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LOGARITHMIC SOBOLEV INEQUALITIES FOR INHOMOGENEOUS MARKOV
SEMIGROUPS
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Abstract. We investigate the dissipativity properties of a class of scalar second order parabolic
partial differential equations with time-dependent coefficients. We provide explicit condition on the
drift term which ensure that the relative entropy of one particular orbit with respect to some other one
decreases to zero. The decay rate is obtained explicitly by the use of a Sobolev logarithmic inequality
for the associated semigroup, which is derived by an adaptation of Bakry’s Γ-calculus. As a byproduct,
the systematic method for constructing entropies which we propose here also yields the well-known
intermediate asymptotics for the heat equation in a very quick way, and without having to rescale the
original equation.
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1. Introduction

In this paper, we investigate a class of linear parabolic equations (or a class of stochastic differential equations)
which due to the presence of time-dependent coefficients have no stationary solution, but for which orbits still
do come together in the “metric” given by relative entropy or, more generally, by Φ-entropies. More precisely,
we provide explicit conditions on the coefficients, adapting Bakry-Émery’s criterion, which ensure that the
entropies (1) or (2) decrease to zero for large time, with quantitative bounds, for any two orbits u and v, that
is, even when v is a non-stationary solution. A similar work is done in [9] in the framework of discrete
time Markov chains by the mean of Dobrushin’s coefficient. This method no longer works for diffusions on non
compact sets but its last remark suggest that Bakry and Émery technology can be used.

1.1. The Kullback-Leibler distance as a particular Φ-entropy

Given two probability densities u, v on R
d, the entropy of u relative to v (also known in information theory

as their Kullback-Leibler distance (see [12]), although it is not a distance) is defined by

H(u|v) :=
∫

Rd

u(x) log
(

u(x)
v(x)

)
dx. (1)
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Although this quantity does not satisfy the triangle inequality, it is always non-negative and vanishes only when
u = v. These two facts are immediate consequences of the well-known Pinsker inequality (see [14]):

H(u|v) ≥ 1
2
|u − v|2L1 .

Thus the quantity H(u|v) may provide some notion of “distance” between u and v. In Partial Differential
Equations H(u|v) may be useful in studying the asymptotic behavior of a dissipative system. In this context
v is in general a stationary solution (or in physical terminology a detailed balance equilibrium), u is the orbit
of some Kolmogorov (or some other parabolic) equation, and H(u|v) is a non increasing function of time. In
many cases this fact can be combined with some clever inequalities to show that v in fact attracts u in some
appropriate metric. This is the basis of the well-known entropy dissipation method (see [16]), which has been
used to good advantage in many examples such as (linear or nonlinear) parabolic equations, kinetic equations,
etc.

As is well-known from information theory and Statistical Physics (1) is a particular instance of a more general
class of entropies:

HΦ(u|v) :=
∫

Rd

v(x)Φ
(

u(x)
v(x)

)
dx, (2)

where Φ is any convex function defined on [0,∞[ and dx stands for the d-dimensional Lebesgue measure. The
convexity of Φ implies a lower bound for HΦ(u|v) as follows: using Jensen’s inequality with the probability
measure vdx∫

v dx
we obtain the inequality

∫
Rd

vΦ
(u

v

)
dx ≥

∫
Rd

v dxΦ
(∫

Rd u dx∫
Rd v dx

)
·

If we assume that Φ(1) = 0, then HΦ(u|v) remains non-negative.

Remark 1.1. Formula (1) corresponds to the particular choice Φ(z) = z log z which has an interesting exten-
sivity property [8], but as a general rule the dissipation of entropy is a convexity property which has little to
do with the specific properties of the z log z function.

1.2. The entropy production for linear scalar advection-diffusion equations

Consider a general linear second-order scalar advection-diffusion equation:

∂u

∂t
+ div(b(t, x)u − a(t, x)∇u) = 0, (3)

where b is a vector field and a is a diffusion matrix (symmetric and positive) which are smooth enough to ensure
the strong existence and uniqueness for (3). For any two positive solutions u, v to this equation, one can get:

d
dt

HΦ(u|v) = −
∫

Rd

Φ′′
(u

v

)[
∇
(u

v

)
· a∇

(u

v

)]
v dx. (4)

