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STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY PROCESSES
GENERATED BY DIVERGENCE FORM OPERATORS II: CONVERGENCE
RESULTS *

ANTOINE LEJAY!

Abstract. We have seen in a previous article how the theory of “rough paths” allows us to construct
solutions of differential equations driven by processes generated by divergence form operators. In this
article, we study a convergence criterion which implies that one can interchange the integral with
the limit of a family of stochastic processes generated by divergence form operators. As a corollary,
we identify stochastic integrals constructed with the theory of rough paths with Stratonovich or It6
integrals already constructed for stochastic processes generated by divergence form operators by using
time-reversal techniques.
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1. INTRODUCTION

In [22], we have seen how the theory of rough paths developed in [28] (see also [21,23,26]) could be used to
prove the pathwise existence of stochastic integrals of type

N t
Zy =2+ Z/ gi(X,)dX}? (1)
i=170

and solutions of the Stochastic Differential Equations (SDE) of type

N t
vi=uty /0 fi(Y) dXi (2)
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provided that f and g are smooth enough, where X = (X*,..., X%) is the stochastic process generated by a
divergence form operator of type

N

L—Zéj(,ja )+Zb 3)

1,7=1

for a measurable function a taking its values in the space of symmetric N x N-matrix and a measurable function
b from RY to R. Here, a and b are bounded and a is uniformly elliptic, but ¢ and b are not assumed to be
continuous.

Let us denote by K the map giving Z from X in (1), and J the map giving ¥ from X in (2). Since in our case
X has the same regularity properties of the Brownian motion’s trajectories, the maps K and J are not functions
of X, but functions of a pair X = (X!, X?) called a rough path or a multiplicative functional. This path X is
a function from [0,7] with values in ng)(RN ) = RY @ RY @ RY where X} = X; and X? takes its values in
RY @ RY. On the space ng) (RM) = RY @ RN @ RV in which X lives, we introduce the gauge'

Il = max{lx'], v/B2J}, x = (x!,x2), x! € RY, x? e RN g RY,

where the norm on RY @ RY is such that |z ®y| < |z|-|y| for all z,y € RY. This space TgQ)(RN) is a sub-group
of the non-commutative Lie group T(?) (R™) with the tensor product ® as group operation. For a rough path
X, its increment between time s and t is X, ; = X;! ® X; where x® y = (x! + y', x> + y2 + x! ® y') and
x = (—x!,—x? —xt ®x!) for x,y in T§2)(RN).

The maps £ and J are continuous on the set of rough paths when one uses, for a € [2,3), the topology V*

generated by the norm
[X]lye = sup ] |Xe¢| 4+ Varg, jo,7(X)

te[0,T
where

k—1 1/«
Va'ra,[O,T] (X) = ( Z |Xtigti+1|a) . (4)

partition 0<t1< <tk<T 1

The quantity Var,, 0,77 X is the a-variation of X. The choice of the range of o depends on the regularity of the
trajectories of X (a function which is 3-Holder continuous is of finite 3~ !-variation).
In [22], we have shown that if (X,P,) is the process generated by L given by (3), one can use for X the

process t — (X}, Ké’é(X))i,j:LwN, where K;% (X) is either

t t
K00 = [ 060 = X0 0dx] or K300 = [ (] - X)X,
These integrals are defined using the forward-backward martingales decomposition (or Lyons-Zheng decompo-
sition) of X, as constructed by Rozkosz [31] and Lyons and Stoica [27]. In addition to have proved that X is
of finite a-variation under P, for any starting point z, we also established a result of type Wong-Zakai. Let us
note that in a recent article [13], Friz and Victoir have dealt with the same problem in a completely different
way, using Dirichlet forms (see also Sect. 3.5.2).
Let us consider a family (X, K(X¢)).>o where X¢ is generated by a divergence form operator

N
e __ 18 5
L Z§£< w)

1,j=1

1t can be think as a norm, but does not satisfy [Ax| = || - |x| for A € R, x € TSQ)(]RN). Instead, it satisfies [0 (x)| = |A| - |x],
where J is the dilatation of parameter A: §y(x) = (Ax', A2x2). In addition, |x ® y| < 2(|x| + |y|) for all x, y in ng)(]RN).
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for which the uniform ellipticity and boundedness constants of a® and b® are uniform in e. If (X).50 converges
uniformly in distribution to X, what can be said on the convergence of (X¢, K(X¢))c>0 in V*? In particular,
does (K (X¢))e>0 converge to K(X)? If true, the continuity of the maps & and J implies the convergence of
the stochastic integrals and solutions of SDEs driven by X* to the same stochastic integral and solution of SDE
where X is replaced by X.

Using the results in [20,24], one can construct examples — when the coefficients are smooth and X¢ is then
solution to some SDE — giving a negative answer to this question if we drop the assumption that the drift b° is
uniformly bounded in . For this, we use the homogenization theory, which allows us to study the asymptotic
behavior as & decreases to 0 of X¢ when a° = a(-/¢) and b° = 1b(-/¢) for some a and b that are periodic (see
for example [3,15] among many references).

However, the results of [20,24] were developed for processes generated by non-divergence operators. If we

use these results on the processes X¢ generated by divergence form operators Zgjzl 10z, (aij(-/€)0s,) with a
periodic, smooth function a, we get that K (X¢) converges in distribution to K (X) when Stratonovich integrals
are used, where X is the process generated by a divergence form operator ij:l % s (aﬁgé)zj ). The coefficient
is a constant matrix that catches the large scale behavior of the process X¢. Indeed, X°¢ is equal in
hj=1 3
theory consists in proving a functional Central Limit theorem. Using the results in [13] and some analytical
convergence results of [5], we prove the convergence results of the rough path lying above X¢ even if the
coefficients are not assumed to be continuous.

Still with the homogenization theory, we get that the brackets of the martingales parts of X does not
necessarily converge to the brackets of the martingale part of X. Hence, when one uses for K(X¢) and K (X)
the Itd integrals, then K (X°¢) does not converge to K(X), but to ¢t — Ko +(X) + ct for some constant, N x N-
symmetric matrix c.

In the case of divergence-form operators without drift, the homogenization theory does not give a counter-
example of the convergence of the iterated integrals to the iterated integrals of the limit in the Stratonovich
case. We have been unable to find a sequence (X¢)c>o such that (K(X¢))sso does not converge to K(X)
in the Stratonovich case when X¢ converges in distribution to X. Yet we give a natural sufficient (but not
necessary!) condition to ensure that (K (X¢)).so converges to K (X) (whatever the type of the integrals), which
turns out to be Condition UTD introduced by Coquet, Rozkosz and Stominski in [9,33]. This condition implies
that, given a family of Dirichlet processes converging to a Dirichlet process, their martingale parts and their
zero-quadratic variation parts also converge jointly the the corresponding parts of the limiting process. In the
context of semi-martingales seen as rough paths, the equivalent criterion is Condition UT (see for example [16]),
as seen in [8]. From the heuristic point of view, this may be understood with the notion of (p, ¢)-rough paths
defined in [25], although the results in this last article cannot be applied directly in our case. The basic idea
is that the limit of K(X¢) may not correspond to K(X) when the part of finite or zero-quadratic variation
“contributes” to the martingale part of the limit. In our homogenization example, the sequence (X¢) does not
satisfy Condition UTD.

In Section 4, we prove the continuity of £(X) = [ ¢(X,)dX, with respect to g. Although this continuity
follows easily from the very construction of K, it seems to have never been stated. The convergence of J with
respect to the function f is also given in [7] under a slightly stronger assumption of convergence of the vector
fields. In Section 5, we identify the integrals given by the theory of rough paths with the integrals of Ito or
Stratonovich type in function of the choice of K (X). This identification is done by smoothing the coefficients
of L and using a similar identification for semi-martingales proved in [8].

aeff

distribution to the rescaled process X.,.> for X generated by ) 0z, (ady;), so that the homogenization
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2. STOCHASTIC INTEGRAL DRIVEN BY PROCESS GENERATED BY DIVERGENCE-FORM
OPERATORS

For 0 < A < A, let Z°°f(\ A) denotes the set of all the functions (a, b) such that

a and b are measurable,

a(z) = (a; ;(x))ij=1,.. .~ is a symmetric matrix,

N
v§ S RN7 Vo € RN; )‘|€|2 S Z az,](x)g’tgj S A|§|25
ij=1
b= (b;)i=1,.. ~ and Vz € RN,  sup |bi(z)] < A.
i=1,...,N

For (a,b) € Z°f(\,A), we may define L by (3) as a closed operator on L2(R"). This operator is then
the infinitesimal generator of a continuous, strong Markov, stochastic process (X, (F)t>0, (Pz)zecrn): see for
example [18,34].

