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CONCENTRATION INEQUALITIES FOR SEMI-BOUNDED MARTINGALES
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Abstract. In this paper, we apply the technique of decoupling to obtain some exponential inequalities
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1. Introduction

In this paper we extend the results of de la Peña [3]. The main method that we use is the theory of
decoupling, which has been developed in de la Peña [2] and [3]. Decoupling theory provides a general framework
for analyzing problems involving dependent random variables as if they were independent. We will apply the
theory of decoupling as in de la Peña [3] and some new inequalities for independent random variables motivated
by Maurer [1] to obtaining extensions of exponential inequalities of de la Peña [3].

The paper is organized as follows. In Section 2, by usual methods, we present some new exponential inequal-
ities for random variables and discrete time martingales. A brief introduction to the theory of decoupling is
presented in Section 3. In Section 4, we use the theory of decoupling to establish some further results which
refine those in Section 2 and extend de la Peña’s exponential inequalities from bounded martingale difference
sequence to semi-bounded ones.

2. General exponential inequalities

We will begin with the following basic inequalities for random variable, whose ideas stem from Maurer [1].

Lemma 2.1. Let X be a random variable such that EX2 < ∞ and P(X ≤ C) = 1, where 0 < C < ∞. If
EX = 0, then for any λ > 0,

E (exp {λX}) ≤ exp
{

λ2

2
(
C2 + EX2

)}
. (2.1)

More generally, if EX ≤ 0, then for any λ > 0, we have

E (exp {λX}) ≤ exp
{
λEX + λ2

(
C2 + EX2

)}
. (2.2)
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Proof. (following Maurer [1]) For λ > 0, using e−x ≤ 1 − x +
1
2
x2 for any x ≥ 0, and ex ≥ 1 + x for all x ∈ R,

we have
E (exp {λX}) =E (exp {λC} exp {−λ(C − X)})

≤ exp {λC}E

(
1 − λ(C − X) +

λ2

2
(C − X)2

)

=exp {λC}E

(
1 − λ(C − X) +

λ2

2
(
C2 + X2

)− λ2CX

)

≤ exp
{

λEX +
λ2

2
(
C2 + EX2

)− λ2CEX

}
which gives (2.1) if EX = 0. If EX ≤ 0, (2.2) follows by the inequality: 2CEX ≤ C2 + (EX)2. �

Lemma 2.2. Let X be a random variable such that EX2 < ∞ and P(X ≤ C) = 1, where 0 < C < ∞. Then
for any λ > 0, we have

E (exp {λX}) ≤ exp
{

λEX +
λ2

2
eC

EX2

}
. (2.3)

In particular if EX = 0, then for any λ > 0,

E (exp {λX}) ≤ exp
{

λ2

2
eC

EX2

}
. (2.4)

Proof. For any λ > 0, using the inequality ex ≤ 1 + x +
1
2
x2eC for any x ≤ C, we have

E(exp{λX}) ≤ E

(
1 + λX +

λ2

2
eCX2

)
≤ exp

{
λEX +

λ2

2
eC

EX2

}

which is (2.3). That implies (2.4) if EX = 0. �

The following theorem treats the case of martingale difference sequence.

Theorem 2.3. Let {di;Fi} be a martingale difference sequence with respect to the filtration (Fi)i≥0 (i.e., di

is Fi- measurable and E(di|Fi−1) = 0), such that E(d2
i |Fi−1) ≤ σ2

i , where σ2
i ≥ 0 is constant. Furthermore,

assume that P(di ≤ ci|Fi−1) = 1, where ci > 0, σ2
i > 0 are constants. Then for any λ > 0,

E exp

{
λ

n∑
i=1

di

}
≤ exp

{
λ2

2

n∑
i=1

(
c2
i + σ2

i

)}
. (2.5)

In particular, for any r > 0,

P

(
n∑

i=1

di ≥ r

)
≤ exp

{
− r2

2
∑n

i=1 (c2
i + σ2

i )

}
. (2.6)

More generally, if {di;Fi} is a super-martingale difference sequence (i.e., E(di|Fi−1) ≤ 0) with E(d2
i |Fi−1) ≤ σ2

i

and P(di ≤ ci|Fi−1) = 1, where ci, σ2
i ≥ 0 are constants. Then, for any λ > 0,

E exp

{
λ

n∑
i=1

di

}
≤ exp

{
n∑

i=1

λ2
(
c2
i + σ2

i

)}
. (2.7)
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In particular, for any r > 0,

P

(
n∑

i=1

di ≥ r

)
≤ exp

{
− r2

4
∑n

i=1 (c2
i + σ2

i )

}
. (2.8)

Proof. Here we only consider the case of martingale difference sequence, and the other case of super-martingale
difference sequence is similar. By Lemma 2.1 or as the proof of Lemma 2.1, for any λ > 0 and di, we have:

E

(
exp {λdi}

∣∣∣Fi−1

)
≤ exp

{
λ2

2
(
b2
i + c2

i

)}
.

