n .

c) (H.1) and (H.2) imply that (C.2) holds for ĉglo
n .

Proof. a) By Lemma 4.2 (c) we just need to show that

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,r

(
N−1

n,rZn,r − 1
)∣∣∣∣∣1Bn ≥ η

)
= −∞.

Now, (
N−1

n,rZn,r − 1
)
1Bn,r = N−1

n,rZ
◦
n,r + N−1

n,rβn,r + χn,r,

with

χn,r :=
(
µn,r (Nn,r + 1)−1 − 1

)
1Bn,r .

Hence

ε1/2
n

∣∣∣∣∣
kn∑

r=1

un,r

(
N−1

n,rZn,r − 1
)∣∣∣∣∣ 1Bn

≤ ε1/2
n

∣∣∣∣∣
kn∑

r=1

un,rN
−1
n,rZ

◦
n,r

∣∣∣∣∣1Bn + ε1/2
n

∣∣∣∣∣
kn∑

r=1

un,rN
−1
n,rβn,r

∣∣∣∣∣+ ε1/2
n

∣∣∣∣∣
kn∑

r=1

un,rχn,r

∣∣∣∣∣ .
But, Lemma 4.1 (d) and by (i),

ε1/2
n

∣∣∣∣∣
kn∑

r=1

un,rN
−1
n,rβn,r

∣∣∣∣∣ = O

(
ε1/2

n (nνn)−1 (nδn)2
kn∑

r=1

|un,r|
)

= o (1) .

Moreover, by Lemma 4.2 (b), the fact that, eventually,

max
1≤r≤kn

N−1
n,r

∣∣Z◦
n,r

∣∣1Bn ≤ (1 − bn)−1

(
1 + m−1 max

1≤r≤kn

(Mn,r − mn,r)
)

≤ 2,

and (conditional) Bernstein inequality, we get that there exists A > 0 such that, for all η > 0,

P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,rN
−1
n,rZ

◦
n,r

∣∣∣∣∣1Bn ≥ η | Bn

)

≤ 2 exp

⎛⎝−Aη2 ε−1
n

(
2

kn∑
r=1

u2
n,rE

(
Z◦2

n,r | Nn,r

)
N−2

n,r1Bn + 2η ε−1/2
n un

)−1
⎞⎠

≤ 2 exp
(
−Aη2 ε−1

n

(
(mcnνn)−2 u(2)

n + 2η ε−1/2
n un

)−1
)

.
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Therefore, by (ii) and (iii),

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,r N−1
n,rZ

◦
n,r

∣∣∣∣∣1Bn ≥ η

)

= lim sup
n→∞

εn log E

(
P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,r N−1
n,rZ

◦
n,r

∣∣∣∣∣ 1Bn ≥ η | Bn

))

≤ log (2) − Aη2 lim inf
n→∞

(
(mcnνn)−2

u(2)
n + 2η ε−1/2

n un

)−1

= −∞,

and our last task is to show that

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,rχn,r

∣∣∣∣∣ ≥ η

)
= −∞. (29)

a1) First, we consider case (P).
For all large n and all r ≤ kn,

|χn,r| ≤ (1 − bn,r)
−1

µ−1
n,r

(|Nn,r − µn,r|1Bn,r + 1
)

≤ (1 − bn,r)
−1

bn,r + ((1 − bn,r)µn,r)
−1 ≤ 2bn,r.

Hence, (χn,r − E (χn,r))r≤kn
are independent, centered and eventually bounded by 4bn. Moreover,

V (χn,r) ≤ (1 − bn,r)
−2

µ−2
n,rE

(
(|Nn,r − µn,r| + 1)2

)
≤ (1 − bn,r)

−2 µ−2
n,r

(
E

(
(Nn,r − µn,r)

2
)1/2

+ 1
)2

≤ (1 − bn,r)
−2

µ−2
n,r

(
µ1/2

n,r + 1
)2

≤ (1 − bn)−2
(
1 + (mcnνn)−1/2

)2

(mcnνn)−1 ≤ 2 (mcnνn)−1 eventually.

Therefore, by Bernstein inequality, there exists A > 0

P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,r (χn,r − E (χn,r))

∣∣∣∣∣ ≥ η

)
≤ 2 exp

⎛⎝−A η2ε−1
n

(
kn∑

r=1

u2
n,rV (χn,r) + ηε−1/2

n 4bnun

)−1
⎞⎠

≤ 2 exp
(
−A η2ε−1

n

(
2 (mcnνn)−1

u(2)
n + 4η bn ε−1/2

n un

)−1
)

,

and (ii) and (iii) entail

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,r (χn,r − E (χn,r))

∣∣∣∣∣ ≥ η

)
= −∞. (30)

Moreover, ∣∣∣E((µn,r (Nn,r + 1)−1 − 1
))∣∣∣ = e−µn,r ≤ exp (−mncνn) = o

(
n−1

)
,
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and, using (28), we get∣∣∣E((µn,r (Nn,r + 1)−1 − 1
)
1Bc

n,r

)∣∣∣ ≤ µn,rP
(
Bc

n,r

)
= n−1O

(
(nνn)2 exp

(
−ε−1/2

n (nνn)1/2
))

= o
(
n−1

)
,

thus,
max

1≤r≤kn

|E (χn,r)| = o
(
n−1

)
and

ε1/2
n

∣∣∣∣∣
kn∑

r=1

un,rE (χn,r)

∣∣∣∣∣ = o

(
ε1/2

n n−1
kn∑

r=1

|un,r|
)

= o
(
ε1/2

n n−1knun

)
= o (1) ,

which combined with (30) give the intended result.
a2) In case (E), we will use a coupling argument.