As expected, this formula shows that linear transport does not play any role in the entropy production (the
expression does not involve the velocity field b): in physical parlance, diffusion here is the only irreversible
process. Let us emphasize that, from the convexity of Φ and the positive definiteness of the diffusion matrix a,
we obtain that the relative entropy HΦ(u|v) is a time-decreasing quantity, whatever the solutions u, v are,
and whatever the coefficients b, a are. In particular for arbitrary time-dependent coefficients b and a the
system will have no detailed balance equilibrium, i.e. the problem

b(t, x)u(t, x) = a(t, x)∇u(t, x)
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will have no solution at all. Note that in the context of Markov processes, a similar dissipation property was
exhibited by Yosida, and Kubo (see [11]).

The natural question then arises to investigate under which (sufficient) conditions on the coefficients of the
equation does the entropy decrease to zero. In the classical setup where one investigates the trend toward a
stationary solution, it is well-known that for a large class of such stationary solutions, some Logarithmic Sobolev
Inequality is available [13]. This fact can be used to obtain a Gronwall-type inequality for the entropy, thereby
yielding exponential decay. The supplementary difficulty here is that the measure relative to which the entropy
is computed moves along the flow, in such a way that classical conditions which ensure that a logarithmic
Sobolev inequality will hold cannot be checked a priori.

In the next section we revisit a well-known prototype, the Ornstein-Uhlenbeck equation with constant drift.
This example shows that depending on the nature of the drift the entropy may decay to zero in an exponential
or algebraic fashion, or converge to a nonzero value. Section 3 collects the technical tools needed to show that
for the case where the diffusion matrix is the identity matrix, the solution of the evolution problem will satisfy
the logarithmic Sobolev inequality at all positive times. The asymptotic behavior of the entropy is obtained
as an easy corollary in Section 4. In Section 5 we show that at least for the heat equation (but we believe for
a much larger class of parabolic problems), the choice of the fundamental solution for v provides a very quick
proof of the classical Gaussian intermediate scaling. At least, in Section 6, we provide an application to genetics:
we show that the Wright-Fisher diffusion with great mutations rates forget its initial condition exponentially
fast if the mutations rates, which can depend on time, are greater than 1/2.

2. The fundamental example: the Ornstein-Uhlenbeck process

Let us consider the simplest case. Denote by (X)t≥0 the solution of

dXt =
√

2Bt − λXt dt,

where (B)t≥0 is a standard Brownian motion on R and λ ∈ R is a constant. This equation can be solved as
follows:

Xt = X0e−λt +
√

2
∫ t

0

eλ(s−t) dBs.

As a conclusion, the measure Pt(·)(x) which is defined as the law of Xt knowing that X0 = x is the Gaussian
measure with mean xe−λt and variance (1 − e−2λt)/λ. One can then compute the relative entropy of Pt(·)(y)
with respect to Pt(·)(x):

α(t) := H(Pt(·)(y)|Pt(·)(x)) =
λ(x − y)2

2(e2λt − 1)
,

since Pt(·)(y) and Pt(·)(x) have the same variance. Of course, in the case when λ = 0, the above formula has
to be understood as

H(Pt(·)(y)|Pt(·)(x)) =
(x − y)2

4t
·

As a conclusion, three different behaviors can occur:
• if λ > 0, then α decreases exponentially fast to 0, which is natural since Pt(·)(x) converges exponentially

fast to its invariant measure N (0, 1/λ).
• if λ = 0, then α still goes to zero although Pt(·) does not converge to a probability measure,
• if λ < 0, then α converges exponentially fast to a nonzero limit:

α(t) =
−λ(x − y)2

2(1 − e2λt)
= −λ

2
(x − y)2 − λ(x − y)2

2(1 − e2λt)
e2λt −−−→

t→∞ −λ

2
(x − y)2.
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3. The local Φ-Sobolev inequality for inhomogeneous diffusion Semigroups

3.1. Notations

In this section we consider the family of formal elliptic partial differential operators (Lt)t>0 defined by

Ltf(x) :=
d∑

i,j=1

aij(t, x)∂ijf(x) +
d∑

i=1

bi(t, x)∂if(x), (5)

where (aij(t, ·))1≤i,j≤d is a symmetric definite positive diffusion matrix and b(t, ·) is a given vector field on R
d,

defined for all t > 0. Let us suppose that the coefficients are smooth functions of (t, x). This family of operators
(Lt)t≥0 generates an inhomogeneous Markov semigroup which we will denote by (Ps,t)0≤s≤t in the following
sense. Writing as usual a as a = σσT , one can associate to (Lt)t≥0 the solution of the following SDE:

∀t ≥ r, Xx,r
t = x +

∫ t

r

b(s, Xx,r
s ) ds +

√
2
∫ t

r

σ(s, Xx,r
s ) dBs,

where (Bt)t≥0 is a standard Brownian motion on R
d. Semigroup and probabilistic approaches are linked by the

fundamental relation
Ps,tf(x) := Ef(Xs,x

t ).