We denote by Z(\, A) the class of processes generated by divergence form operators with coefficients in
Ecoeff()\’ A)

Unless its diffusion coefficient a is smooth enough, X € Z(A, A) is not a semi-martingale, but belongs to the
more general class of Dirichlet processes under P, for any starting point z [33], Theorem 2.2 (note that there
are several possible definitions of a Dirichlet process, with slight variations. For example, the definition of a
Dirichlet processes given by the theory of Dirichlet forms [12], which may be used to study the process X, is
different).

Definition 1. [11] Let (II"),en be a family of partitions of [0, 7] whose meshes decrease to 0 as n — oo. For
a continuous function A, we introduce

-1
QAT = 3" [Ap — AP I = {1 <17 < <11}
1=0

and we say that a process A is of zero quadratic variation (along (II"),ecn) if Q(A,II™) converges to 0 in
probability as n — oc.

A Dirichlet process (along (II"),en) is a F.-adapted process the sum of a local martingale and a term of zero
quadratic variation which are both F.-adapted.

Let T>°(RY) be the class of functions g € Wllogo (RY) for which Vg € L>°(RY).

Let g € T*(RY) and T > 0, as well as X € Z(\, A). Let us denote by (F;)iejo,7) the backward filtration of
X, that is Fy = 0(Xs;s € [t,T]). From [27,31,33], the process g(X) may be decomposed under P, for z € RY
as

1 1, — —
9(X2) = g(Xo) + 5 M + S (M7, = M7) + V7, t € [0.T), (5)
where MY is a F.-martingale, M is a F -martingale and

t t
1
V;g:/o b(X,JVg(X,-)dr—i—/O ma(X,.)Vp(r,x,X,.)Vg(X,«)dr.

Such a decomposition is called a Lyons-Zheng decomposition. In addition, V9 is a term of integrable variation
under P, and M9 and M’ are square-integrable martingales with brackets

t ¢
(M), = / aVyg-Vg(X,)ds and (M), = / aVyg-Vg(Xr_s)ds.
0 0
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Finally, the process ¢g(X) is a Dirichlet process under P, for any starting point « (provided we choose a version
of g which is continuous around x, whose existence follows from the Morrey theorem [1], Th. 5.4, p. 97) whose
term of zero quadratic variation A9 is

1 1 — —
Al = =5 M+ §(M%7t - M7)+ VY,

and MY is its martingale part [31,33]. The backward martingale M’ is the martingale part of the reversed
process g(X.) = g(Xr—.), which is also a Dirichlet process.
We set for g, p € T,

ot X, g.0) = / 9(X.) 0 dp(X.,) (6)

or £(t; X, g.¢) = / 9(X,) dp(X,) (7)

in the way these integrals are defined in [31] (see also [27]). There are two ways to characterize them: in the
Stratonovich case, where £ is defined by (6),
L(t; X, g,¢) = lim £"(£; X, g, )
neN

(1) -1

> X, )+ 9(Xe))(@(Xin, ) — o(Xin))).

=0

with £°(; X, g,¢) =

|~

In the Itd case, where £ is defined by (7),
L(t; X,g9,p) = lim £"(t; X, g, )
neN

(1) -1

with £(5X,9,0) = D> 9(Xe)(@0(Xz,,) — ¢(Xez))-
=0

In both cases, the limits hold in probability under P, for any 2 € R™. Of course, the difference between the It6
and the Stratonovich case lies in the quadratic variation, since

(t)—
%Z 9(Xur ) + 9(Xe))(p(Kip, ) — p(Xep)) =
7=0

1 (-1
5 (9(Xen, ) — Q(th))( (Xt” ) — @(Xt;))

41
=0
() —1

+ Z (X ) (X, ) = o(Xen)). (8)

With (5), we also get that in the Stratonovich case, P,-almost surely,

26 X.9.¢) = 5 [ (00X~ a(@)aMg + 5 [ (@(F0) = (X)) 0T}

(90X = 9@V} + [ (o(00) = 9(0) aVi7 = 5 (o(F).T) 1+ 5 a(X). M),

* 2

DN | =
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with X; = X7 for t € [0,T]. In the It6 case, P,-almost surely,

1

8t X,.9) = 5 [ (0(0X) =gl Az + 5 [ (6(X,) = 9(X0)) 4T

+ 500X ~9@) 7 + [ (o)~ 9(@) aVF = 3(0(3). 7).

We end this section with a convergence result of the integral £(X, g, ) with respect to g and ¢.

Proposition 1. Let (gn)nen and (pn)nen be sequences of functions in Y=(RN) and go,po € T®(RYN). We
assume that gn, pn are bounded uniformly for n > 0 by a constant K. We assume moreover, that g, (resp.
¢n) and Vg, (resp. Vip,) converge uniformly to go (resp. ¢o) and Vgo (resp. Vo). Then for any v € RN,
t— L£(t; X, gn, ©n) converges in probability under P,, to t — £(t; X, g, p) with respect to the uniform norm. This
is true both for the Stratonovich and the Ito case.

Proof. Let us note first that ¢ — M¥ and ¢ — V% are linear maps, as well as (g, ¢) — £(X, g, ). Hence,

L(X, gn, on) — £(X, 90, ¢0) = L(X, gn — 905 n) + L(X, Gns ©n — ¥0)-

We could then assume that gy = pg = 0.
Hence, for any C' > 0, the Burkholder-Davis-Gundy inequality (see for example Th. 3.28 in [17], p. 166),

t 1 T
P, | sup /gn(XT)de" >C| < —E: A/ IVion (X ) |2gn(X,)? dr| —— 0. (9)
tc[o,7] |Jo C 0 n—00
Similarly,
t 1 T
P, | sup /g( dMI > C —E / IVon (X,)2gn(X,)2dr| —— 0. (10)
tefo,17) 1J0 C 0 n—oo

In addition, since E, [ fOT |dV,#n
(see [22]),

} is bounded by ||[V@n| oo times a constant that depends only on A\, A and T

T
< 2] g | [ [ 1ave
0

0. (11)

n—oo

/O (gn(Xr) - gn(x)) dv;en

This proves that, in the Stratonovich case,

E, | sup
t€[0,7]

sup |£(ta Xa 9n, San) - S(t,Xa 0; San)| — 0;
te[0,T] n—00

since £(t; X, 0, ¢,) = 0.
From Remark 2.5 in [31], p. 107,

t
<gn(X)aM<pn>t = / avgn . V(pn(X'r)d?"
0

T
and <gn(y)aﬁ%L>t = / aVgn -V, (Xr) dr.

T—t

It follows easily that (g,(X), M#") and (g, (X),M*") converges uniformly in ¢ € [0,7] to 0 as n — oo. This
proves that, in the [to case, that sup,¢jo 1 |L(t; X, gn, on) — £(; X, 0, ¢p)| converges to 0.
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To prove the convergence of £(-, X, gn, ¢n) to 0 when n — oo (since £(, X, gn,0) = 0), it is sufficient to
use the previous inequalities (9), (10) and (11) as well as the convergence of (g, (X), M) and (gn (X)), M)
to 0. ]

3. CONVERGENCE OF PROCESSES GENERATED BY A DIVERGENCE FORM OPERATOR

Given a process X € Z(A, A), we have seen in [22] how to construct a rough path X lying above X. For this,
we have constructed X with X;t = X; — X, and X;JtQ = K;% (X), where K;% (X) is either f: (X! — XHodXJ
(Stratonovich case) or f; (X — XHdX] (Ito case).

According to Lemma 5.4.1 in [26], all the rough paths lying above X may be constructed by adding to X
a function (s,t) € Ay + 1 — 1p, where 9 takes its values in RY @ RY and is of finite o/2-variation. In this
article, we consider only the Stratonovich and the It6 cases, for they correspond to natural choices.

We have seen in [22] that for any o > 2, any X in Z(\, A), any starting point z and any n > 0, there exists
C large enough such that

C' depends only on (a, \, A, T),
and that for any C' > 0 and any 7 > 0, there exists  small enough such that

{Pz [ Varg jo.17(X) > C] <, (12)

Py [Sup\t—sKé IX] > C} <,
0 depends only on (a, A, A, T).