For all n ≥ 1, define a sequence of i.i.d. random vectors
(
(X ′

n,i, Y
′
n,i)
)
i≥1

with (X ′
n,i, Y

′
n,i)i≤n = (Xn,i, Yn,i)i≤n.

Let N ′
n(S)� P (n), be independent of

(
(X ′

n,i, Y
′
n,i)
)

i≥1
, and consider the counting process

N ′
n : D ∈ E ⊗ B (R+

) �→ �
{
i ≤ N ′

n(S) : (X ′
n,i, Y

′
n,i) ∈ D

}
.

It is not hard to see that N ′
n is a Poisson point process with intensity measure defined in (2). Now, set

N ′
n,r = N ′

n (Dn,r) , B′
n,r =

{∣∣N ′
n,r − µn,r

∣∣ ≤ bn,rµn,r

}
,

χ′
n,r =

(
1 − µn,r

(
N ′

n,r + 1
)−1
)
1B′

n,r
and B′

n = ∩
r≤kn

B′
n,r.

Since ∣∣χn,r − χ′
n,r

∣∣ 1Bn∩B′
n
≤ (1 − bn)−2

µ−1
n,r

∣∣N ′
n,r − Nn,r

∣∣ ,
we have, for all large n,∣∣∣∣∣

kn∑
r=1

un,rχn,r

∣∣∣∣∣ 1Bn∩B′
n
≤
∣∣∣∣∣

kn∑
r=1

un,rχ
′
n,r

∣∣∣∣∣+ 2
kn∑

r=1

|un,r|µ−1
n,r

∣∣N ′
n,r − Nn,r

∣∣ . (31)

By (a1),

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

un,rχ
′
n,r

∣∣∣∣∣ ≥ η

)
= −∞. (32)

Moreover, since by Cauchy-Schwarz inequality and (iii),

n−1/2u(1)
n ≤

(
n−1ν−1

n u(2)
n

)1/2

= o (1) ,

we can define a sequence (αn) such that

αn ↑ ∞, n−1/2u(1)
n αn = o (1) and φn := n1/2ε−1/2

n αn ∈ N.

Now, conditionally to N ′
n(S),(∣∣N ′

n,r − Nn,r

∣∣)
1≤r≤kn

�M (|N ′
n(S) − n| ; n−1µn,1, ..., n

−1µn,kn

)
,
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hence, Lemma 4.3 entails,

P

(
ε1/2

n

kn∑
r=1

|un,r|µ−1
n,r

∣∣N ′
n,r − Nn,r

∣∣ ≥ η

)
≤ 2 P

(
kn∑

r=1

an,r Πn,r ≥ η

)
+ P

(
n−1/2ε1/2

n |N ′
n(S) − n| ≥ αn

)
, (33)

where
an,r = ε1/2

n |un,r|µ−1
n,r, and (Πn,r)1≤r≤kn

�
⊗
r≤kn

P (φn n−1µn,r

)
.

Since N ′
n(S) is a sum of n i.i.d P (1) r.v. and αn ↑ ∞, we have

lim sup
n→∞

εn log P

(
n−1/2ε1/2

n |N ′
n(S) − n| ≥ αn

)
= −∞ (34)

(for (εn)n≥1 ≡ 1, this follows by the central limit theorem, for εn ↓ 0 such that nεn → ∞, it holds by [7]
Th. 3-7-1). Moreover, for all large n,

P

(
kn∑

r=1

an,r Πn,r ≥ η

)
≤ exp

(
−ηε−3/2

n u−1
n

) kn∏
r=1

E

(
exp

(
ε−3/2

n u−1
n an,r Πn,r

))
= exp

(
−ηε−3/2

n u−1
n + φn n−1

kn∑
r=1

µn,r

(
exp

(
ε−1

n u−1
n |un,r|µ−1

n,r

)− 1
))

≤ exp

(
−ηε−3/2

n u−1
n + 2φn n−1ε−1

n u−1
n

kn∑
r=1

|un,r|
)

(35)

= exp
(
−ε−3/2

n u−1
n

(
η − 2αn n−1/2u(1)

n

))
≤ exp

(
−2−1η ε−3/2

n u−1
n

)
,

where (35) follows from the facts that

max
1≤r≤kn

ε−1
n u−1

n |un,r|µ−1
n,r = O

(
(nνnεn)−1

)
= o (1) and et − 1 ≤ 2t for small t > 0.

Consequently,
lim sup

n→∞
εn log P

(
kn∑

r=1

an,r Πn,r ≥ η

)
≤ −2−1ηlim inf

n→∞ ε−1/2
n u−1

n = −∞,

which, combined with (33) and (34) lead to

lim sup
n→∞

εn log P

(
ε1/2

n

kn∑
r=1

|un,r|µ−1
n,r

∣∣N ′
n,r − Nn,r

∣∣ ≥ η

)
= −∞. (36)

Finally, Lemma 4.2 (c) yields

lim sup
n→∞

εn log P

(
Bc

n ∪ B
′c
n

)
= −∞, (37)

and (29) follows by (31), (32), (36) and (37).
b) Note that, if ĉn ∈ {ĉloc

n , ĉglo
n

}
, we can write

ε1/2
n

∣∣∣∣∣
kn∑

r=1

wn,r (x)

