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SEPARATION PRINCIPLE IN THE FRACTIONAL GAUSSIAN
LINEAR-QUADRATIC REGULATOR PROBLEM WITH PARTIAL

OBSERVATION

Marina L. Kleptsyna1, Alain Le Breton2 and Michel Viot2

Abstract. In this paper we solve the basic fractional analogue of the classical linear-quadratic Gauss-
ian regulator problem in continuous-time with partial observation. For a controlled linear system where
both the state and observation processes are driven by fractional Brownian motions, we describe ex-
plicitly the optimal control policy which minimizes a quadratic performance criterion. Actually, we
show that a separation principle holds, i.e., the optimal control separates into two stages based on
optimal filtering of the unobservable state and optimal control of the filtered state. Both finite and
infinite time horizon problems are investigated.
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Introduction

Several contributions in the literature have been already devoted to the extension of the classical theory of
continuous-time stochastic systems driven by Brownian motions to analogues in which the driving processes are
fractional Brownian motions (fBm’s for short). The tractability of the basic problems in prediction, parameter
estimation, filtering and control is now rather well understood (see, e.g., [1,6–10,15,16], and references therein).
Nevertheless, as far as we know, it is not yet demonstrated that optimal control problems can also be handled
for fractional stochastic systems which are only partially observable. So, our aim here is to illustrate the actual
solvability of such control problems by exhibiting an explicit solution for the case of the simplest linear-quadratic
model.

We deal with the fractional analogue of the so-called linear-quadratic Gaussian regulator problem in one
dimension. The real-valued processes X = (Xt, t ≥ 0) and Y = (Yt, t ≥ 0), representing the state dynamic
and the available observation record, respectively, are governed by the following linear system of stochastic
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differential equations, which shall be as usual interpreted as integral equations:{
dXt = a(t)Xtdt + b(t)utdt + σ(t)dV H

t , t ≥ 0 , X0 = x ,

dYt = A(t)Xtdt + B(t)dWH
t , t ≥ 0 , Y0 = 0.

(1)

Here V = (V H
t , t ≥ 0) and W = (WH

t , t ≥ 0) are independent normalized fBm’s with Hurst parameter H in
[1/2, 1) and x a fixed initial condition. The coefficients a, b, σ, A and B are assumed to be bounded and smooth
enough (deterministic) functions of R

+ into R, with B nonvanishing and B−1 bounded. We suppose that at
each time t ≥ 0 one may choose the input ut in view of the past observations {Ys, 0 ≤ s ≤ t} in order to drive
the corresponding state, Xt = Xu

t say, which hence also acts upon the observation, Yt = Y u
t say. Then, given

a cost function which evaluates the performance of the control actions, the classical problem of controlling the
system dynamics on some time interval so as to minimize this cost occurs.

Here, in the finite time horizon case, given some fixed T > 0, we consider the quadratic payoff J
T

defined for
a control policy u = (ut, t ∈ [0, T ]) by

J
T
(u) = E

{
q

T
X2

T
+
∫ T

0

[q(t)X2
t + r(t)u2

t ]dt
}
, (2)

where q
T

is a positive constant and q = (q(t), t ∈ [0, T ]) and r = (r(t), t ∈ [0, T ]) are fixed (deterministic)
positive continuous functions. It is well-known that when H = 1/2 and hence the noises in (1) are Brownian
motions, then (see, e.g., [3, 13, 17]), the solution ū to the corresponding problem, called the optimal control, is
provided for all t ∈ [0, T ] by

ūt = − b(t)
r(t)

ρ(t)πt(X̄) ; X̄t = X ū
t ; Ȳt = Y ū

t , (3)

where πt(X̄) is the conditional mean of X̄t given {Ȳs, 0 ≤ s ≤ t} and ρ = (ρ(t), t ∈ [0, T ]) is the unique
nonnegative solution of the backward Riccati differential equation

ρ̇(t) = −2a(t)ρ(t) − q(t) +
b2(t)
r(t)

ρ2(t); ρ(T ) = qT . (4)

In (3), the optimal filter πt(X̄) is generated by the following so-called Kalman-Bucy system on [0, T ]:⎧⎪⎪⎨⎪⎪⎩
dπt(X̄) = [a(t)πt(X̄) + b(t)ūt]dt +

A(t)
B2(t)