3.1. Tightness results

Our first results on sequences of processes in Z(A, A) concern their tightness. For X € Z(\, A), K(X) denotes
either the second-order iterated integrals of X in the Stratonovich or the It6 case.

We now consider a sequence (X¢).so of processes in (A, A). We denote by P, the distribution of X¢ to
denote that P, [ X® =z] = 1.

Proposition 2. For any e > 0, let X¢ be in Z(\, A). Under P, for any x € RV, the sequence (X, K(X¢)):>0
is tight in V* for any o > 2.

Proof. With (12) and (13), the proof is an immediate consequence from the tightness criterion presented
n [21,22].

However, we give a short proof, restricted to the first level for the sake of simplicity, to endow the role of (12)
and (13).

For some constant C, let K'(C) be the set of continuous functions « from [0, 7] to RY such that Var,, o, 7y(z) <
C, where Var, (o 7)(x) is defined by (4) with X, replaced by x; — x5 and | - | is the Euclidean norm on RY.
Let also K’ be a set of continuous functions from [0,7] to RY which is relatively compact for the uniform
convergence. If (2%).~¢ is a sequence of functions in K’ N K(C) that converges to a continuous function x° of
finite a-variation, then (2).~¢ also converges to 2° in B-variation for any 3 > «. This follows from

Varg jo,7y(2° — 2°)% <297 |2° — 2|5 *(Varg, o,71(2°)* + Varg, 0,71 (2)).

This also implies that K’ N K(C) is relatively compact with respect to the space of continuous functions of finite
a-variation with the norm || - ||ys for all § > a.

Now, since the choice of C' and 7 in (12) depend only on A and A and (X¢).~¢ is tight for the uniform norm,
we deduce that for any n > 0, there exists a constant C' such that sup,. P, [X® € K(C)NK'] < n, where
K’ = (X?)c>0, which is relatively compact for the uniform norm according to (13). Thus K(C)N K’ is relatively
compact for the space of continuous functions of finite a-variation with the || - ||ys-norm for any 5 > o > 2.

The similar reasoning is easily carried to deal with the second level. O
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Hypothesis 1. The elements of the sequence (X¢)es0 belong to Z(\, A) and converge in distribution to X° in
ENA) in (C([0,T;RY), || - |oo) under P, for any starting point x.

Remark 1. Under Hypothesis 1 and Proposition 2, it follows immediately from the Prohorov theorem [4] that
(X%)eso converges to X in VY for any a > 2: As the convergence in V* implies the uniform convergence,
any possible limit of (X¢).~o in V* is necessarily X°. Note that however, V* is not separable and thus the
convergence of (X¢).~¢ in V¥ does not necessarily imply its tightness.

Remark 2. Given a sequence (X¢).s¢ of processes in Z(\, A) corresponding to a sequence of coefficients (a, b%),
it is generally true that any cluster point X belongs to Z(\', A’) for some 0 < X' < A’. At least, this is always
true if b° = 0 for any € > 0. For that, one has to combine the results of [29] and [32] for example. This means
that Hypothesis 1 is not stringent at all.

Under Hypothesis 1 and in view of Proposition 2, a natural question is:
Is the limit of (K(X¢)).s0 equal to K(X%)? (Q)

As will we show it later in Section 3.5, the answer may depend whether we consider K (X*¢) as It or Stratonovich
integrals. In addition, we give in Section 3.3 a sufficient condition that allows one to give a positive answer to
this question, but we show in Section 3.5 that it is not a necessary condition.

3.2. Rough paths and geometric rough paths

The iterated integrals K (X¢) denote either It6 or Stratonovich type integrals. We will see that our answer
to (Q) may depend on the type of integral we consider: for this, we need to explain the difference between the
rough paths that are geometric and those which are not.

For this, we follow the way of seeing rough paths as paths with values in a non-commutative group, as
introduced first in [13] (see also the introductory article [23]). Basically, a rough path is a path with values in

the subspace TEQ)(RN ) of the truncated tensor space

TORN) =R RY) & (RY @ RY)

whose projection on R is equal to 1. The space T(Q)(RN ) is a Lie group with respect to the tensor product
® (note that all the terms of type  ® y ® z with x,y,2 € RY vanish and 0 ® x = = by convention) and an
associative algebra with the addition 4+ and the tensor product ®.

Given a norm on RY ® R such that |z ® y| < |z| - |y| for z,y € RY, we introduce x| = max{|x!|, /|x2[}
for x € T(IQ)(RN).

Let us consider a non-commutative group (HY,H) group of dimension N(N + 1)/2 with basis
{e1,...,ed,€; ;}1=i<j=n and the operation

E z'e; +a"e; ;| B E yei +yle;
1<i<j<N 1<i<j<N

= Y @yt ( S (@ — M))
1<i<j<N

This group is a Carnot group of step 2, as it may be decomposed as HY = RN @ [RY,RN] with [e;, e;] = e;
and [eg, e; ;] = ek, €i,;] = 0 for the Lie bracket [z,y] = e By — y B (see for example [2]). If N = 2, then
this group is the Heisenberg group. The distance we use on H” is the sub-Riemannian metric (see [2,6,30] for
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example), which is

1

d(xa y) = lnf ~ / |’Y(8)| dS
'YZ[O,I]*)R 0
PO
N o | | . | |
with — ®(v)(t) = ;(vz(t) —7"(0))e; + 19%:3]\] (/0 (7' (s) =~"(0)) dv?(s) —/0 (v (s) —~7(0)) dvy (s)) €

Using the sub-Riemannian metric in the context of rough paths was introduced first by Friz and Victoir in [13]
(see also [23] for a presentation of this point of view).

A geometric rough path is a path with values in the sub-group G(RY) of (T(IQ) (RY), ®), which is the image
of HY ¢ T®)(RN) by the (non-commutative) exponential mapping exp(z) = 1+ 2 + %ac ® .

Any geometric rough path X = (X!, X2) with X} € RY and X? € RY @ RY can be identified as a path Y
with values in HY by setting Y = log(X) with

N
log(x) = le’zei + 3 Z (x>50 — x%3 e, s for x = (1,x*,x?) € TEQ) (RM).
i=1 1<i<j<N

Of course, log is the inverse of the exponential application exp. N

A smooth rough path X = (X', X?) is made of a piecewise smooth path X! = X living in RY and Xf’” =
fot (XI—X§)dXJ. Any geometric rough path of finite a-variation can be approximated by a sequence of smooth
rough paths with respect to the topology generated by the S-variation, 8 > « (see [13,23]).

The difference between two geometric rough paths of finite a-variation lying above the same path necessarily
comes from an anti-symmetric path of finite «/2-variation.

We then introduce the following sub-spaces of RN @ RV :

Anti(RY) = {z e RN @ RV |27 = —2?* i,j=1,...,N}

and
Sym(RN)z{xeRN®RN|xi’j:xj’i, i,j:l,...,N}.

Lemma 1 (Lem. 5.4.1 in [26]). IfY is a geometric rough path of finite a-variation and ¢ : [0,T] — RY @ RY
is a path of finite a/2-variation with values in Anti(RY), then X =Y 4+ is a geometric rough path of finite
a-variation. Conversely, if X and Y are geometric rough paths lying above a path X, then there exists such a
function Y for which X =Y + 1.

As noted first in [25], the difference between a geometric rough path and a non-geometric one lies in the
presence of a symmetric term.

Lemma 2. [25] Any rough path X of finite a-variation, « € [2,3), can be decomposed as Xy = Yy + ¢, where
Y is a geometric rough path of finite a-variation and and v is a path of finite o /2-variation with values in the
space Sym(RY @ RY).

Let us note that in the previous Lemmas 2 and 1, X;l ® X = Y§1 RYi+ Y — s forany 0 < s <t <T.

Combining Lemma 2 and 1 for a given rough path X of finite a-variation lying above a path X : [0,T] — R,
we get a complete description of any rough path Y lying above X: there exist two paths ¢ and ¢ of finite
a/2-variations that are respectively in Anti(RY) and Sym(R") and such that Y = X + ¢ + ¢.