∣∣∣∣∣ ∣∣∣ĉn (x)−1 − c−1
∣∣∣ = ε1/2

n c

∣∣∣∣∣
kn∑

r=1

un,r (x)
(
N−1

n,r Z∗
n,r − 1

)∣∣∣∣∣ ,
where un,r (x) = wn,r (x) for ĉn = ĉloc

n and un,r (x) = k−1
n

∣∣∣∑kn

s=1 wn,s (x)
∣∣∣ for ĉn = ĉglo

n .
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In both cases, conditions (i) and (ii) of (a) hold respectively by (H.6) and (H.4) and condition (iii) is true by
(H.1) since, here, u

(2)
n ≤ 1. Hence, (a) shows that ĉloc

n and ĉglo
n satisfy (C.1).

c) Using the facts that for a > 0, b > 0, and η > 0,

|a − b| ≥ η ⇒ ∣∣ab−1 − 1
∣∣ ≥ η (a + η)−1

and that for all large n,

k−1
n

∣∣∣∣∣
kn∑

r=1

(
N−1

n,r Z∗
n,r − 1

)∣∣∣∣∣1Bn ≤ 2bn < η (c + η)−1
,

we get that, eventually,

P
(∣∣c − ĉglo

n

∣∣ ≥ η
) ≤ P

(
k−1

n

∣∣∣∣∣
kn∑

r=1

(
N−1

n,r Z∗
n,r − 1

)∣∣∣∣∣ ≥ η (c + η)−1
, Bn

)
+ P (Bc

n)

≤ P (Bc
n) .

Hence, by Lemma 4.2 (c),

lim sup
n→∞

εn log P
(∣∣c − ĉglo

n

∣∣ ≥ η
) ≤ lim sup

n→∞
εn log P (Bc

n) = −∞. �

Lemma 4.5. Assume that (H.1) − (H.6) hold. Then, for all x ∈ F and any η > 0,

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣κn (x)−1
nc
(
f̂n (x, ĉn) − f (x)

)
− Θn (x)

∣∣∣ ≥ η
)

= −∞.

Proof. Since

ε1/2
n

∣∣∣κ−1
n nc

(
f̂ loc

n − f
)
− Θn

∣∣∣1Bn ≤ ε1/2
n

kn∑
r=1

|wn,r| |βn,r|1Bn + κ−1
n nc |fn − f |

≤ 2ε1/2
n (ncδn)2

kn∑
r=1

|wn,r| + ε1/2
n κ−1

n nc |fn − f |

< 2−1η eventually by (H.5) and (H.6) ,

we get that for large n,

lim sup
n→∞

εn log P

(
ε1/2

n

∣∣∣κ−1
n nc

(
f̂ loc

n − f
)
− Θn

∣∣∣ ≥ 2−1η
)
≤ lim sup

n→∞
εn log P (Bc

n) = −∞. (38)

Moreover, since

P

(
ε1/2

n κ−1
n nc

∣∣∣f̂ loc
n − f̂n

∣∣∣ ≥ 2−1η
)

= P

(
cε1/2

n

∣∣∣∣∣
kn∑

r=1

wn,r

∣∣∣∣∣ ∣∣∣(ĉloc
n

)−1 − ĉ−1
n

∣∣∣ ≥ 2−1η

)

≤ P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

wn,r

∣∣∣∣∣ ∣∣∣(ĉloc
n

)−1 − c−1
∣∣∣ ≥ 4−1ηc−1

)

+ P

(
ε1/2

n

∣∣∣∣∣
kn∑

r=1

wn,r

∣∣∣∣∣ ∣∣ĉ−1
n − c−1

∣∣ ≥ 4−1ηc−1

)
,
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Lemma 4.4 b), (C.1) and [7] Lemma 1-2-15 entail

lim sup
n→∞

εn log P

(
ε1/2

n κ−1
n nc

∣∣∣f̂ loc
n − f̂n

∣∣∣ ≥ 2−1η
)

= −∞. (39)

Finally, since

P

(
ε1/2

n

∣∣∣κ−1
n nc

(
f̂n − f

)
− Θn

∣∣∣ ≥ η
)

≤ P

(
ε1/2

n κ−1
n nc

∣∣∣f̂ loc
n − f̂n

∣∣∣ ≥ 2−1η
)

+ P

(
ε1/2

n

∣∣∣κ−1
n nc

(
f̂ loc

n − f
)
− Θn

∣∣∣ ≥ 2−1η
)

,

we get the intended result by (38), (39) and [7] Lemma 1-2-15. �

Proof of Theorem 2.1. By Corollary 4.1 (a), Lemma 4.5 and [3] Theorem 4-1, we get that

{
κn (xj)

−1
nc
(
f̂n (xj , ĉ1,n) − f (xj)

)
: 1 ≤ j ≤ p

}
→
D

N
(
0, Σ(x1,...xp)

)
,

which, combined with the fact that, ĉ2,n
P→ c by (C.2), gives the intended result. �

Proof of Theorem 2.2. i) Corollary 4.1 (b), Lemma 4.5 and [7] Theorem 4-2-13, entail that the result hold for
ĉ2,n = c.
ii) In the general case, for all x ∈ F , set

Dn = nκ−1
n (ĉ2,n − c)

(
f̂n − f

)
.

By (i) and [7] Theorem 4-2-13, we just have to show that for all x ∈ F and any η > 0,

lim sup
n→∞

εn log
(

P

(
ε1/2

n |Dn| ≥ η
))

= −∞.

To this aim, note that, for all δ > 0,

P

(
ε1/2

n |Dn| ≥ η
)
≤ P (|ĉ2,n − c| > δc) + P

(
ε1/2

n nκ−1
n c

∣∣∣f̂n ( . , ĉ1,n) − f
∣∣∣ ≥ ηδ−1

)
.