Thus

E exp

{
λ

n∑
i=1

di

}
=E

[
exp

{
λ

n−1∑
i=1

di

}
E

(
exp {λdn}

∣∣∣Fn−1

)]

≤ exp
{

λ2

2
(
b2
n + σ2

n

)}
E exp

{
λ

n−1∑
i=1

di

}
,

which yields to (2.5) by induction. For any r > 0, from (2.5) and Chebychev’s inequality, we have for any λ ≥ 0,

P

(
n∑

i=1

di ≥ r

)
≤ exp{−λr}E exp

{
λ

n∑
i=1

di

}
≤ exp

{
−λr +

λ2

2

n∑
i=1

(
c2
i + σ2

i

)}

where (2.6) follows by optimization over λ ≥ 0.
�

As the proof of Theorem 2.3, from Lemma 2.2, we derive

Theorem 2.4. Under the assumptions of Theorem 2.3, let c = max
i

ci and if {di;Fi} is a martingale difference
sequence, then for any λ > 0, we have

E exp

{
λ

n∑
i=1

di

}
≤ exp

{
λ2

2

n∑
i=1

eciσ2
i

}
≤ exp

{
λ2

2
ec

n∑
i=1

σ2
i

}
. (2.9)

3. General theory of decoupling

In this section, we will recall general theory of decoupling (cf. de la Peña [2] and [3]). Decoupling theory
provides a general framework for analyzing problems involving dependent random variables as if they were
independent. The theory will play a key role in improving the results in Section 2 and extending the works of
de la Peña [3].

Definition 3.1. Let (Xi)i∈N, (Yi)i∈N be two sequences of random variables adapted to an increasing sequence
of σ-fields {Fi}. Then {Xi} is said to be tangent to {Yi} if for all i, L(Xi|Fi−1) = L(Yi|Fi−1), where L(Xi|Fi−1)
is the conditional distribution of Xi knowing Fi−1.

Definition 3.2. A sequence of random variables {Xi} is said to be conditionally symmetric if {Xi} is tangent
to {−Xi}.
Definition 3.3. A sequence {Yi} of random variables adapted to an increasing sequence of sub-σ-filed Fi (of
F) is said to be conditionally independent (CI) if there exists a σ-algebra G contained in F such that {Yi} is
conditionally independent given G and L(Yi|Fi−1) = L(Yi|G).
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Definition 3.4. Let {Xi} be an arbitrary sequence of random variables, then a conditionally independent
sequence {Yi} which is also tangent to {Xi}, will be called a decoupled version of {Xi}.

A key result in the area of decoupling inequalities, which will be used extensively in this paper was introduced
in Jakubowski [4] (see also de la Peña [2]). We state it as a proposition.

Proposition 3.1. For any sequence of random variables {Xi}, one can find a decoupled sequence {Yi} (on
a possibly enlarged probability space) which is tangent to the original sequence and in addition conditionally
independent given a master σ-field G.

Remarks 3.2. Frequently, one can take G = σ({Xi, i ∈ N}) (cf. Kwapień and Woyczyński [5,6]) or de la Peña
[3]). The general strategy that we will follow consists of applying this result conditionally on G and use known
inequalities for sums of independent random variables.

Next we will mention the following decoupling inequality (see de la Peña [3]), which is an important tool in
proving the results in Section 4.

Theorem 3.3. Let {Xi, i ∈ N} be a sequence of nonnegative, non-degenerate random variables. Then there
exists a σ-field G and a G-conditionally independent sequence {Yi}, tangent to {Xi}, such that for all random
variables g ≥ 0 measurable with respect to G,

E

(
g

n∏
i=1

Xi

)1/2

≤
(

Eg
n∏

i=1

Yi

)1/2

. (3.1)

[Recall that G may be taken to be σ({Xi, i ∈ N}.]
Corollary 3.4. Let {Xi}, {Yi} be Fi-tangent. Assume that {Yi} is decoupled (CI). Let g ≥ 0 be any random
variable measurable with respect to σ({Xi}∞i=1). Then for all finite t,

E

(
g exp

{
t

n∑
i=1

Xi

})
≤
√√√√E

(
g2 exp

{
2t

n∑
i=1

Yi

})
. (3.2)

4. Applications of the theory of decoupling

In this section, we extend exponential inequalities in de la Peña [3] from bounded martingale differences to
semi-bounded ones. As in de la Peña [3], in order to avoid eventual problems with the definition of conditional
expectation, in this paper we will use the following notation. Let X be a positive random variable on the
probability space (Ω,F , P). Let A be an F -measurable set with P(A) > 0, then E(X |A) =

∫
A XdP/P(A).