The Markov property of X can be translated into a composition rule for the semigroup: for every s ≤ t ≤ u,

Ps,uf(x) = E[f(Xs,x
u )] = E

[
f
(
X

t,Xs,x
t

u

)]
= E[Pt,uf(Xs,x

t )] = Ps,tPt,uf(x).

This semigroup satisfies the well-known Kolmogorov equations:

∂sPs,tf = −LsPs,tf, ∂tPs,tf = Ps,tLtf. (6)

Let μ be a probability measure on R
d and u the density function of the law of Xt knowing that L(X0) = μ.

Then, for every smooth function f ,

E(f(Xt)) = E(E(f(Xt)|X0)) =
∫

P0,tf(x)μ(dx).

The Itô Formula ensures that, for every smooth function f and s ≤ t,

f(Xt) − f(Xs) −
∫ t

s

Lrf(Xr) dr

is a martingale. In other words,

Ef(Xt) − Ef(Xs) −
∫ t

s

ELrf(Xr) dr = 0.

As a consequence, for any smooth function f ,

∫ [
u(t, x) − u(s, x) −

∫ t

s

L∗
ru(r, x) dr

]
f(x) dx = 0,
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and u satisfies {
∂tu = div(a∇u + (∂a − b)u)
u(t, x) dx −−−→

t→0
μ(dx),

where ∂a is the vector defined by (∂a)j =
∑

i ∂iaij and then it is of the form (3) (once b has been relabeled).
Following [2,3], let us associate to Lt the two bilinear forms Γ(t) and Γ2(t) defined by:

Γ(t)(f, g) :=
1
2
[Lt(fg) − gLtf − fLtg],

Γ2(t)(f, g) :=
1
2
[LtΓ(f, g) − Γ(g, Ltf) − Γ(f, Ltg)].

We will write Γ(t)(f) instead of Γ(t)(f, f) and Γ2(t)(f) instead of Γ2(t)(f, f).

Remark 3.1. One can check that

Γ(t)(f, g)(x) = ∇f(x) · a(t, x)∇g(x) =
d∑

i,j=1

aij(t, x)∂if(x)∂jg(x).

Remark 3.2. The expression of Γ2 is much more complicated in the general case. In the simple (but informative)
case when a(t, ·) is the identity matrix, it is very easy to check the following formula:

Γ2(t)(f) := ||Hess(f)||22 −∇f · Jac(b(t))∇f, (7)

where Hess(·) (resp. Jac(·)) stands for the Hessian (resp. Jacobian) matrix, and ||B||2 denotes the Hilbert-
Schmidt norm.

Remark 3.3. Notice that
∇f · Jac(b)∇f = ∇f · SJac(b)∇f,

where SJac(·) stands for the symmetric part of the Jacobian matrix i.e.,

SJac(b)ij =
Jac(b)ij + Jac(b)ji

2
·

The antisymmetric part of the Jacobian of b brings no contribution in our study. One can think about the
following explicit example: consider the 2-dimensional process X solution of the following SDE:

dXt = dBt −
(

1 1
−1 1

)
Xt dt.

The antisymmetric part of the drift induces a rotation whereas the symmetric part ensures the convergence to
equilibrium.

Let Φ: I → R be a smooth convex function defined on a closed interval I of R not necessarily bounded.
Let μ be a positive measure on a Borel space (Ω,F). The Φ-entropy functional EntΦμ is defined on the set of
μ-integrable functions f : (Ω,F) → (I,B(I)) by

EntΦμ (f) =
∫

Ω

Φ(f) dμ − Φ
(∫

Ω

f dμ

)
.