Therefore, by (C.2), [7] Lemma 1-2-15, and (i),

lim sup
n→∞

εn log
(

P

(
ε1/2

n |Dn| ≥ η
))

≤ −2−1η2δ−2,

and we conclude by letting δ ↓ 0. �
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4.2. Proofs of the results of Section 3

Proofs of Theorems 3.1 and 3.2. a) For all x∈F , we just verify (H.3)−(H.6) for κn,r (x) := kn

∫
In,r

Kn (x, t) ν (dt).
By (K.2),

kn∑
r=1

κn,r (x1)κn,r (x2) = k2
n

kn∑
r=1

∫
In,r

∫
In,r

Kn(x1, s)Kn(x2, t)ν (ds) ν (dt)

= kn 〈Kn(x1, . ), Kn(x2, . )〉2

+ k2
n

kn∑
r=1

∫
In,r

∫
In,r

Kn(x2, t) (Kn(x1, s) − Kn(x1, t)) ν (dt) ν (ds)

= kn 〈Kn(x1, . ), Kn(x2, . )〉2 + knO

(
kn∑

r=1

Γn (x1)
∫

In,r

|Kn(x2, t)| ν (dt)

)
= kn [〈Kn(x1, . ), Kn(x2, . )〉2 + o (‖Kn(x1, . )‖2 ‖Kn(x2, . )‖2)] .

Hence,
κn (x) = k1/2

n ‖Kn(x, . )‖2 (1 + o (1)) , (40)

and (K.3) entails,
kn∑

r=1

wn,r (x1)wn,r (x2) = σ(x1, x2) + o (1) ,

which is (H.3). Now, (40) entails for all large n,

ε−1/2
n max

1≤r≤kn

|wn,r(x)| ≤ 2 (εnkn)−1/2 ‖Kn(x, . )‖−1
2 kn max

1≤r≤kn

∣∣∣∣∣
∫

In,r

Kn(t, x)ν (dt)

∣∣∣∣∣
≤ 2 (εnkn)−1/2 ‖Kn(x, . )‖−1

2 ‖Kn(x, . )‖E = o (1) by (K.4) ,

i.e. (H.4) holds. In order to show (H.5), note that using (40) again, Fubini Theorem (which holds by (K.1))
and the triangle inequality yield

ε1/2
n nκn(x)−1

∣∣∣∣∣
kn∑

r=1

νn,rκn,r(x)fn,r − f(x)

∣∣∣∣∣
= ε1/2

n nκn(x)−1

∣∣∣∣∣
kn∑

r=1

kn

∫
In,r×In,r

Kn (x, t) f (s) ν (dt) ν (ds) − f(x)

∣∣∣∣∣
≤ ε1/2

n nκn(x)−1 (Ξn (x) + Ψn (x))

= O
(
ε1/2

n nk−1/2
n ‖Kn(x, . )‖−1

2 (Ξn (x) + Ψn (x))
)

= o (1) by (K.5) .

Finally, we show that (H.6) holds.

ε1/2
n (nδn)2

kn∑
r=1

|wn,r(x)| = O

(
ε1/2

n

(
nk−1

n ∆n

)2
k−1/2

n ‖Kn(x, . )‖−1
2

kn∑
r=1

kn

∣∣∣∣∣
∫

In,r

Kn(t, x)ν (dt)

∣∣∣∣∣
)

= O
(
ε1/2

n n2k−3/2
n ‖Kn(x, . )‖−1

2 ‖Kn(x, . )‖1 ∆2
n

)
= o (1) by (K.6) .
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b) For all x ∈ F , it is easy to see that

n

κn(x)

∣∣∣f̂n(x) − f̃n(x)
∣∣∣ ≤ 4Mnk−1/2

n ‖Kn(x, . )‖−1
2

(
kn∑

r=1

∫
In,r

(Kn(x, t) − Kn(x, xn,r)) ν (dt)

)
= o (1) by (K.7) ,

which, combined with (a), gives the intended result by standard arguments. �

It is easy to see that, for all x ∈ F ,

Ξn (x) ≤ ‖Kn(x, . )‖1 ∆n. (41)

Nevertheless, under regularity conditions, tighter bounds are possible for Ξn (x):

Lemma 4.6. Let E = [0, 1]d (d ∈ N
∗), ν be the Lebesgue measure on E and {In,r : 1 ≤ r ≤ kn} be a partition

of E such that In,r =
∏d

j=1 Jn,r,j where the Jn,r,j are interval of [0, 1] of length k
−1/d
n . Assume that f is in

C2 (E). Then,

Ξn (x) = O

((
‖Kn(x, . )‖1 +

kn∑
r=1

Γn,r (x)

)
k−2/d

n

)
. (42)

Proof. Denote by xn,r the center of the cell In,r. Since f is C2, the multivariate Taylor formula yields:

max
r≤kn

max
s∈In,r

∣∣f (s) − f (xn,r) − 〈f ′ (xn,r) , s − xn,r〉Rd

∣∣ = O

(
max
r≤kn

max
s∈In,r

‖s − xn,r‖2
Rd

)
= O

(
k−2/d

n

)
.

Moreover, ∫
In,r

〈f ′ (xn,r) , s − xn,r〉Rd ds = 0.

Hence we get

max
r≤kn

∫
In,r

(f (s) − f (xn,r)) ds = O
(
k−(d+2)/d

n

)
.