In what follows, we will use the notation G = σ{di, i ∈ N}.
Theorem 4.1. Let {di} be a martingale difference sequence (i.e., E(di|d1, · · · , di−1) = 0), Mn :=

∑n
i=1 di,

〈M〉n =
∑n

i=1 E(d2
i |d1, · · · , di−1). Assume that P(di ≤ ci) = 1 where 0 < ci < ∞. Then, for all G measurable

sets A, x > 0, λ > 0,

P

(
Mn

〈M〉n ≥ x, A

)
≤ E

(
exp

{
−λ〈M〉nx +

λ2

2

(
n∑

i=1

c2
i + 〈M〉n

)}
| Mn

〈M〉n ≥ x, A

)
(4.1)

and

P

(
Mn

〈M〉n ≥ x, A

)
≤
√√√√E

(
exp

{
−λ〈M〉nx +

λ2

2

(
n∑

i=1

c2
i + 〈M〉n

)}
1A

)
. (4.2)



CONCENTRATION INEQUALITIES FOR SEMI-BOUNDED MARTINGALES 55

In particular, under the assumption that
∞∑

i=1

c2
i < ∞, for any y > 0, we have

P

(
Mn

〈M〉n ≥ x,
1

〈M〉n ≤ y for some n
)

≤ exp
{
− x2

2(y2
∑∞

i=1 c2
i + y)

}
. (4.3)

Proof. Consider the sequence {ei} which is tangent to {di} and is conditionally independent given G (maybe
defined on some enlarged probability space, see Prop. 3.1 and Rem. 3.2). Applying Chebychev’s inequality first,
followed by use of Corollary 3.4 with g = exp{−(λ/2)〈M〉nx}1{Mn/〈M〉n≥x,A}, we obtain

P (Mn ≥ 〈M〉nx, A) ≤ E

(
exp

{
λ

2
(Mn − 〈M〉nx)

}
1{Mn≥〈M〉nx,A}

)

≤
√√√√E

(
exp

{
λ

(
n∑

i=1

ei − 〈M〉nx

)}
1{Mn/〈M〉n≥x,A}

)

=

√√√√E

(
1{Mn/〈M〉n≥x,A} exp {−λ〈M〉nx}E

(
exp

{
λ

(
n∑

i=1

ei

)}∣∣∣G
))

,

where the last equality follows for the variables outside the conditional expectation are G-measurable. Since {di}
and {ei} are tangent and {ei} is conditionally independent given G, the moment assumptions on the distribution
of di transfer to (ei), we can apply Lemma 2.1 to get

E

(
exp

{
λ

n∑
i=1

ei

}∣∣∣G
)

≤ exp

{
λ2

2

(
n∑

i=1

c2
i + 〈M〉n

)}
. (4.4)

Plugging this estimate into the previous inequality we obtain

P (Mn ≥ 〈M〉nx, A)

≤
√√√√E

(
1{Mn≥〈M〉nx,A} exp

{
−λ〈M〉nx +

λ2

2

(
n∑

i=1

c2
i + 〈M〉n

)})
.

Dividing both sides by
√

P(Mn ≥ 〈M〉2nx, A) gives (4.1). (4.2) follows easily from (4.1).
We now turn to prove (4.3). Let A = {Mn/〈M〉n ≥ x, 1/〈M〉n ≤ y for some n}, and

τ = inf
{

n ≥ 1;
Mn

〈M〉n ≥ x, 1/〈M〉n ≤ y

}
, (4.5)

with inf ∅ = ∞. Note that on A, we have that τ < ∞, Mτ

〈M〉τ
≥ x and 〈M〉τ ≥ 1/y, so 1A =

1A1{τ<∞}1{Mτ /〈M〉τ≥x} and P(A) = P(Mτ/〈M〉τ ≥ x, A). Applying Chebychev’s inequality first, followed
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by Fatou’s lemma (valid since τ < ∞ on A) and a use of Corollary 3.4, we have for any 0 < λ < 2x,

P(A) = P (Mτ/〈M〉τ ≥ x, A)

≤ E

(
exp

{
λ

2
(Mτ − 〈M〉τx)

}
1{Mτ /〈M〉τ≥x,A}

)

≤ lim inf
n→∞ E

(
exp

{
λ

2
(Mτ∧n − 〈M〉τ∧nx)

}
1{Mτ /〈M〉τ≥x,A}

)

≤ lim inf
n→∞

√√√√E

(
exp

{
λ

(
τ∧n∑
i=1

ei − 〈M〉τ∧nx

)}
1{Mτ /〈M〉τ≥x,A}

)