γ(t)[dȲt − A(t)πt(X̄)dt], π0(X̄) = x

γ̇(t) = 2a(t)γ(t) + σ2(t)−A2(t)
B2(t)

γ2(t), γ(0) = 0,
(5)

where the solution γ(t) of the last forward Riccati equation is nothing but the variance IE(X̄t − πt(X̄))2 of the
filtering error. Moreover, the minimal cost JT (ū) is given by

J
T
(ū) = ρ(0)x2 +

∫ T

0

A2(t)
B2(t)

ρ(t)γ2(t)dt + q
T
γ(T ) +

∫ T

0

q(t)γ(t)dt. (6)

This result is known as the separation or certainty-equivalence principle. It means that, optimally, the processing
device which takes the observation record {Ȳs, 0 ≤ s ≤ t} and converts it into a control value ūt separates into
two stages: computation of the statistic πt(X̄) and computation of the control value ūt as a function of this
statistic. The main feature is that these operations are independent in the sense that the Kalman-Bucy filter
does not depend in any way on the coefficients qT , q, r defining the control problem, whereas the control function
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does not depend on the noise parameters σ, B, i.e., the controller behaves as if πt(X̄) were the actual state X̄t,
which explains the term “certainty-equivalence”. Our first goal here is to show that actually when the system
(1) is driven by fBm’s with some H ∈ (1/2, 1) instead of Brownian motions, an explicit solution to the optimal
control problem under the performance criterion (2) is still available in terms of a kind of separation principle.
One of the crucial points is that, as in the case H = 1/2, again for H ∈ (1/2, 1) the original problem can
be reduced to the optimal control problem with complete observation of the filtered state πt(X). This can be
rather easily noticed thanks to the obvious orthogonality relation E(Xt −πt(X))ut = 0 for any suitable variable
ut which is measurable with respect to {Ys, 0 ≤ s ≤ t}. Then, to solve the optimal control problem concerning
πt(X), we adapt the approach led in [10] to address the case of complete observation in a linear-quadratic
regulator problem with a fractional Brownian perturbation.

Actually, we shall deal also with the infinite time horizon problem. In this case, we assume that the coefficients
a, b, σ, A and B in (1) are fixed constants and we choose an average quadratic payoff per unit time J∞ which is
defined for a control policy u = (ut, t ≥ 0) by

J∞(u) = lim sup
T→+∞

1
T

∫ T

0

[qX2
t + ru2

t ]dt, (7)

where q and r are positive constants. Here, it is well-known that when H = 1/2, then (see, e.g., [3]) to get an
optimal control ū, one has just, in the solution of the finite time horizon problem, to substitute for the function
ρ̄, given by (4), the nonnegative solution ρ̄ of the algebraic Riccati equation −2aρ̄ − q + b2

r ρ̄2 = 0, i.e.,

ρ̄ =
r

b2
[a + δ

c
] ; δ

c
=

√
a2 +

b2

r
q . (8)

In other words, ū is provided for all t ≥ 0 by

ūt = − b

r
ρ̄πt(X̄) ; X̄t = X ū

t ; Ȳt = Y ū
t , (9)

where the optimal filter πt(X̄) is still generated by (5). So, again a separation principle holds. Moreover the
optimal cost J∞(ū) is given by

J∞(ū) =
A2

B2
ρ̄γ̄2 + qγ̄ a.s. , (10)

where γ̄ is the nonnegative solution of the algebraic Riccati equation 2aγ + σ2 − A2

B2 γ2 = 0, i.e.,

γ̄ =
B2

A2
[a + δ

f
] ; δ

f
=

√
a2 +

A2

B2
σ2 . (11)

We shall also extend these results to the case H ∈ (1/2, 1). Again, the main idea of the approach is that
the original problem can be reduced to the optimal control problem with complete observation of the filtered
state πt(X). But, contrarily to the finite time horizon case, here one of the difficult points is to obtain an
“orthogonality” condition in the sense that the limit as T tends to infinity of a time average 1

T

∫ T

0 (Xt−πt(X))utdt
is equal to zero almost surely for any suitable process ut. The verification of that condition and the analysis
of several other crucial ergodic type properties require the precise study of the asymptotic behavior of various
processes which have complicate structures. Then, to solve the optimal control problem concerning πt(X),
we adapt the approach led in [12] to address the case of complete observation in a linear-quadratic regulator
problem with a fractional Brownian perturbation.