Now, the triangle inequality entails

Ξn (x) ≤ kn

∣∣∣∣∣
kn∑

r=1

∫
In,r

Kn (x, t)

(∫
In,r

(f (s) − f(xn,r)) ds

)
dt

∣∣∣∣∣
+

∣∣∣∣∣
kn∑

r=1

∫
In,r

Kn (x, t) (f (t) − f(xn,r)) dt

∣∣∣∣∣
= O

(
‖Kn(x, . )‖1 k−2/d

n

)
+

∣∣∣∣∣
kn∑

r=1

∫
In,r

Kn (x, t) 〈f ′ (xn,r) , t − xn,r〉Rd dt

∣∣∣∣∣
= O

(
‖Kn(x, . )‖1 k−2/d

n

)
+

∣∣∣∣∣
kn∑

r=1

∫
In,r

(Kn (x, t) − Kn (x, xn,r)) 〈f ′ (xn,r) , t − xn,r〉Rd dt

∣∣∣∣∣
= O

(
‖Kn(x, . )‖1 k−2/d

n +
kn∑

r=1

Γn,r (x)
∫

In,r

‖t − xn,r‖Rd dt

)
. �
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Proof of Corollaries 3.1 and 3.2. We just verify the assumptions of Theorems 3.1 and 3.2 with Kn = KPR
n .

Set x ∈ F and note that, by our assumptions on f and K,

∆n (x) = O
(
k−α/d

n

)
, Ξn (x) = O

(
k−α/d

n

)
(by ()) ,

‖Kn(x, . )‖1 =
∫

h−1
n (x−E)

K(u)du = 1 + o (1) , (43)

and ‖Kn(x, . )‖2 = h
−d

2
n

(∫
h−1

n (x−E)

K2(u)du

)1/2

= h
−d

2
n ‖K‖2 (1 + o (1)) . (44)

Moreover, for ε > 0 such that

(t − ε, t + ε) ⊂ E,

we have

Ψn (x) = h−d
n

∣∣∣∣∫
E

K
(
h−1

n (x − t)
)

(f (t) − f (x)) dt

∣∣∣∣
=

∣∣∣∣∣
∫

h−1
n (x−E)

K (u) (f (x − hnu) − f (x)) du

∣∣∣∣∣
≤
∣∣∣∣∣
∫
‖u‖

Rd≤εh−1
n

K (u) (f (x − hnu) − f (x)) du

∣∣∣∣∣
+ ‖f‖E

∣∣∣∣∣
∫
‖u‖

Rd>εh−1
n

(
εh−1

n

)−α ‖u‖α
Rd K (u) du

∣∣∣∣∣
= O (hα

n) . (45)

To verify (H.2), note that

nk−1
n ∆n = O

(
nk−(1+α/d)

n

)
= O

((
nk−1/2

n hα+d/2
n ε1/2

n

) (
hd

nknεn

)−( 1
2+ α

d )
εα/d

n

)
= o (1) .

(K.2) follows from the fact that

kn∑
r=1

Γn,r (x1)
∫

In,r

|Kn(x2, t)| dt ≤ max
r≤kn

Γn,r (x1)

= O
(
h−d

n

(
hd

nkn

)−α/d
)

= o
(
h−d

n

)
= o (‖Kn(x1, . )‖2 ‖Kn(x2, . )‖2) .

To check (K.3), observe that, for all fixed u ∈ R
d, and all x1 �= x2,

K (u)K
(
u + h−1

n (x1 − x2)
)

= o (1) .
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Hence, by dominated convergence,

〈Kn(x1, . ), Kn(x2, . )〉2 (‖Kn(x1, . )‖2 ‖Kn(x2, . )‖2)
−1

= O

(∫
Rd

K (u)K
(
u + h−1

n (x1 − x2)
)
du

)
= o (1) .

For (K.4), note that,

ε−1/2
n k−1/2

n ‖Kn(x, . )‖−1
2 ‖Kn(x, . )‖E = ε−1/2

n k−1/2
n h−d/2

n ‖K‖−1
2 ‖K‖E = o (1)

with (ii). (K.5) follows by (iii) since

nk−1/2
n ε1/2

n ‖Kn(x, . )‖−1
2 max (Ψn (x) ; Ξn (x)) = O

(
nk−1/2

n hα+d/2
n ε1/2

n

)
.

Finally, (K.6) follows by (ii) and (iii) since

nk−3/4
n ε1/4

n ‖Kn(x, . )‖−1/2
2 ‖Kn(x, . )‖1/2

1 ∆n = (knεn)−1/4 (
hd

nkn

)−α/d
O
(
nk−1/2

n hα+d/2
n ε1/2

n

)
.

�
Proof of Corollary 3.3. We just have to verify the assumptions of Theorem 3.1 with Kn = KPR

n , F = (0, 1) and
Σ(x1,...,xp) = ‖K‖2

2 Ip.
For h−1

n (x − t) ∈ Dc, denote by K ′
n (x, t) and K ′′

n (x, t) the first and second derivative of Kn with respect to t.
Set for all x ∈ (0, 1),

Rn (x) =
{
r ≤ kn : D ∩ (h−1

n (x − In,r)
) �= ∅} .

a) (K.1) holds trivialy and assumption (i) gives (H.1) . To show (H.2), note that since f is in C2 (E), (ii) and (iii)
yield

nk−1
n ∆n = O

(
nk−2

n

)
= O

((
nk−7/4

n h1/4
n

)
(knhn)−1/4

)
= o (1) .