In the case of a rough path X = (X, K(X)) generated by a divergence form operator, we have seen that X
is a geometric rough path if we choose for K(X) the Stratonovich integrals. But this is not a geometric one if
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we choose K (X) to be of It6 type. The difference between these two cases lies in the symmetric term —3 (M),
since

1

t t
[ o= xpax: = [oxi-xpo ax; -
0 0
where M is the martingale part for X.
Note that however,
loa(X) = Xeit 5 3 (KH(X) ~ KJi(X))es;
1<i<j<N
so that it does not make any difference to construct the geometric rough path log(X) as a path living in the
group H”Y from the choice of Ité or Stratonovich integrals for the K% (X)’s.

Let us come back to our question (Q). First, let us note that in view of our previous decomposition results,
any limit Y of (X%, K(X¢))c~0 can be written Y = X% 4 9 + ¢, where X% = (X K(X9)), ¢ (resp. ¢) is an
anti-symmetric (resp. symmetric) path from [0, 7] to RN ® R¥ of finite a/2-variation. The effect of ¢ and
on differential equations and integrals driven by X is to add a drift term (see [23,26]).

If we use for K(X¢) (¢ > 0) the Stratonovich integrals, then necessarily, in view of Lemma 1 and the results
from [25], the symmetric path ¢ vanishes since the limit of geometric rough paths is necessarily a geometric
rough path.

In order to deal with the Ito case, we may study the Stratonovich case and also the convergence of the
brackets (M¢) of the martingale part M* of X*=.

In the case of Stratonovich integrals, we believe that the answer to (Q) is negative in general. However, we
have been unable to exhibit a counter-example. Yet in [20,24], we have shown using the homogenization theory
that the Lévy area of the limit of SDEs can be different from the Lévy area of the limit. As we will see it in
Section 3.5, these results applied to divergence form operators leads to the right convergence of the Lévy areas,
unless we drop the assumption that the drifts are uniformly bounded.

In the It case, our homogenization results allows us to give a negative answer, as the limit of the brackets
of the martingale parts of the X¢’s will be different from the brackets of the limit.

Thus, we give below in Theorem 1 a sufficient condition to ensure a positive answer to our question in both
It6 and Stratonovich cases. Yet, the homogenization result proves that this is not a sufficient condition.

3.3. Condition UTD
Let (TI"),en be a family of deterministic partitions of [0, 7] whose meshes decrease to 0 as n — oo.

Definition 2 (Condition UTD [33]). A family of Dirichlet processes (X¢,P) (along (II"),en) with decomposition
Xi = X§+ My + Af for t € [0,T7] satisties Condition UTD if ((M®)7)e>0 and (sup,epo, 7] [Af|)e>0 are tight, and
for any C' > 0,

supP[Q(A°,1I") > C] —— 0.

e>0 n—+oo
Condition UTD is a natural generalization of Condition UCV for semi-martingales (see [16] for a review of this
notion). The following proposition is a “specialization” of Theorem 1.1, p. 84 in [33] to processes generated by
divergence form operators.

Proposition 3. [33] Let (X¢).~0 and X° be as in Hypothesis 1. We assume that (X¢).>o satisfies Condition
UTD under P,. The decomposition of X¢ as a Dirichlet process is written x + M® + A®. Then (M€, A%).~o
converges in distribution to (M°, AY), where X° = x + M° + A® is the decomposition of X° as a Dirichlet
process under P.

Remark 3. It follows from Definition 1 that M° and A° are both (F?);>0-adapted. Condition UTD (that
does not necessarily concern processes generated by divergence form operators) was introduced in [9] where a
similar result is given but without ensuring that M° and A° are (F);>o-adapted. It is shown in [33] that the
limit (M°, AY) of (M¢, A%).~ is really adapted to the filtration generated by X° and may then be identified
with the decomposition of X° as a Dirichlet process given in Section 2.
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Remark 4. Let us note that Condition UTD also implies that (M®, (M¢)).~o converges in distribution to
(MO, (M) (see for example [16], Th. 7.12, p. 30). If the limit of ((M¢))cs¢ is different from (M?), then
(X¢)es0 does not satisfy Condition UTD. This can be an easy way to identify the sequences (X¢).o for which
more work has to be done just by studying the convergence of the brackets of their martingales parts.

Remark 5. From the proof of Theorem 2.2 in [33], we see that X< satisfies Condition UTD under P, for any
x € RY if for any compact K and ¢; is a function with compact support of R such that ¢;(z) = z; on K,
aGE p; converges uniformly in ¢ to ¢; in HY(K) as a — oo for i = 1,..., N, where G%, is the resolvent operator
(a— Lf)~! and L? is the infinitesimal generator of L. This is equivalent to the uniform convergence of LGS ¢
to 0 in H!(K) uniformly in € as o — oo0.

Lemma 3. Let g and o be some functions in YT (RN) and (X¢).>0 a sequence of processes in Z(\,A). Then
for all x € RN and all ¢ > 0, £"(t; X%, g,p) converges in probability under P, to £(t; X<, g, ) uniformly in
t € [0,T]. If in addition, (g(X¢))eso satisfies Condition UTD, then for any 6 > 0 and any C > 0, there exists
ng large enough such that

supP, | sup [£"(t; X%, g9,0) — £"(t X%, 9,0) > C | <9
e>0 te[0,T

for any n > ngy and any x € RV,

These statements are true both for the Stratonovich and the Ité integrals.
Proof. Let X be in Z(\,A). For R > 0, let us denote by ®(z, R) the event {sup,c(o 1||X: — x| > R}. One
knows from Lemma II1.1.12 in [34] that there exist some constants K and K’ that depend only on A, A, T" and
the dimension NV such that

P, [®(z,R)] < Kexp (—K'R?). (15)
Hence, for any C > 0, ¢t € [0,7] and R > 0,
Py | sup [£"(1 X, 9.9) —L(t: X, 9,0)| 2 C | <Py [2(z, R)]
te[0,T)
+PI sup |£n(t7X7§a Q’E)*S(t,X,g, SZ)| > C,@(I"R)C
te[0,T]

where g (resp. @) is any continuous function equal to g (resp. ) on the ball of radius R around z.
Thus, using this localization argument, one may assume that ¢ and ¢ are bounded on RY when x is fixed.
To estimate the speed of convergence of £"(-; X,g,¢) to £(:; X, g,¢), and in view of (8), we have only to
consider the speed of convergence to 0 of

. k™ (t)—1
o) = / g(X,)dME— Y g(Xe) (M, — M),
=1
k™ (t)—1

() = / oF)dTTF = S g(Ree) (L, — T2, ),

i1
=1

t k™ (t)—1
BO) = [ oX)avr— 3 gV, - Vi)
0 i=1 '
k(6 —1
I} (t) = (9(X), M Z 9( Xz, Q(thty))(Mf—ty+1 - Mf—ty)
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and, in order to deal with the It6 integral,

k™ (t)—1
I7(0) = (g(X). M) — Y (9(Xep,,) — 9(Xip)) (Mg — ME),

i=1

where 0 <t <--- < th(t) < t are the points of II" N [0, ¢].
We have seen in [22], Lemma 3 that for any § < 1/2, there exists some random variable Cz such that E, [Cg]
is finite and depends only on (A, A, 5) and such that X is S-Holder continuous with constant C (and so is

X). In addition, since this relies on the Kolmogorov lemma [17], Theorem 2.1, p. 25, it is easily obtained that

E, [C’g} is also finite and depends only on (A, A, ). Since g has a Lipschitz continuous version (this result

follows from the Morrey theorem [1], Th. 5.4, p. 97), we get that g(X) and g(X) are S-Holder continuous with
constant Cp||Vgl||s when this version of g is used. As

t
(M¥, M%), = / aVy - Vp(X,)dr < At||V<pHgo for any t > 0,
0

the Burkholder-Davis-Gundy inequality implies that for some constant K,

T
E, [ S[up]I{I(t)Q} < KE, [/ (9(X) —g(Xt;L))21T€[t;L7t;LH)d(MﬂMvs%
te(0,T 0

< KTA|Vg|% [ VgZE, [C3] (mesh "),

Also (MY, M*), < At||Ve|/% for any t > 0 and similarly,

E

s[up]fsmﬂ < KTA|Vg|% [ Vgl2E, [C3] (mesh "),
tefo, T

As seen in [22], the term V% is of finite variation and E, [Var17[07T} V‘P} is finite and bounded by a constant
depending only on A, A and ||V||eo. Besides, I (t) = fot Zp dV# with Z)' = g(X,) — g(Xir) when r € [t7, 7, ).
Hence, E, [SuprE[O,T] |Zﬁ|} < E.[Cs]||Vglloo(mesh II™)?. Hence, for any C > 0 and any K > 0,