The paper is organized as follows. At first in Section 1, we fix some notations and preliminaries. In particular,
we associate to the original problems auxiliary filtering and control problems concerning Volterra type integral
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dynamics driven by appropriate Gaussian martingales corresponding to the fractional noises. Then, in Sections 3
and 4, the finite time and the infinite time horizon control problems are solved, respectively. Section 5 is devoted
to a complementary analysis of the second case for which another optimal control defined in terms of a simpler
and more explicit linear feedback is described. Finally, an Appendix in Section 5 is dedicated to auxiliary
developments: we derive some technical results and we investigate ergodic type properties of some processes.

1. Preliminaries

1.1. Terminology and notations

In what follows all random variables and processes are defined on a given stochastic basis (Ω,F , (Ft), P).
Moreover the natural filtration of a process is understood as the P-completion of the filtration generated by this
process.
Here, for some H ∈ [1/2, 1), BH = (BH

t , t ≥ 0) is a normalized fractional Brownian motion with Hurst
parameter H means that BH is a Gaussian process with continuous paths such that BH

0 = 0, EBH
t = 0 and

EBH
s BH

t =
1
2
[s2H + t2H − |s − t|2H ] , s , t ≥ 0. (12)

Of course the fBm reduces to the standard Brownian motion when H = 1/2. For H �= 1/2, the fBm is outside
the world of semimartingales but a theory of stochastic integration w.r. to fBm has been developed (see, e.g.,
[4] or [5]). Actually the case of deterministic integrands, which is sufficient for the purpose of the present paper,
is easy to handle (see, e.g., [15]).

– Fundamental martingale associated to BH . There are simple integral transformations which change the fBm
to martingales (see [9, 15, 16]). In particular, defining for 0 < s < t

kH(t, s) = κ−1
H s

1
2−H(t − s)

1
2−H ; κH = 2HΓ(

3
2
− H)Γ

(
H +

1
2

)
, (13)

wH
t = λ−1

H t2−2H ; λH =
2HΓ(3 − 2H)Γ(H + 1

2 )
Γ(3

2 − H)
, (14)

B∗
t =

∫ t

0

kH(t, s)dBH
s , (15)

then the process B∗ is a Gaussian martingale, called in [15] the fundamental martingale, whose variance function
〈B∗〉 is nothing but the function wH . Actually, the natural filtration of B∗ coincides with the natural filtration
(BH

t ) of BH . In particular, we have the direct consequence of the results of [9] that, given a suitably regular
deterministic function g = (g(t), t ≥ 0), the following representation holds:∫ t

0

g(s)dBH
s =

∫ t

0

Kg
H(t, s)dB∗

s , (16)

where for H ∈ (1/2, 1) the function Kg
H is given by

Kg
H(t, s) = H(2H − 1)

∫ t

s

g(r)rH− 1
2 (r − s)H− 3

2 dr , 0 ≤ s ≤ t, (17)

and for H = 1/2 the convention Kg
1/2(t, .) ≡ g for all t is used.

– Admissible controls. Let U be the class of (Ft)-adapted processes u = (ut) such that the stochastic differential
system (1) has a unique strong solution (Xu, Y u) which satisfies J(u) < +∞, where, according to the setting,
the cost J(u) is evaluated by (2) or (7), with X = Xu. Actually, as mentioned in Section 1, for control purpose
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we are interested in policies such that, for each t, ut depends only on the past observations {Ys, 0 ≤ s ≤ t}. So,
we introduce the class of admissible controls as the class Uad of those u’s in U which are (Yu

t )-adapted processes
where (Yu

t ) is the natural filtration of the corresponding observation process Y = Y u. For u ∈ Uad, the triple
(u, Xu, Y u) is called an admissible triple and if ū ∈ Uad is such that

J(ū) = inf{J(u), u ∈ Uad} ,

then it is called an optimal control and (ū, X̄, Ȳ ), where X̄ = X ū, Ȳ = Y ū, is called an optimal triple and the
quantity J(ū) is called the optimal cost.

1.2. Auxiliary filtering and control problems

Of course, taking into account the results recalled in Section 1 for the case H = 1/2, our guess is that again,
in the fractional world, the optimal controller behaves as if the filtered state were the actual state. Actually, as
a consequence of the orthogonality relation E(Xt − πt(X))ut = 0 for u’s belonging to Uad, one gets that J

T
(u)

given by (2) can be decomposed as

J
T
(u) = E

{
q

T
π2

T
(X) +

∫ T

0

[q(t)π2
t (X) + r(t)u2

t ]dt
}

+qT E(XT − πT (X))2 +
∫ T

0

q(t)E(Xt − πt(X))2dt.