In what follows, μ is a probability measure. As a consequence,
∫
Ω
f dμ ∈ I and the definition make sense. in

the sequel, one has to make an extra assumption in order to derive interesting functional inequalities:

(u, v) 
→ Φ′′(u)v2 is non negative and convex on I × I. (8)
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Remark 3.4. The classical variance and entropy are Φ-entropy functionals respectively associated to x 
→ x2

on I = R and x 
→ x log x on I = [0, +∞).

Definition 3.5. The semigroup (Ps,t)0≤s≤t is said to satisfy a local Φ-Sobolev inequality with constants
(Cs,t)0≤s≤t if for all s ≤ t and smooth function f ,

EntΦPs,t
(f) ≤ Cs,tPs,t(Φ′′(f)Γ(t)(f)).

Remark 3.6. Under the so-called Bakry-Émery criterion,

∃ρ ∈ R, ∀f smooth, Γ2(f) ≥ ρΓ(f),

homogeneous diffusion semigroups satisfy a Poincaré and a logarithmic Sobolev inequality (see [4]). As a
generalization, Φ-Sobolev inequalities can also be established (see [7]).

Our aim is to take into account the time dependence of the coefficients of the diffusion process. We will show
that the appropriate adaptation of the Bakry-Émery criterion to that situation is as follows:

∃ρ : t 
→ ρ(t) ∈ R, ∀f smooth, Γ2(t)(f) +
1
2
∂tΓ(t)(f) ≥ ρ(t)Γ(t)(f), (9)

where ∂tΓ(t) is defined as

∂tΓ(t)(f, g)(x) :=
d∑

i,j=1

∂taij(t, x)∂if(x)∂jg(x).

Remark 3.7. As pointed by an anonymous referee, one can consider the process (X̃t)t≥0 = ((t, Xt))t≥0 whose
generator is L̃ = ∂t + Lt and recover (9) thanks to homogeneous Bakry-Émery criterion.

The key point in the homogeneous and diffusive case is to get the following commutation relation (which
turns out to be equivalent to Bakry-Émery criterion):

√
ΓPtf ≤ e−ρtPt

(√
Γf
)
.

In the following subsection we derive such a commutation relation in the inhomogeneous case.

3.2. The commutation relation

Let s and t be two fixed times, with 0 ≤ s ≤ t. The key point is the following lemma, which describes how
the dissipative mechanism tends to flatten gradients:

Lemma 3.8. Suppose that the family of operators (Lt)t≥0 defined in (5) satisfies (9). For any τ between 0 and
t, the following inequality holds true:

√
Γ(τ)(Pτ,tg) ≤ exp

(
−
∫ t

τ

ρ(u) du

)
Pτ,t

(√
Γ(t)(g)

)
. (10)

Proof. For all u ∈ [τ, t], we define β(u) by

β(u) = Pτ,u

(√
Γ(u)(Pu,tg)

)
,

and compute its derivative by using (6). The crucial assumption that Lu is a diffusion operator ensures that

Lu(Φ(g)) = Φ′(g)Lu(g) + Φ′′(g)Γ(u)(g). (11)
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In order to make the exposition clearer we denote Pu,tg as h and Γ stands for Γ(u). A straightforward compu-
tation leads to:

β′(u) = Pτ,u

(
Lu

√
ΓPu,tg +

1
2
√

Γ(Pu,tg)
{−2Γ(Pu,tg, LuPu,tg) + ∂uΓ(Pu,tg)}

)

= Pτ,u

[
1

2
√

Γh
LuΓh − 1

4(Γh)
3
2
ΓΓh − Γ(h, Luh)√

Γh
+

∂uΓ(h)
2
√

Γh

]

= Pτ,u

[
2(Γh)LuΓh − 4(Γh)Γ(h, Luh) − ΓΓh + 2(Γh)(∂uΓh)

4(Γh)
3
2

]

= Pτ,u

[
4(Γh)Γ2(u)(h) − ΓΓh + 2(Γh)∂uΓh

4(Γh)
3
2

]
·

Therefore we obtain:

β′(u) − ρ(u)β(u) = Pτ,u

[
4(Γh)(Γ2(u)(h) + (1/2)∂uΓh − ρ(u)Γh) − ΓΓh

4(Γh)
3
2

]
·

Following [4], one can show, thanks to the diffusion assumption, that the criterion (9) implies that, for all
smooth functions f ,

Γ2(u)(f) + (1/2)∂uΓf − ρ(u)Γf ≥ ΓΓf

4Γf
·

Remark 3.9. In the case when a is the identity matrix, one can easily get derive this inequality from the
criterion (9) and the Cauchy-Schwarz inequality.