P, l sup |IF(t)] > C
t€[0,T]

<P, [ sup |Z;'| Vary jo,r V¥ > C
t€[0,T]

SPx[SUP 1z > K %

te[0,T)

C
+ P;C |:Var17[07T] Ve > —:|
E,[C, s K
< Vgl 2T (mesh Y S [Vary o1y V]

For any € > 0 and any C > 0, one may first choose K small enough such that KC~'E, [Var17[07T} V‘P] <e/2.
Then, we choose ng large enough such that for any n > ng, |Vg|lewK ‘B, [Cs] (meshII™)? < £/2 for any
n > ng. It yields that P, {supte[o,ﬂ |13 (t)| > C’] < ¢ for any n > ng and and ny may be chosen in function of

mesh(I1"), B, [|Vgllscs [[V@|loo, A, A, and of course, € and C.
We now estimate of the speed of convergence of I} to 0 in probability.
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It is easily seen that for s € [0,7], ¢(X;) = g(Xo) + s My + 2(MF_, — M)+ VE_ — VE. Since VY is of
integrable variation and g(X}) is a Dirichlet process,
1
2

1

— — 1—
Bl = g(Xo) + Vi, — Vi — 5 M} + 5

9 M'iq—‘—t -

M

is of zero quadratic variation along (II"),ey where I = { T — |t € I1" }. Indeed, it is the term ¢ € [0,T] —
M¢ — M., which is of zero-quadratic variation along (IT"),cx.
To simplify the notations, we set for two processes X and Y,

K™ (6)—1
QUXY) = > Kr, = Xroip)Yrosp, = Yrr).

i=1
Using the previous decomposition of g(X),
QP (9(X). M7) = Q¢ (M, M) + Qp(B”, M),

and (g(X), M*) = (M’,M?) almost surely.

As seen in Lemma 6 in Appendix A, the family (¢t — (M*), — Zﬂ”*l(ﬂf};l - MZL)Q)%N converges in
probability to 0 uniformly in ¢ € [0,7] at a speed that depends only meshIT", ||V~ and A, since <M¢>t —
(M7)s < A(t — 5)|| V|2 for any 0 < s < t.

Hence, it remains to study the speed of convergence of Q} (Eg,ﬂw) to 0.

From the Cauchy-Schwarz inequality and since t — Q7(B”) and t — Q7(M") are increasing,

sup Q7 (B”,M")| < Q3(B")'*Qp(M*)'/?
te[0,T]
with Q7 (B’) = Q}(B*, B’) and Q(M") = Qy(M", M").
As for any a,b,n > 0, Vab < na + n~'b, for any C > 0,

P, [ sup QMB’, M?) > C
t€[0,T]

<P [QH(B") 2 C/n| +F. [ Q3(T°) 2 nC|

<P [Q}(B’) 2 C/n | +B. [ |Q4(I7) — (M7)r] 2 nC/2

+P, [(M7)r 2 0C/2].

In addition P, [(Mwﬁ > nC’/2] < P, [TA|Ve|% = nC/2]. We choose first 77 and then ng large enough so
that P, [m(ﬂ“’) — %)) > nC/z} < ¢/2 and

P. | Q3(B") 2 C/n| <e/2 (16)

for any n > ng. The last convergence holds since B? is of zero quadratic variation along (ﬁn)neN.
The convergence of I (t) to 0 is proved using similar computations by replacing B’ with B} =g(z)—

M+
%(M%_t —M7) + V¥ of zero quadratic variation along (IT"),cn.

1
2
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We deduce that £"(t; X, g,¢) converges to £(t; X, g,¢) in probability uniformly in ¢ € [0,7]. Moreover,
except a priori for the convergence of Q7 (Eg) and Q7 (BY) to 0, the rate of convergence depends only on A, A,
T, IVglloos IV@|leo and mesh(IT™).

We now apply this result on X¢. As (g(X¢)).so satisfies Condition UTD, it is easily obtained that (g(X"))e>0
also satisfies Condition UTD, but along the family of partitions (ﬁn)neN, where II" is constructed from II™ by
changing any point ¢ in II" into 7' — ¢. Using Condition UTD in (16) with B? replaced by the zero-quadratic
variation term B~ of ¢(X°) and B9 of g(X¢), one sees that the speed of convergence of £7(-; X¢, g, ) to
£(+; X¢, g, ) is uniform in e. O

3.4. A criterion ensuring the convergence

The goal of this section is to prove the following convergence theorem. Of course, its interest lies in the
continuity result of the integrals and the solutions of the differential equations driven by rough paths: see
Theorem 5.5.2, p. 143 and Corollary 6.3.2, p. 179 in [26].

Theorem 1. If (X¢).s0 satisfies Hypothesis 1 and Condition UTD, then (X, K(X¢))eso converges in distri-
bution under P, to (X°, K(X°)) in V* for any a > 2 for any starting point x.

Remark 6. We will see below in Section 3.5 that Condition UTD is sufficient but not necessary.
Before proving this theorem, let us state a useful application.

Corollary 1. Let (a°,b°) € (X A) and (a®,b°) € Z°°F (X A) such that (a®,b%) converges almost everywhere
to (a,b). Fore >0, let X¢ be the process corresponding to (a®,b%). Then (X<, K(X€)) converges in distribution
under P, to (X0 K(XY)) in V for any o > 2 for any starting point x.

Proof. Tt is well known that the convergence of (a®,b?) to (a”,b°) ensures the convergence in distribution of X
to X° under P, for any x € RY (see [32,34] for example).

If o is a smooth function with compact support,then the core of the proof of Theorem 2.2 in [33] is to establish
that (¢(X¢))eso satisfies Condition UTD (see in particular (2.33) in [33], p. 103).

With a localization argument, this proves that (X¢).~¢ also satisfies Condition UTD.

For this, let us note first that, if M = (MY ... M) is the martingale part of X¢, then (M%) < AT
fori=1,...,N and then ((M®)r)c>0 is tight.

Now, as in the proof of Lemma 3, let us set ®°(R) = {sup,¢jo ) |X§ — 2| = R} for R > 0, and choose ¢()
such that ¢(z) = z; on the ball {y € R¥ ||y —z| < R}. Let us denote A® (resp. A®) the term of zero-quadratic
variation of ¢(X¢) (resp. X¢). Then

P, [ sup A*>C | <P, l sup A° > C;°(R)° | + P, [®°(R)].
te[0,T te[0,T
On ®¢(R), A° = AR 5o that
IP’;C[ sup A° >C SIP;E[ sup AR > C| + P, [D°(R)].
t€[0,7) t€[0,7]

With (15) (which is uniform in €), it is easily deduced that (sup,co 7 A%)e>0 is tight. The same computation
with sup,c(o 77(A4%) replaced by Q(A®, II") proves that (X¢)-o satisfies Condition UTD.
Theorem 1 allows us to conclude. g
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To prove Theorem 1, let us remark first that in the Stratonovich or the Ito6 case, for i,5 =1,..., N,
K53 (X9) = £(t; X%, x5, x;) with xi(z) = z;.
In addition, for all £ > 0,
KH(X) = Kgi(X®) = Kol (X°) = (X1 = X3)(X] — XJ), V(s.t) € Ay, (17)
where Ay = {(s,t) € [0,T]*|0<s<t<T}.
Theorem 1 is proved using Lemma 3 and the following lemma.
Lemma 4. If forx € RN anyt € [0,T],i,j=1,...,N and any constant C > 0,
limsupsup P, [|£"(; X%, xi, Xx5) — £ X5, xa, x5) = C]=0 (18)

n—oo £>0

then (X¢, K(X¢)) converges in distribution under P, to (X°, K(X°)) as e — 0 in V* for any a > 2.