(K.2) , (K.3) and (K.4) can be verified as in the proof of Corollary 3.1. We now consider (K.5). Observe that

kn∑
r=1

Γn,r (x) =
∑

r∈Rn(x)

Γn,r (x) +
∑

r/∈Rn(x)

Γn,r (x)

= �Rn (x) O
(
h−1

n

)
+

∑
r/∈Rn(x)

sup
{∣∣∣∣∫ t

s

K ′
n (x, u) du

∣∣∣∣ : (s, t) ∈ In,r × In,r

}

≤ O
(
h−1

n

)
+
∫ 1

0

|K ′
n (x, u)| du = O

(
h−1

n

)
+ h−1

n

∫ h−1
n x

h−1
n (x−1)

|K ′ (t)| dt

= O
(
h−1

n

)
. (46)

Hence, by (46, Lemma 4.6 and (43),
Ξn (x) = O

(
h−1

n k−2
n

)
. (47)

Moreover, proceeding as in (45) and using Taylor formula with (14) we get,

Ψn (x) ≤ h2
n ‖f ′′‖E

∫
|u|≤εh−1

n

u2K (u) du + h2
n ε−2 ‖f‖E

∫
|u|>εh−1

n

u2K (u) du

= O
(
h2

n

)
. (48)
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Now, using (48) and (47) we obtain, by (iv),

nk−1/2
n ‖Kn(x, . )‖−1

2 max (Ψn (x) ; Ξn (x)) = O
(
nk−1/2

n h1/2
n max

(
h2

n, h−1
n k−2

n

))
= o (1) .

Finally, the fact that, by (iii),

nk−3/4
n ‖Kn(x, . )‖−1/2

2 ‖Kn(x, . )‖1/2
1 ∆n ≤ nk−7/4

n h1/4
n = o (1) ,

yields (K.6).
b) Since K is 1-Lipschitzian,

∑
r∈Rn(x)

∣∣∣∣∣
∫

In,r

(Kn (x, t) − Kn (x, xn,r)) dt

∣∣∣∣∣ = �Rn (x) O
(
(hnkn)−2

)
= O

(
(hnkn)−2

)
. (49)

Now, take r /∈ Rn (x). Using Taylor formula, we get that

|Kn (x, t) − Kn (x, xn,r) − (t − xn,r)K ′
n (x, xn,r)| = 2−1

∣∣∣∣∣
∫ max(xn,r;t)

min(xn,r;t)

(u − xn,r)K ′′
n (x, u) du

∣∣∣∣∣
≤
∫

In,r

|u − xn,r| |K ′′
n (x, u)| du

≤ k−1
n

∫
In,r

|K ′′
n (x, u)| du,

which, combined with the fact that xn,r is the center of In,r, leads to∣∣∣∣∣
∫

In,r

(Kn (x, t) − Kn (x, xn,r)) dt

∣∣∣∣∣ ≤
∫

In,r

|Kn (x, t) − Kn (x, xn,r) − (t − xn,r)K ′
n (x, xn,r)| dt

+

∣∣∣∣∣K ′
n (x, xn,r)

∫
In,r

(t − xn,r) dt

∣∣∣∣∣
≤ k−2

n

∫
In,r

|K ′′
n (x, u)| du,

and finally entails that,∣∣∣∣∣∣
∑

r/∈Rn(x)

∫
In,r

(Kn (x, t) − Kn (x, xn,r)) dt

∣∣∣∣∣∣ ≤ k−2
n

∫
E

|K ′′
n (x, u)| du

= O
(
(hnkn)−2

)
, (50)

where we have used the fact that∫
E

|K ′′
n (x, u)| du = h−3

n

∫
E

∣∣K ′′ (h−1
n (x − u)

)∣∣du

= h−2
n

∫
h−1

n (x−E)

|K ′′ (t)| dt = O
(
h−2

n

)
.
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Now, by (44), (49), (50), we obtain that

nk−1/2
n ‖Kn(x, . )‖−1

2

∣∣∣∣∣
kn∑

r=1

∫
In,r

(Kn (x, t) − Kn (x, xn,r)) dt

∣∣∣∣∣ =

O
(
nk−1/2

n h1/2
n (hnkn)−2

)
= O

(
nk−5/2

n h−3/2
n

)
,

and (K.7) follows by (vi). �
Proof of Corollary 3.4. We verify the assumptions of Theorem 3.1 with Kn = KD

n . In what follows, the first
and second derivative of Kn (x, t) with respect to t are denoted by K ′

n (x, t) and K ′′
n (x, t).

a) (K.1) holds trivialy. Assumptions (i) is (H.1). Since

nk−2
n =

(
nl−1/4

n k−7/4
n

) (
k−1

n ln
)1/4

(H.2) follows by (ii) and (v). In order to verify (K.2)–(K.6) we will use the following well known facts (see
e.g. [32])

‖Kn(x, . )‖E = 1 + ln, ‖Kn(x, . )‖2 = (1 + ln)1/2
, ‖Kn(x, . )‖1 = O (log (ln)) , (51)

〈Kn(x1, . ), Kn(x2, . )〉2 = Kn(x1, x2) = o (ln) for x1 �= x2, (52)∫ 1

0

|K ′
n (x, t)|dt = O (ln log (ln)) , (53)∫ 1

0

|K ′′
n (x, t)| dt = O

(
l2n log (ln)

)
. (54)

Since f is C2, and taking into account of f(0) = f(1) and f ′(0) = f ′(1), a double integration by parts yields
that there exists a bounded sequence (αj)j≥1, such that∫ 1

0

f (t) ej (t) dt = αj j−2

∫ 1

0

f ′′ (t) ej (t) dt.