As a conclusion, β satisfy the following differential inequality:

β′(u) ≥ ρ(u)β(u).

In other words, the function

u 
→ β(u) exp
(
−
∫ u

τ

ρ(v) dv

)
is an increasing function on the interval [τ, t] which implies that

β(τ) ≤ β(t) exp
(
−
∫ t

τ

ρ(u) du

)
.

This is precisely the desired inequality. �

3.3. Local Φ-Sobolev inequalities

Theorem 3.10. Suppose that the family of operators (Lt)t≥0 defined in (5) satisfies (9). Then for any times
s, t with 0 ≤ s ≤ t and any positive function g, Ps,t satisfies the following Φ-Sobolev inequality:

EntΦPs,t
(g) := Ps,t(Φ(g)) − Φ(Ps,tg) ≤ c(s, t)Ps,t(Φ′′(g)Γ(t)(g)),

where the constant c(s, t) can be chosen as:

c(s, t) =
∫ t

s

exp
(
−2
∫ t

τ

ρ(u) du

)
dτ.
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Proof. Consider the function α : [s, t] → R defined by:

α(τ) := Ps,τ (Φ(Pτ,tg)).

Let us compute the derivative of α:

α′(τ) = Ps,τ (Lτ (Φ(Pτ,tg)) − Φ′(Pτ,tg)LτPτ,tg).

Thanks to the fact the diffusion assumption, (11) ensures that

α′(τ) = Ps,τ (Φ′′(Pτ,tg)Γ(τ)(Pτ,tg)).

The commutation relation (10) ensures that

Φ′′(Pτ,tg)Γ(τ)(Pτ,tg) = Φ′′(Pτ,tg)
(√

Γ(τ)(Pτ,tg)
)2

≤ exp
(
−2
∫ t

τ

ρ(u) du

)
Φ′′(Pτ,tg)Pτ,t

(√
Γ(t)(g)

)2

.

Jensen inequality with the bivariate function (u, v) 
→ Φ′′(u)v2 (which is assumed to be convex according to (8))
ensures that

Φ′′(Pτ,tg)Pτ,t

(√
Γ(t)(g)

)2

≤ Pτ,t(Φ′′(g)Γ(t)(g)).

As a conclusion,

α′(τ) ≤ exp
(
−2
∫ t

τ

ρ(u) du

)
Ps,τPτ,t(Φ′′(g)Γ(t)(g)) = exp

(
−2
∫ t

τ

ρ(u) du

)
Ps,t(Φ′′(g)Γ(t)(g)).

Since α(t) = Ps,t(Φ(g)) and α(s) = Φ(Ps,t(g)), the result follows upon integration of this inequality between s
and t. �

In the special case of Φ : x 
→ x log x, the local logarithmic Sobolev inequality for the semigroup (Ps,t)0≤s≤t

can be stated as follows:

Corollary 3.11. Suppose that the family of operators (Lt)t≥0 defined in (5) satisfies (9). Then for any times
s, t with 0 ≤ s ≤ t and any positive function g, Ps,t satisfies the following logarithmic Sobolev inequality:

EntPs,t(g) := Ps,t(g log g) − (Ps,tg) log(Ps,tg) ≤ c(s, t)Ps,t

(
Γ(t)(g)

g

)
, (12)

where the constant c(s, t) can be chosen as:

c(s, t) =
∫ t

s

exp
(
−2
∫ t

τ

ρ(u) du

)
dτ.

Remark 3.12. If for every x ∈ R
d, the matrix (aij(t, x))i,j is bounded by the identity matrix (as symmetric

bilinear forms), then Γ(t)(g) ≤ |∇g|2 and Ps,t satisfies the classical logarithmic Sobolev inequality:

EntPs,t(g) ≤ c(s, t)Ps,t

(
|∇g|2

g

)
·
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Remark 3.13. In the case where ρ(t) = ρ for all t > 0, we recover the constant

c(s, t) =
1
2ρ

(
1 − e−2ρ(t−s)

)

provided by [4] in the homogeneous case.