Proof. As for each integer n and each t € [0,T], (X, £"(t; X%, xi,%;)) converges in distribution to (X©,
£7(t; X% xi,x5)), Condition (18) together with Theorem 4.2 in [4], p. 25 allow us to assert that (X, KS%(Xa))
with Ké%(XE) = £(t; X*, xi, x;) converges in distribution to (XO,Ké”{(XO)). With (17), (Xa,Kz”{(Xa)) con-
verges in distribution to (X°, K;:{(XO)) for all (s,t) € Ay. The tightness of (X¢, K(X¢))es0 in V* (see Prop. 2)
and the continuity of (s,t) — K, +(X") allows us to uniquely identify any possible limit of (X¢, K(X¢)).>0 with
(X0, K (X°)). O

3.5. Examples from the homogenization theory

Let us consider (a,b) in Z°°f (), A) such that b = 0 and the diffusion coefficient a is smooth and 1-periodic.
Set a®(x) = a(x/e) and b° = 0. For any £ > 0, (a°,b°) belongs to Z°*f(\ A) and gives rise to a stochastic
process X ¢ which is solution to the SDE

t 1t
X;==z +/ o(X:/e)dBs + 2—5/ Va(X:/e)ds, (19)
0 0

P,-almost surely, where B® is a Brownian motion. Using a scaling argument, one gets that X¢ is equal to
distribution to € X;,. under P, ., where X is process corresponding to (a,0).

3.5.1. Convergence of the process to a mon-standard Brownian motion

The homogenization theory aims to study the asymptotic limit of X¢. In the case of smooth coefficients, it is
standard that X converges to some non-standard Brownian motion, whose diffusion coefficient “catches” the
large-scale properties of the behavior of X: see for example the books [3,15]. The case of processes generated
by a divergence form operators, which we present here with smooth coefficients, can be carried without any
regularity assumptions, as shown in [18,19)].

Let us characterize the constant matrix ¢ that is such that (X¢).so converges to 0B for a N-dimensional
Brownian motion B.

Fort=1,..., N, let v; be the variational solution to

N
Z _8 <ak7j(m)avi(x)> = — 4 \T) (:c)’ v; periodic.
k ;
s Jj=1

8Ij 6$j

Thanks to the Fredholm alternative, this problem has a unique solution which is, since a is smooth, a classical
solution. The functions v; are called correctors. With the It formula applied to z +— x + v;(z) and an ergodic
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theorem applied to the projection of X on the torus (whose invariant measure is the Lebesgue measure on
[0,1]Y), one gets that for any ¢ > 0,

Xi 4+ (01(X7), o (X7)) = & + (01 (@), -, vy (2)) + R,

where, for i = 1,..., N, v¢(z) = ev;(x/e) (which decreases uniformly to 0) and R¢ is a martingale such that for
i,j=1,...,N,
. t/e* A (X,) A (X,)
Rie| Ry, B 2 / X)) (6,0 + L2 (5, 4 CURs) ) g
(R“%, R"%)y kél = ay,e(Xs)  Oik + D i e s

With the ergodic theorem, for any ¢t > 0, (R"¢, R7); converges almost surely under P, to ta® with

N

off def. 0v; (SL') ) ( avj (SL') >
a;; = ak,e(z) | dig + dje+—F— | dw 20
D) [ awete) (3 F ) (a0 + % (20)
for i,j = 1,...,N. It follows from a Central Limit Theorem on the martingales [10] that there exists a NN-
dimensional Brownian motion B such that R® converges in distribution to 0B with oo™ = a°. The coefficient

af is called _an effective coefficient. 1t follows that X© converges in distribution in the space of continuous

functions to X = o B.

3.5.2. Convergence of the iterated integrals in the Stratonovich case

In [20] and [24], we have studied the convergence of (X, K(X*®)).50 for X© equal to €X. /.2, where X is the
solution of some SDE with periodic coefficients. There, we have proved that the Lévy area of the limit may
be different from the limits of the Lévy area. The difference lies in a function of type t +— ct, where ¢ is an
anti-symmetric matrix seen as an element of RY @ RV,

In our context, when we use for X¢ the solution to (19), it follows from a short computation performed on
the formula given in Proposition 5 in [20] that in the Stratonovich case, (X, K(X*¢)) converges in distribution
in V* to (X, K(X)), where X is given above (let us recall that the Lévy area of X¢ is just the anti-symmetric
part of matrix values functions (K (X)); j=1,... N)-

Remark 7. There is an error in the statement of Proposition 5 in [20], although the proof is correct. The
article [24] presents a correct statement.

Now, we drop the assumption that a is smooth, so that X¢ is the process generated by
ZINFI %% (ai,j(- / E)%) where @ is measurable, uniformly elliptic, bounded and 1-periodic. We denote by X
B} K2 J

its limit which equal to oB as above.

Although the homogenization results for X ¢ holds without any smoothness assumption on a, we have assumed
that a is smooth in order to apply the results in [20]. The proof given in this article relies on the Itd stochastic
calculus and the ergodic theorem, as in Section 3.5.1. Using the recent article [14] from Friz and Victoir as well
as analytical tools, we can extend the previous convergence results to the case of discontinuous coefficients.

Theorem 2. Let K(X¢) (resp. K(X)) denotes the iterated integrals of X¢ (resp. X ) constructed with the
Stratonovich integrals. Then (X, K(X®)) converges in a-variation to (X, K(X)) for any o > 2 under P, for
any v € RV,
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Proof. In this proof, we use the notations introduced in Section 3.2.
Let D; be the differential operator

o 1 9 1 ;)
— — J J— J
DZ é)xi+2 Z * i 2 — v

where % is the derivative in the direction e; ;. We denote by H!(H”) the completion of the space of smooth

functions with compact support on HY with respect to the norm

N 1/2
( | r@pPman + 3 [ |Dif<x>|2m<dx>> ,

where m(dz) is the Haar measure on H*.
In [14], Friz and Victoir consider the bilinear form

N
E(f9) = /H _aij(@)Dif (2)Djg(x)m(dz), f,g € H'(HY),

ij=1

when the coefficient a is a measurable function from H” to the space of symmetric matrices that are uniformly
elliptic and bounded. To this bilinear form corresponds a semi-group (P;);~o that maps L (HY) into L (H™Y).
The semi-group (P;)¢~o has a density p(¢,x,y) that satisfies a Gaussian type estimate:

2

p(t,z,y) < Crexp (—M) , (21)
Cat

where Cy and C3 depend only on A and A and d(z,y) is the sub-Riemannian distance between 2 and y defined

in Section 3.2. From this, it is easily obtained that the semi-group (F;);s0 is a Feller semi-group, and then that

it generates a diffusion process X with values in HY.

As they proved a theorem of type Wong-Zakai for X along the dyadic partition using the piecewise linear
interpolation, the rough path generated by the Dirichlet form € is the same as (X, K (X)) — up to the application
of the exponential map from HY to TEQ)(RN ) — where we use the Stratonovich integral for K (X).

Now, let (Pf)i>0 be the semi-groups associated to the Dirichlet forms &°(f,g9) =
Zgjzl Jun @ij(x/e)D; f(x)Djg(x)m(dx), where a is 1-periodic. It has been proved in [5], Corollary 3.2 that for
any f in L2(H”) and any t > 0, Pf f converges in L2(H") to P;f, where (P;);~0 is the semi-group generated by
E(f,9) = 2%21 Juv a$5D; f () Djg(x)m(dx), for a°® defined in (20) when the coefficient a is only a function
of RY and not of HY, which is our case.

Using the Gaussian bound on (21), we obtain easily that for a function f on HY that vanishes at infinity, then
Pf f converges uniformly to P;f, when using integral representations of the semi-groups (Pf )0 and (Pg)>0
with their transition density functions. It follows then from standard results (see for example Th. 2.5 in [10]
or [32] for the case of divergence-form operators) that the process generated by (Pf):~o converges uniformly in
distribution to the process generated by (ﬁt)t>0 under P, for any z € RV. O

Remark 8. In [14], Friz and Victoir actually deal with the (1/a)-Hélder norm, instead of the a-variation
norm, which gives more precise results. In a forthcoming article, we will study the relationship between the
constructions and results presented here and in [22] and those in [14].

Let us remark that if we drop the assumption that the drift b is uniformly bounded, it is easy to consider a
sequence of processes with a different Lévy area. As noted at the end of Introduction of [22], our theory may
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be applied to the case of time-homogeneous coefficients. For example, one has only to consider the family of

the two-dimensional SDEs
e cos(t/e?)
Xt — Bt + E |:Sln(t/€2) .

The infinitesimal generator of X< is then, with the complex notations, %A +ie~1et/E*V. and ¢ = {710/2 1(/)2}

(see [24]).