Hence, using Cauchy Schwarz inequality, we get

Ψn (x) =

∣∣∣∣∣∣
∑
j>ln

αj j−2

∫ 1

0

f ′′ (t) ej (t) dt ej (x)

∣∣∣∣∣∣
= O

⎛⎝∑
j>ln

j−4

⎞⎠1/2⎛⎝∑
j>ln

(∫ 1

0

f ′′ (t) ej (t) dt

)2
⎞⎠1/2

= o
(
l−3/2
n

)
. (55)

Since max
j≥1

j−1
∥∥e′j∥∥E

= O (1), the Taylor formula gives

max
1≤r≤kn

Γn,r (x) ≤ max
1≤r≤kn

ln∑
j=0

|ej(x)| sup {ej(t) − ej(s) : (s, t) ∈ In,r × In,r}

= O

⎛⎝k−1
n

ln∑
j=0

j

⎞⎠ = O
(
k−1

n l2n
)
. (56)
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By (53), we get

kn∑
r=1

Γn,r (x) =
kn∑

r=1

sup
{∣∣∣∣∫ t

s

K ′
n (x, u) du

∣∣∣∣ : (s, t) ∈ In,r × In,r

}

≤
∫ 1

0

|K ′
n (x, u)|du = O (ln log (ln)) .

Therefore, Lemma 4.6 entails
Ξn (x) = O

(
k−2

n ln log (ln)
)
. (57)

To verify (K.2), observe that by (51), (56) and (ii),

kn∑
r=1

Γn,r (x1)
∫

In,r

|Kn(x2, t)| dt ≤ ‖Kn(x2, . )‖1 max
1≤r≤kn

Γn,r (x1)

= O
(
k−1

n l2n log (ln)
)

= o (ln) = o (‖Kn(x1, . )‖2 ‖Kn(x2, . )‖2) .

(K.3) follows by (51) and (52). (K.4) holds by (51) and (ii).
In order to check (K.5), observe that (51), (55, (57), (iii) and (iv) yield

nk−1/2
n ‖Kn(x, . )‖−1

2 max (Ψn (x) ; Ξn (x)) = O
(
nk−1/2

n l−1/2
n max

(
l−3/2
n ; k−2

n ln log (ln)
))

= o (1) .

Finally, (51) and (v) give (K.6).
b) It is readily seen that (iv’) implies (iv). Moreover, since

nl−1/4
n k−7/4

n log (ln)1/2 = k−1/4
n

(
nk−1/2

n l−2
n

)1/2 (
nk−5/2

n l3/2
n log (ln)

)1/2

we get that (iv’) and (iii) imply (v). Therefore (K.2)–(K.6) holds by a). To verify (K.7), note that, by Taylor
formula, and since xn,r is the center of In,r, we get∣∣∣∣∣

∫
In,r

(Kn (x, t) − Kn (x, xn,r)) dt

∣∣∣∣∣ = 2−1

∣∣∣∣∣
∫

In,r

(∫ max(xn,r;t)

min(xn,r;t)

(u − xn,r)K ′′
n (x, u) du

)
dt

∣∣∣∣∣
≤
∫

In,r

(∫
In,r

|u − xn,r| |K ′′
n (x, u)| du

)
dt

≤ k−2
n

∫
In,r

|K ′′
n (x, u)| du.

This and (54) entails ∣∣∣∣∣
kn∑

r=1

∫
In,r

(Kn (x, t) − Kn (x, xn,r)) dt

∣∣∣∣∣ ≤ k−2
n

∫ 1

0

∣∣∣K ′′
n (x, t)

∣∣∣ dt.

= O
(
k−2

n l2n log (ln)
)
,

which, combined with (iv’) gives the result. �
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5. Appendix: Limit theorems for conditionally independent random sum

This part is devoted to provide general results about the central limit property and the moderate deviations
principle of a sequence of random R

p valued vectors which have been used in our proofs (see also [14] and [28]).
Consider a triangular array (ζn,r)r≤kn

of real valued random variables defined on a common probability space
(Ω,A, P) and set, for n ≥ 1,

θn =
kn∑

r=1

Wn,rζn,r,

where (Wn,r)r≤kn
⊂ R

p. In the following, for all u ∈ R
p, we set

wn,r (u) = 〈Wn,r, u〉2Rd and θn (u) =
kn∑

r=1

Wn,r (u) ζn,r.

In order to state central limit theorem and moderate deviations principle for (θn) we consider a sequence
(εn)n≥1 ⊂ R

+ such that (εn)n≥1 ≡ 1 or εn ↓ 0 and we assume:

(A.1) kn →
n→∞ 0 and ε

−1/2
n wn (u) →

n→∞ 0 where wn (u) := maxr≤kn |wn,r (u)| .
(A.2) There exists a covariance matrix Σ in R

p such that for all u ∈ R
p,

kn∑
r=1

w2
n,r (u) →

n→∞
tuΣu := σ2 (u) .

(A.3) For all n ≥ 1, (ζn,r)r≤kn
are independent conditionally to a sigma field Bn ⊂ A.

For all n ≥ 1, there exists a set Bn ∈ Bn such that:

(A.4) lim sup
n→∞

εn log P (Bc
n) = −∞.

(A.5) For all r ≤ kn, E (ζn,r | Bn) 1Bn = 0 a.s.

(A.6) For some sequence ηn ↓ 0, max
1≤r≤kn

∣∣E (ζ2
n,r | Bn

)− 1
∣∣ 1Bn ≤ ηn a.s.

(A.7) For some real K7 > 0, lim sup
n→∞

max
1≤r≤kn

E

(
|ζn,r|3 | Bn

)
1Bn < K7 a.s.

(A.8) For some real K8 > 0, lim sup
n→∞

max
l≥3

max
1≤r≤kn

(
1
l!

)1/l
E

(
|ζn,r|l | Bn

)1/l

1Bn < K8 a.s.

We are now in position to express the main results of this section:

Theorem 5.1. If assumptions (A.1)–(A.7) hold with εn = 1, then θn →
D

N (0, Σ).