Hence, since in fact the variances E(Xt − πt(X))2 of the filtering errors do not depend on the specific control u,
it appears that optimizing J

T
(u) is equivalent to minimizing the first expectation in the right hand side above,

which expectation depends only on the filtered state πt(X). Now, it is clear that the solution of the filtering
problem in model (1) and the solution of the control problem with complete observation in the corresponding
model for πt(X) will be crucial in our analysis. So, we give some preliminary results about these two problems,
adapting to the present context some of our previous works.

– Filtering problem. Actually, the filtering problem in model (1), without the additional term b(t)ut in the
state dynamic, has been solved in [9]. But, in the present setting, since only u’s belonging to Uad are involved,
it is rather immediate to extend the result in the following terms. With kH given by (13), we introduce the
observation fundamental semimartingale Z which is defined from Y by:

Zt =
∫ t

0

kH(t, s)B−1(s)dYs. (18)

It can be represented as

Zt =
∫ t

0

Q(s)dwH
s + W ∗

t ,

where W ∗ is the Gaussian martingale associated to WH through (15) and

Q(t) =
d

dwH
t

∫ t

0

kH(t, s)
A(s)
B(s)

Xsds, (19)

with a derivative understood in the sense of absolute continuity. The natural filtrations (Zt) and (Yt) of Z and
Y coincide and moreover the innovation type process ν = (νt , t ∈ [0, T ]) can be defined as follows. Using, for
any process ξ = (ξt ; t ≥ 0) such that E|ξt| < +∞, the notation πt(ξ) for the conditional expectation E(ξt/Yt)
of ξt given the σ-field Yt (or equivalently Zt), the process ν is given by:

νt = Zt −
∫ t

0

πs(Q)dwH
s , (20)
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where wH , Z and Q are given by (14), (18) and (19), respectively. Actually, ν does not depend on the admissible
control u and moreover it is a continuous Gaussian (Yt)-martingale, with the variance function 〈ν〉 = wH , which
allows a representation of the filter πt(X). We introduce the family of 2×2 matrix-valued deterministic functions
Γf (t, .) = (Γf (t, s), 0 ≤ s ≤ t) which satisfies the Riccati-Volterra type system

Γf (t, s) =
∫ s

0

[Af (t, r)Γ′
f (s, r) + Γf (t, r)A′

f (s, r)]dr

+
∫ s

0

C(t, r)C′(s, r)dwH
r −

∫ s

0

Γf (t, r)E2Γ′
f (s, r)dwH

r ,

(21)

where the 2 × 2 matrices Af (t, r), E2 and vectors C(t, r) in R
2 are given by

Af (t, r) = a(r)
(

1 0
p(t, r) 0

)
; E2 =

(
0 0
0 1

)
; C(t, r) =

(
Kσ

H(t, r)
q(t, r)

)
,

with

p(t, r) =
d

dwH
t

∫ t

r

kH(t, v)
A(v)
B(v)

dv; q(t, r) =
d

dwH
t

∫ t

r

kH(t, v)Kσ
H(v, r)

A(v)
B(v)

dv. (22)

Then, the filter πt(X) is governed by

πt(X) = x +
∫ t

0

a(s)πs(X)ds +
∫ t

0

b(s)usds +
∫ t

0

Γ12
f (t, s)dνs, (23)

where Γ12
f (t, s) is the (1, 2)-entry of the matrix Γf (t, s). Notice that the probabilistic interpretation of Γf (t, s) is

given in [9] (see also the beginning of section 6.2 in the Appendix below) and in particular, for s = t, the diagonal
entries Γii

f (t, s) of Γf (t, s) are nothing but the variances of the filtering errors for Xt and Qt, respectively, from
{Ys, 0 ≤ s ≤ t}, i.e.,

Γ11
f (t, t) = E(Xt − πt(X))2 ; Γ22

f (t, t) = E(Qt − πt(Q))2.

Of course, since the definition (20) of the innovation νt involves the filter πt(Q), to generate the filter πt(X)
from (23), one needs actually a complementary equation to form a closed system for the pair (πt(X), πt(Q)).
We shall provide such an equation below (see also [8] for a global system of filtering equations in the case of
constant coefficients without control).