3.5.3. Convergence of the brackets and convergence of the iterated integrals in the It case

Although the homogenization result does not allow us to give a negative answer to our question (Q) in
the case of Stratonovich integrals, this example is interesting because it shows that Condition UTD is not a
necessary condition. In addition, it may give a negative answer to (Q) in the case where It6 integrals are used
for K(X¢®).

Lemma 5. The martingale part M¢ of X¢ converges to pF/, where B is a N-dimensional Brownian motion
and p is a symmetric N x N-matriz with

ppt =a= / a(z) da,
[0,1]¥

which is in general different from a®® given by (20). In this case, then X< does not satisfy condition UTD, and

(M?) does not converge to (X).

Proof. Let us remark that the brackets (M¢) of M¢ are equal in distribution to ¢ +— &2 015/52 a(Xs)ds. As the
projection of X! on [0,1]" is ergodic with respect to the Lebesgue measure and a is 1-periodic, (M¢) converge
almost surely uniformly on [0, 7] to ¢ — ta. The details of the convergence may be found for example in [19].
The latter quantity differs in general from a®®, and then ((M¢)).~q does not necessarily converge to the bracket
of ¢B which is equal to ¢ — ta°™.

If a°f # @, then Remark 4 allows us to conclude. O

Theorem 3. Let K(X¢) (resp. K (X)) denotes the iterated integrals of X¢ (resp. X ) constructed with the
Stratonovich integrals. Then for any x € RN, (X, K(X?)) converges in distribution under P, in a-variation
for any a > 2 to (X, K(X)) under P, for any x € R%, where

- —
Ko+(X) = Ko (X) + 5(aeff —a), t>0.

Proof. As that K(X¢) converges to K(X) in the Stratonovich case and (M€); converges in probability to at
for any ¢ > 0, this proves with (14) that in the It6 case, Ko +(X¢) converges to IA{O,t(Y) for any ¢ > 0. The
convergence of (M¢) to t + ta also holds in a-variation in RY x R for any o > 1, since the finite variation of
((M?))e>0 is uniformly bounded. O

4. CONTINUITY OF INTEGRALS ALONG ROUGH PATHS

We give now a general result of convergence that allows us to ensure that the rough path integral [ f5(X,) dX
converges to [ f(Xs)dX, when fs converges to f in an appropriate sense. This result will be used in the next
section to identify the integrals constructed in [22] using the rough paths theory with the one constructed using
time-reversal techniques presented in Section 2.

We denote by X = (X!, X?) a rough path of finite a-variation with a € [2,3). We assume that X lies above
X with Xy = x for a fixed x, which means that X;t = X; — X,.
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For v € (0, 1) such that 24+ > «a, we denote by Lip(7) the set of continuous, bounded functions g : RN — R™
with a bounded first derivative which is y-Ho6lder continuous. On this space, we define the norm

T s Pns@) Ol

N
lg9llLip = lglloe + > 102,9llec +
ip 00 ; 29| oo £~ 1 yeRN, zy |z —y|

The theory of rough path allows us to construct a new rough path Z(f) = (Z'(f), Z*(f)) from (fi,...,fn) €
Lip(y)" and X that corresponds to the integral of f — identified as a differential form — along X. We set

Zou(f) = /0 F(X,) dX..

For such a function f = (f1,..., fn), we set || f|lLip = maxi=1, .~ || fillLip-

Proposition 4. Let f € Lip(y)Y and (fs)s>0 a sequence of functions in Lip(y)N such that || fs||Lip remains
bounded in §, fs converges uniformly to f and V fs converges uniformly to Vf as § — 0.
Then Z(fs) converges to Z(f) in a-variation.

Proof. For (s,t) € Ay, set

N N of

1 _ i,1 i i,5,2
Ys,t - ; f(XS)Xs,t + ijZZI 8Ij (XS)Xs,t
and

N ..
Yit(f) = Z fi(XS)fj(XS)XZs:JtQ-
i,j=1

We also assume that X is controlled by some function w : Ay — R, which means that

X o] < w(s, t)Y* with w(s,r) + w(r,t) < w(s,t)

for all 0 < s <r <t < T and w is continuous near its diagonal. Then, Y(f) is an almost rough path, in the
sense that

Yot (f) = Yor(f) © Yre(f)] < Cw(s,t)’, OSs <7<t <T,

for 6 = (y+1)/a > 1 and a constant C that depends only on w(0,T), o, v and || f]|Lip-
Given a family of partitions (II"),,cy whose meshes decreases to 0, we set

YE: (f)= Ys,tg(s) (f)® Yt;(syte(s)n“ (fl® - @Y Litgyn (f)® Ytg(t),t(f)

ety

where II" = {0 =t§ < --- <t =T} and {(s)" and £(¢)" are such that ¢} | <s <ty and tj,) <t <ij,.
The rough path Z(f) is constructed from Y (f) as the limit of Y™ (f). Indeed, by construction (see Th. 3.2.1
in [26], p. 41), one gets that there exists a sequence (K, )nen decreasing to 0 such that

1Zoo(f) = Y ()] < Kaw(s,t)?, Y(s,t) € Ay (22)

These constants K, depend on C and n, and thus on || f||Lip, w(0,T"), o and ~.

For each integer n, YE: (fs) converges to Y?: (f) as 6 — 0. In addition, for each § > 0, Y?: (f5) converges
to Z(fs) at a speed that does not depend on §, since (|| f5||Lip)s>0 is bounded. This is sufficient to ensure that
Zs +(fs) converges to Zs.(f) for each (s,t) € Aj.

Moreover, it is easily checked that

IYE: (fs) = YL ()] < Cmax{sup|| fs = flloos sup [V f5 = flloc (s, 1)/
6>0 6>0
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for some constant C' that depends only on supsq || fs||Lip and || f||Lip- With (22), one obtains that for any € > 0,
there exists dp small enough such that for all § < 8o, |Zs¢(fs) — Zs..(f)| < ew(s, 1)}/ for all (s,t) € Ay.
The result is then proved. 0

5. IDENTIFICATION OF THE INTEGRALS

Let us note that a function in Lip(v) also belongs to Y>°. Given g = (g1,...,gn) € Lip(y)", we are given
two ways in considering the integrals of type S fot gi(Xs) 0 dX? and 3N | fot 9i(Xs)dX! for X € Z(\,A):
either by using the Lyons-Zheng decomposition (5) or by using the rough paths (X, K (X)), where K(X) is
either the Stratonovich or the Ité integral, as constructed in [22].

We have seen in [8] that the integrals given by the proper choice of K(X) are the same as the It or
Stratonovich integral when X is a semi-martingale. The identification relies on the Wong-Zakai theorem for
semi-martingales.

In our case, we will approximate a process X by semi-martingales obtained by smoothing the coefficients of
its infinitesimal generator, and then pass to the limit.

We denote by R(t; X, g) the integral Zj,(g) with Z = [g(X,)dX,, where X is the rough path X =
(X, K(X)) with K(X) defined as a Stratonovich integral. Similarly, if we use an Ito integral for K(X), then
we denote Z ,(g) by &i(t; X, g).

We also set £4(¢; X,g) = Zivzl L(t; X, gi, xi), when £ is defined in the Stratonovich, and £;(¢t; X,g) =
Z?]:l £(t; X, gi, xi) when £ is defined in the It0 sense.

Remark 9. Here, we consider only the “first level”, and not the iterated integrals of [ g(X)dX against itself
since it is useless for our result.

Theorem 4. For any X € Z(\,A) and g € Lip(7)N with v € (0,1). Then R(X, g) = £:(X,g) and &(X,g) =
£i(X, g) under P, for any starting point v € RY.

We already know that this result is true for semi-martingales.

Proposition 5. [8] Let (X, P) be a continuous semi-martingale and g € Lip(y)Y with v € (0,1). Then P-almost
surely, Rs(X,9) = £5(X, 9) and Ri(X,g) = &(X,9).

Proof of Theorem 4. We drop any references to the subscripts s and i in £ and R, since the proof is the same
in both cases.

Let (a%,b°) a sequence of elements in Z°°°f(\ A) such that a° and b° are smooth and converge almost
everywhere to a and b. The corresponding process X°¢ is then a semi-martingale, since L® = %V(aev-) + bV
may be transformed into a non-divergence form operator.