Proof. For all u in R
p, set

σ2
n (u) :=

(
kn∑

r=1

w2
n,r (u) E

(
ζ2
n,r | Bn

))
and τn (u) :=

kn∑
r=1

|wn,r (u)|3 E

(
|ζn,r|3 | Bn

)
.

By the Berry Esseen Theorem (see [30] Th. 5.4) we get for an universal constant C1:

sup
x∈R

∣∣P (σ−1
n (u) θn (u) ≤ x | Bn

)− Φ (x)
∣∣1Bn ≤ C1E

(
σ−3

n (u) τn (u) | Bn

)
1Bn
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where Φ denotes the standard normal distribution function. Now, by (A.2) and (A.6),

∣∣∣σ2
n (u) − σ (u)2

∣∣∣ 1Bn ≤
∣∣∣∣∣

kn∑
r=1

w2
n,r (u) − σ2 (u)

∣∣∣∣∣+ ηn

kn∑
r=1

w2
n,r (u) = o (1) .

In particular, for some real sequence γn ↓ 0,

σn (u)1Bn ∈ [(1 − γn)σ (u)1Bn , (1 + γn)σ (u)1Bn ] . (58)

Moreover, by (A.7),

τn (u)1Bn ≤ wn (u)K7

kn∑
r=1

w2
n,r (u) .

Hence, for some C2 all n ≥ 1 and all x ∈ R,∣∣P (σ−1
n (u) θn (u) ≤ x | Bn

)− Φ (x)
∣∣1Bn ≤ C2wn (u)

and σ−1
n (u) θn (u) →

D
N (0, 1), since

∣∣P (σ−1
n (u) θn (u) ≤ x

)− Φ (x)
∣∣≤ ∣∣P (σ−1

n (u) θn (u) ≤ x; Bn

)− Φ (x) P (Bn)
∣∣+ P (Bc

n)

≤ E
(∣∣P (σ−1

n (u) θn (u) ≤ x | Bn

)− Φ (x)
∣∣1Bn

)
+ P (Bc

n)

≤ C2wn (u) + P (Bc
n) = o (1) by (A.2) and (A.4) .

Moreover, by (58), σn (u) P→ σ (u) and we get the result by [3] Theorems 4-1 and 7-7. �

In order to deal with moderate deviation principle we assume that Σ is regular and we define

I : s ∈ R
p �→ 2−1 ts Σ−1s.

Theorem 5.2. Assume that Σ is regular and (A.1)–(A.8) hold for εn ↓ 0. Then,
(
ε
1/2
n θn

)
∈ LDP (εn, I).

Proof. Using the conditional independance of (ζn,r)r≤kn
and (A.5), we get that

E

(
exp

(
ε−1/2

n θn (u)1Bn

)
| Bn

)
= 1Bc

n
+
∏

r≤kn

(
1 + 2−1ε−1

n w2
n,r (u) (1 + Γn,r (u))

)
1Bn ,

where

Γn,r (u) :=

⎛⎝E
(
ζ2
n,r | Bn

)− 1 + 2
∑
l≥3

(l!)−1
(
ε−1/2

n wn,r (u)
)l−2

E
(
ζl
n,r | Bn

)⎞⎠1Bn .

Now, for all large n, (A.6) and (A.8) lead to

max
r≤kn

|Γn,r (u)| ≤ ηn + 2K2
8

∑
l≥3

∣∣∣K8 ε−1/2
n wn,r (u)

∣∣∣l−2

≤ ηn + 4K3
8 ε−1/2

n wn (u) := γn (u) = o (1) .
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Hence,

E

(
exp

(
ε−1/2

n θn (u)1Bn

))
≥ E

⎛⎝1Bc
n

+

⎛⎝ ∏
r≤kn

(
1 + 2−1ε−1

n w2
n,r (u) (1 − γn (u))

)⎞⎠1Bn

⎞⎠
≥ P (Bn)

∏
r≤kn

(
1 + 2−1ε−1

n w2
n,r (u) (1 − γn (u))

)
,

E

(
exp

(
ε−1/2

n θn (u)1Bn

))
≤ E

⎛⎝1Bc
n

+

⎛⎝ ∏
r≤kn

(
1 + 2−1ε−1

n w2
n,r (u) (1 + γn (u))

)⎞⎠1Bn

⎞⎠
≤ P (Bc

n) +
∏

r≤kn

(
1 + 2−1ε−1

n w2
n,r (u) (1 + γn (u))

)
,

and, therefore,
ln,1 (u) ≤ εn log E

(
exp

(
ε−1/2

n θn (u)1Bn

))
≤ ln,2 (u) (59)

with
ln,1 (u) = εn log P (Bn) +

∑
r≤kn

εn log
(
1 + 2−1ε−1

n w2
n,r (u) (1 − γn (u))

)
and

ln,2 (u) = εn log

⎛⎝P (Bc
n) +

∏
r≤kn

(
1 + 2−1ε−1

n w2
n,r (u) (1 + γn (u))

)⎞⎠ .

Now, using (59) and Taylor expension we get,

lim
n→∞εn log E

(
exp

(
ε−1/2

n θn (u)1Bn

))
= 2−1 tuΣu,

hence, by the Gartner-Ellis Theorem (see [7] Th. 2-3-6),
(
ε
1/2
n θn1Bn

)
n≥1

∈ LDP (εn, I).

Finally, since, for all η > 0,

lim sup
n→∞

εn log P

(
ε1/2

n ‖θn − θn1Bn‖Rp ≥ η
)
≤ lim sup

n→∞
εn log P (Bc

n) = −∞,

we get the intended result by [7] Theorem 4-2-21. �
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