4. The Kullback-Leibler distance of two orbits of a parabolic problem

We now consider the following parabolic equation (3):

∂v

∂t
(t, x) = L∗

t v(t, x), t > 0, x ∈ R
d, (13)

v(0, x) = v0(x), x ∈ R
d, (14)

where L∗
t stands for the adjoint of Lt with respect to the Lebesgue measure on R

d.
The aim of this section is to get a control of HΦ(u|v) in terms of the curvature. We will consider in the

following the particular case of the classical relative entropy. The (straightforward) generalization to Φ-entropies
is left as an exercise to the reader...

If we assume that the initial data v0 satisfies a logarithmic Sobolev inequality, the result of the previous
section may be used to show that the inequality is propagated in time:

Theorem 4.1. Assume the initial data v0 satisfies the following logarithmic Sobolev inequality: for all smooth
functions f , ∫

f log fv0 −
∫

fv0 log
∫

fv0 ≤ d0

∫
Γ(0)(f)v0.

If the family (Lt)t≥0 satisfies the criterion (9). Then for any positive time, the solution v(t, ·) of (13), (14)
satisfies the following logarithmic Sobolev inequality∫

f log fv(t, ·) −
∫

fv(t, ·) log
∫

fv(t, ·) ≤ d(t)
∫

Γ(t)(f)v(t, ·),

where

d(t) := d0 exp
(
−2
∫ t

0

ρ(r) dr

)
+
∫ t

0

exp
(
−2
∫ t

τ

ρ(r) dr

)
dτ. (15)

Proof. For any positive function g we have:∫
g(x) log g(x)v(t, x) dx =

∫
E

[
f
(
X0,x

t

)]
v0(x) dx =

∫
P0,t(g log g)(x)v(0, x) dx.

The integrand may be bounded from above by using the local inequality (12) with s = 0, and the logarithmic
Sobolev inequality for v0:∫

P0,t(g log g)v(x, 0) dx ≤
∫

P0,tg log P0,tgv0(x) dx + c(0, t)
∫

P0,t

(
Γ(t)(g)

g

)
v0(x) dx

≤ d0

∫
Γ(0)(P0,tg)

P0,tg
v0(x) dx + c(0, t)

∫
P0,t

(
Γ(t)(g)

g

)
v0(x) dx.

The first integral in the last inequality may be estimated by (10), and this completes the proof. �
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We are now in a position to estimate the Kullback-Leibler distance between two arbitrary orbits of (13):

Theorem 4.2. Under the same assumptions as in previous theorem, let u be another solution of (13) (i.e.,
corresponding to different initial data u0). Assume that u0 and v0 are positive. Define the relative entropy of u
with respect to v at any positive time t by

H(u(t)|v(t)) :=
∫

u(t, x) log
u(t, x)
v(t, x)

dx.

This quantity is then bounded as follows for all positive times:

H(u(t)|v(t)) ≤ H(u(0)|v(0))c(t),

where

c(t) = exp
(
−
∫ t

0

1
d(s)

ds

)
, (16)

and d(t) is the constant defined in (15).

Proof. The proof is a straightforward application of Gronwall’s lemma. Let us set g := u
v ; from (4) with

Φ(z) = z log z, we obtain
d
dt

H(u(t)|v(t)) = −
∫

Γ(t)(g)
g

v dx.

Therefore, Theorem 4.1 gives the following control:

d
dt

H(u(t)|v(t)) ≤ − 1
d(t)

H(u(t)|v(t)),

which gives the result. �
Let us conclude this section by indicating what the obtained rate is when the quantity ρ(t) may be taken to

be a fixed constant ρ. If ρ = 0, then (15) gives d(t) = d0 + t, therefore we get the algebraic decay

c(t) =
1

1 + t
d0

·

For ρ �= 0, we have

d(t) = d0e−2ρt +
1
2ρ

(1 − e−2ρt),

and the integral in (16) may be computed to yield

c(t) =
2ρd0e−2ρt

1 + (2ρd0 − 1)e−2ρt
,

and then, we recover the exponential rate of convergence of the relative entropy.