= lim inf
n→∞

√√√√E

[
1{Mτ /〈M〉τ≥x,A} exp{−λ〈M〉τ∧nx}E

(
exp

{
λ

τ∧n∑
i=1

ei

}∣∣G
)]

,

where the last equality follows since the variables outside the conditional expectation are G measurable. By
Lemma 2.1 we obtain

E

(
exp

{
λ

τ∧n∑
i=1

ei

}∣∣∣G
)

≤ exp

{
λ2

2

(
τ∧n∑
i=1

c2
i + 〈M〉τ∧n

)}
. (4.6)

Substituting this into the above bound, we get

P

(
Mτ

〈M〉τ ≥ x, A

)
≤ lim inf

n→∞

√√√√E

[
1{ Mn∧τ

〈M〉n∧τ
≥x,A} exp

{
−λ〈M〉τ∧nx +

λ2

2

(
τ∧n∑
i=1

c2
i + 〈M〉τ∧n

)}]
.

Since the variable inside the expectation is dominated by exp
(

λ2

2

∑∞
i=1 c2

i

)
(for λ < 2x), and converges to (as

n goes to infinity)

1{ Mτ
〈M〉τ

≥x,A} exp

{
−
(

λx − λ2

2

)
〈M〉τ +

λ2

2

τ∑
i=1

c2
i

}

using the dominated convergence theorem, we get

P

(
Mτ

〈M〉τ ≥ x, A

)
≤
√√√√E

[
1{Mτ /〈M〉τ≥x,A} exp

{
−
(

λx − λ2

2

)
〈M〉τ +

λ2

2

τ∑
i=1

c2
i

}]
.

Dividing both sides by

√
P

(
Mτ

〈M〉τ ≥ x, A

)
gives

P

(
Mτ

〈M〉τ ≥ x, A

)
≤ E

[
exp

{
−
(

λx − λ2

2

)
〈M〉τ +

λ2

2

τ∑
i=1

c2
i

}∣∣∣ ( Mτ

〈M〉τ ≥ x, A

)]
.

Then, since τ < ∞, Mτ/〈M〉τ ≥ x and 〈M〉τ ≥ 1/y on A, we have

P

(
Mn

〈M〉n ≥ x,
1

〈M〉n ≤ y for some n

)
≤ exp

{
−
(

λx − λ2

2

)
1
y

+
λ2

2

∞∑
i=1

c2
i

}
.
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Minimizing the above expression at λ =
x

y
∑∞

i=1 c2
i + 1

< x < 2x, we have

P

(
Mn

〈M〉n ≥ x,
1

〈M〉n ≤ y for some n

)
≤ exp

{
− x2

2y (y
∑∞

i=1 c2
i + 1)

}
.

�
Using Lemma 2.2 or Theorem 2.4 and following the proof of Theorem 4.1, we obtain the following

Theorem 4.2. Let {di} be a martingale difference sequence, Mn :=
∑n

i=1 di, 〈M〉n =
∑n

i=1 E(d2
i |d1, · · · , di−1).

Assume that P(di ≤ ci) = 1 where 0 < ci < ∞ and let c = max
i

ci. Then, for all G := σ(di, i ≥ 1) measurable
sets A, x > 0, λ > 0,

P

(
Mn

〈M〉n ≥ x, A

)
≤ E

(
exp

{
−λ〈M〉nx +

λ2

2
ec〈M〉n

}
| Mn

〈M〉n ≥ x, A

)
(4.7)

and

P

(
Mn

〈M〉n ≥ x, A

)
≤
√

E

(
exp

{
−λ〈M〉nx +

λ2

2
ec〈M〉n

}
1A

)
. (4.8)

Minimizing the above expressions (4.7) and (4.8) at λ = x/ec, we have

P

(
Mn

〈M〉n ≥ x, A

)
≤ E

(
exp

{
− x2

2ec
〈M〉n

}
| Mn

〈M〉n ≥ x, A

)

and

P

(
Mn

〈M〉n ≥ x, A

)
≤
√

E

(
exp

{
− x2

2ec
〈M〉n

}
1A

)
.

Furthermore, for any y > 0, we have

P

(
Mn

〈M〉n ≥ x,
1

〈M〉n ≤ y for some n
)

≤ exp
{
− x2

2ecy

}
. (4.9)
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Wuhan University–for many suggestions and helpful discussions. Furthermore, the author is very grateful to the referee
for his valuable report.

References

[1] A. Maurer, Abound on the deviation probability for sums of non-negative random variables. J. Inequa. Pure Appl. Math. 4
(2003) Article 15.

[2] V.H. De La Peña, A bound on the moment generating function of a sum of dependent variables with an application to simple
random sampling without replacement. Ann. Inst. H. Poincaré Probab. Staticst. 30 (1994) 197–211.
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