In addition, let us assume in a first time that g is smooth. From the proof of Theorem 2.2 in [31] (see also
the proof of Cor. 1 on the localization argument), (g(X¢)).>o satisfies Conditions UTD. From Lemma 3, one
knows that for i = 1,..., N, £"(¢; X¢, g, xi) converges to £(¢; X<, g, x;) in probability at a speed that is uniform
in e. As in the proof of Lemma 4, it is then easily deduced from Theorem 4.2 in [4] that £(¢; X¢, g) converges
£(t; X, g) in distribution. Yet we have seen in Corollary 1 that (X¢, K(X¢)) converges in V* to (X, K(X)).
From the continuity of & in V*, we deduce that £(X¢,g) converges in distribution to K(X,g). Necessarily,
£(X,g) = R(X, g) under the assumption that g is smooth.

Now, if g only belongs to Lip(’y)N , let us introduce a sequence of mollifiers (p5)s~o. Then the convolution
g* s of g with ¢s is a smooth functions satisfies ||g* ¢s||Lip < ||g]|Lip- In addition, gx¢s and Vg* @5 converge
uniformly to g and Vg.

The conclusion follows from Propositions 1 and 4. O
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A. ON THE CONVERGENCE OF THE SUM OF SQUARES OF A MARTINGALE TO ITS BRACKET

The following lemma is used in the proof of Lemma 3. It corresponds to a classical result, but we write
it explicitly to show the dependence of the rate of convergence with respect to the Lipschitz constant of the
brackets.

Lemma 6. Let (Q, F,P) be a probability space with a filtration (Fi)i>0. Let M be a square integrable martingale
with respect to (Fi)e>o0 such that for some constant K, (M) — (M)s < K(t —s) for any 0 < s <t < T for a
fized T > 0. For each n > 1, let {t} }i=1,...n be a partition of [0,T] such that sup,_y ., 1(tf' ; —t}') decreases
to0 as n — co. Let

() —1
Qr = > (Mg, — Mpn)?,
i=1
where £(t) is the integer such that t?(t) <t< t?(t)Jrl'
Then, for any k > 0 and any € > 0, there exists an integer ng such that

P| sup |QF — (M)i| > k| <e foralln > ng
t€[0,T)

and the choice of ng depends only on K, r, T and the mesh sup;_; ,_1(t} 1 —17') of {t]'}i=1,...n-

Proof. The convergence in probability of Q7 to (M), for any ¢ > 0 is classical (see for example [17], Th. 1.5.8,
p. 33). However, we write it to show that the rate of convergence depends only on K. Let N be the martingale
defined by N = M? — (M) (note that with our condition on the growth of (M), N is really a martingale and
not a local martingale).

Let us set AZLM = Mt?#l — Mt?, A?N = Nt?+1 — Nt?, AZL<M> = <M>t?+1 — <M>t7

Then

2 2
o 5)-1 o (5)-1
DoOAIM (M) | <2 > ATM (M) | +2((M)— (M), )?
=1 i=1

o (t)—1 2

=2 S0 (ArM - AT(M)) | +2((M)e — (M), )?

=1
" (H)—1
=2 3 AMN?42 Y ATNAPN £ 2((M) — (Mg, )2
i=1 i,5=1,....07"(t)—1

i#]
If j <, since N is a martingale,

E[A}NAIN] =E|[AINE |AIN|Fx || =0,

Thus,
o (4)—1 2 (1) -1
B[ X arm—(n,| | <2 3 E[AIN?]+2E [ (M), — (M), )*] -
=1 =1

With the Burkholder-Davis-Gundy inequality, there exists a constant C’ such that for i = 1,...,"(¢) — 1,

E[AIN?] =E[AM*] = 2E [AFPMPAMM)? | +E [A}NM)?] < C'E[ANM)?] < KC'(th, —t7)?,
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so that
o (t)—1
E > APM — (M), <2K(C'T+1) sup (7 —t0).
=1

i=1,...,n—1

This proves the L2(IP)-convergence of the one-dimensional marginals of Q™ to (M).
To now turn to prove the uniform convergence of Q™ to (M). For this, let us choose two integers 1 < k < ¢ <n

and let us note that
2

-1 -1
(Z A?M2> => AMY 2 Y ATMPATME.
i=k i=k i,j=k,....0—1

i#]

With the Burkholder-Davis-Gundy inequality, there exists some constant C’ such that

—1 —1
E|> APM* | <CE|Y ANM)? | <C'K(ty—t) sup (£, —t]). (23)
i=k i=k i=k,....0—1
On the other hand,
S AMMEATM? = YT AINAMM)+ > AP(M)ATN
i,j=k,...,.0—1 i,j=k,...,.0—1 ij=k,....0—1
i#] i#] i#j
Y AINATN 4 Y AFM)A}(M).
ij=k,....0—1 ij=k,....0—1
i#£] i#£]

As N is martingale, one gets that

E| Y awAN|=E| Y aE[AIN|F,]|=0
bj=k. b1 ij=k,... 01
i#j i

for a; = AN or a; = A?(M). In addition, since AP N? = (A?M? — AT(M))? < APM* + A{(M)?,

—1
Z AINAY (M) = ZA?N((MM — (M), )
=k f—1 i—k
i#£j
-1
< (M) — (M)m)? Y  A}N?
i=k

With (23), E | > j=k,....0—1 A?NA?(M) < Ot} — t7)* for some constant C' that depends only on 7 and K.
i#£]
On the other hand, still using the fact that (M) is increasing, D i j=k,....c—1 A7 (M)A (M) < ((M)p — <M>t7§)2 <
i#]

K2(tp —t7)2.
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Hence, we finally get that
-1 2
(Z A?M2> <Oty —11)? (24)
i=k

for some constant C' that depends only on K and 7.
Now, for a partition {s!"};=1 . m of [0,T],

sup [QF = (M) < sup  swp  (1QF = Q|+ Q% — (Mg | + (M), — (M)gp]) . (25)

te[0,T] i=1,..,m—1te[ty t7 ] ‘

Let us note that, since ¢ — Q} is increasing, for ¢ € [s]", s} ]

0+ (in)—1
sup  [QF —QUn| < > (Myp — Myp)® — (Mg = M n))27 (26)
tE[s{",sﬁl] i=0~ (i,n) 7 Y

where £7(i,n) is such that tj_ , | <si" <tp- oy and tih ;o <SPy ST
With (25) and (26),

P| sup |QF — (M) >4/~@1 SP{ sup sup (M) — (M)gm| >I€‘|

t€[0,T] i=1,...,mte[sT,s7 ]
ot (im)—1
+P| sup Z (Myn — M) >k | +P [ sup  |Qfm — (M)sp| > Ii:|
i=1,...,m . “—* i : i=1,...,m—1 °
=0~ (i,n)
+P [ sup  (Myn — Min )2 > n] . (27)
i=1,...m—1 = (i,n)—1 = (i,n)
For any k > 0, it follows from (24) that
_ 2
0t (i,n)—1 0t (i,m)—1 C m—1 oT
2 2 m m\2
P s > AM >k SEZE Z AM <. (s —si")* < =50 (28)
T Jj=0~(i,n) j=0—(i,n) i=1
with 0 = sup,_; __,,—1(s{t; — s{"). Moreover,
Ko
Plsup sup |[(M)— (M)sm|>r| <Plosc((M),0) >r] < —, (29)
i te[syr,sT] ‘ K

where osc(f,8) = sup, se(0,17, [1—s|<s [F(t) — f(s)] is the modulus of continuity of a continuous function f. With
the Burkholder-Davis-Gundy, there exists a constant C’ such that

1
P My My )? < —E{ My My )2
L:f?gnq( té*(i,n)—l ttz (1, n)) >K/:| — 4 1 K2 ( t/z (i,n)—1 ttz*(i,n))
yees i—
mC'K
<K @, (30)
Jj=1,...,n—1
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Finally,
m—1
P sup  |Q%n — <M>ém| > Ii:| < Z P [|Q? — (M)s >K|. (31)
i=1,...,m—1 K 1 i

Given £, > 0, the idea is now to fix first the mesh ¢ of the partition {s]"};=1 ... m, — which is arbitrary chosen —
so that the quantities in (28) and (29) are smaller than £/4. This fix m. We choose then ng large enough such
that for any n > ng, the quantities in (30) and (31) are also smaller than /4. We then obtain that with (27)

P| sup |QF — (M)t >4k | <eforalln >ng
te[0,T

and we remark that the choice of § depends only on K, T and k, as well as the choice of ng, as we claimed. [
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