5. An application to intermediate asymptotics

In the case where a Kolmogorov equation has a rather trivial (e.g. constant) asymptotic state, it is often
the case that (due to the self similarity of the underlying Markov process) some appropriate rescaling of the
orbit shows structure (e.g. Gaussian), a phenomenon termed intermediate asymptotics by Barenblatt [5]. To
illustrate this point let us consider the one dimensional linear heat equation on the entire line:

∀t > 0, ∀x ∈ R,
∂u

∂t
(t, x) =

1
2

∂2u

∂x2
(t, x).
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It is very easy to check that for large times u converges point wise to zero, but it is also very easy to read off
from the explicit form of the solution (as given in terms of the heat kernel) the following point wise convergence:

√
tu(t, y

√
t) −−−→

t→∞ C exp
(
−y2

2

)
, (17)

where the constant C may be determined from mass conservation. As is well-known, this convergence may be
obtained by rescaling the equation and constructing an entropy functional for the rescaled equation. Let us
briefly recall this argument. The first step consists in rescaling the function u by setting:

u(t, x) = α(t)v
(

τ(t),
x

β(t)

)
,

where the scaling functions α(t), β(t), τ(t) are to be chosen so as to make the equation for v as simple as possible,
while preserving the mass constraint: ∫

Rd

u(t, x) dx = const.

These two requirements lead to the choice

v(log t, y) =
√

tu(t, y
√

t), (18)

thus to the equation
∂v

∂τ
=

1
2

∂

∂y

(
yv +

∂v

∂y

)
·

The detailed balance equilibria for this equation are exactly all multiples of the standard Gaussian density, i.e.
take the form:

v∞(y) = C exp
(
−y2

2

)
, (19)

for some constant C. By the result of previous section, the relative entropy

H(v|v∞) =
∫

R

v log
v

v∞
dy (20)

decreases to zero for large times, which implies that v converges to a fixed point of the form (19) for some C.
This result, when rephrased in terms of u, is exactly the intermediate asymptotics (17). Note that in this

case the constant C is uniquely determined from the mass conservation relation:∫
R

u(t, x) dx =
∫

R

u(0, x) dx.

The key point is now that by using the change of variable x = y
√

t in (20) one obtains:

H(v|v∞) =
∫

R

u(t, x) ln
u(t, x)

C 1√
t
exp (−x2

2t )
dx,

which is exactly the relative entropy of u with respect to the fundamental solution of the heat equation. The fact
that this entropy is dissipated combined with Pinsker’s inequality now immediately leads to the intermediate
asymptotic (17), without having to resort to any rescaling of the function u.

In other words, the fundamental solution encodes the intermediate asymptotics.



LOGARITHMIC SOBOLEV INEQUALITIES... 503

6. An application to Wright-Fisher diffusion

Consider the diffusion process on (0, 1) solution of

dXt =
√

Xt(1 − Xt) dBt + (−αXt + β(1 − Xt)) dt, (21)

where α and β are two positive numbers. This process describes the proportion of an allele A in a large haploid
population for a gene with two alleles A and a when mutations from A to a (resp. from a to A) occur with
rate α (resp. β), see [10] for the biological setting. We assume that α and β depend on time but are greater
than 1/2.

Proposition 6.1. The process (21) satisfies the curvature criterion (9) with the function ρ defined by

ρ(t) =

⎧⎪⎨
⎪⎩

1
2

(α(t) − β(t))2

α(t) + β(t) − 1 −√(2α(t) − 1)(2β(t) − 1)
if α(t) �= β(t),

2α(t) − 1 if α(t) = β(t).
(22)

Proof. Since the diffusion X belongs to (0, 1) and the diffusion coefficient does not depend on time, the curvature
criterion can be written as

ρ(t) = inf
x∈(0,1)

(
σ(x)σ′′(x) + b(t, x)

σ′(x)
σ(x)

− ∂xb(t, x)
)

,

where σ(x) =
√

x(1 − x) and b(t, x) = −α(t)x + β(t)(1 − x), and then

ρ(t) = inf
x∈(0,1)

2(α(t) − β(t))x − 1 + 2β(t)
4x(1 − x)

·

One can notice that if α(t) < 1/2 or β(t) < 1/2 then ρ is −∞. A straightforward computation leads to (22). �

As a conclusion, if the mutation rate are sufficiently great i.e. greater than 1/2, the relative entropy between
two distributions of allele A goes to zero (exponentially fast if α(t) and β(t) are greater than 1/2 + δ for all t)
whatever the initial distributions are.
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