– Control problem. Now, from the discussion above, it becomes natural to analyze the control problem with
complete observation of the state in a Volterra type dynamic inspired of (23). Precisely, we consider a state
process Π = (Πt, t ≥ 0) generated by

Πt = x +
∫ t

0

a(s)Πsds +
∫ t

0

b(s)usds +
∫ t

0

Γ12
f (t, s) dMs , (24)

where M is a Gaussian (Ft)-martingale with the variance function 〈M〉 = wH . Here, in the control problem
which is relevant regarding our original problem, the class of admissible controls u is the whole class U . Of
course, according to the setting, the payoff J(u) to minimize is evaluated by (2) or (7) with Π = Πu in place
of X , respectively. We recognize that actually the just stated control problems are quite similar to those which
have been solved in [10] and [12]. More precisely, to get here an optimal control ū, we have only to substitute
Γ12

f (t, s) for Kc
H(t, s) in the settings therein.

Therefore, in the finite horizon case, we introduce the family of 2 × 2 matrix-valued functions Γc(., s) =
(Γc(t, s), t ∈ [s, T ]) such that Γc(., s) is the unique nonnegative symmetric solution of the backward Riccati
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differential equation in the variable t on [s, T ]

Γ̇c(t, s) = −A′
c(t, s)Γc(t, s) − Γc(t, s)Ac(t, s) − q(t)D(t, s)D′(t, s)

+
b2(t)
r(t)

Γc(t, s)E1Γc(t, s) ; Γc(T, s) = q
T
D(T, s)D′(T, s) ,

(25)

where the 2 × 2 matrices Ac(t, s), E1 and vectors D(t, s) in R
2 are given by

Ac(t, s) = a(t)
(

1 Γ12
f (t, s)

0 0

)
; E1 =

(
1 0
0 0

)
; D(t, s) =

(
1

Γ12
f (t, s)

)
.

Actually, the (1, 1)-entry Γ11
c (t, s) of the matrix Γc(t, s) does not depend on the variable s and it is nothing but

the solution ρ(t) of the Riccati equation (4). Again, we shall denote by Γij
c (t, s) the (i, j)-entry of Γc(t, s). Now,

parallelling the developments in [10], we get an optimal control ū in U such that the optimal pair (ū, Π̄), where
Π̄ = Πū, is governed on [0, T ] by the system

ūt = − b(t)
r(t)

{ρ(t)Π̄t +
∫ t

0

[Γ12
c (t, s) − ρ(t)Γ12

f (t, s)]dMs} ; Π̄t = Πū
t , (26)

and moreover the optimal cost is

J
T
(v̄) = ρ(0)x2 +

∫ T

0

Γ22
c (t, t)dwH

t . (27)

Similarly, in the infinite horizon time case, we shall be able to take benefit of the approach led in [12] in order to
analyze the auxiliary control problem with complete observation associated with the original control problem.

2. Finite time horizon control problem

At first we state our main result:

Theorem 2.1. Let kH(t, s), p(t, s) and q(t, s) be the kernels defined in (13) and (22), respectively. Let also Γf ,
Γc be the solutions of (21), (25), respectively, and ρ̄ be the solution of (4). In the control problem

min
u∈Uad

JT (u) subject to (1),

with JT defined by (2), an optimal control ū in Uad and the corresponding optimal triple (ū, X̄, Ȳ ) are governed
on [0, T ] by the system

ūt = − b(t)
r(t)

{ρ(t)πt(X̄) +
∫ t

0

[Γ12
c (t, s) − ρ(t)Γ12

f (t, s)]dνs}; X̄t = X ū
t ; Ȳt = Y ū

t , (28)

where

νt =
∫ t

0

kH(t, s)B−1(s)dȲs −
∫ t

0

πs(Q̄)dwH
s , (29)

and the pair (πt(X̄), πt(Q̄)) is generated by

πt(X̄) = x +
∫ t

0

a(s)πs(X̄)ds

∫ t

0

b(s)ūsds +
∫ t

0

Γ12
f (t, s)dνs , (30)

πt(Q̄) = p(t, 0)x +
∫ t

0

a(s)p(t, s)πs(X̄)ds +
∫ t

0

b(s)p(t, s)ūsds +
∫ t

0

Γ22
f (t, s)dνs . (31)
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Moreover the optimal cost is

J
T
(ū) = ρ(0)x2 +

∫ T

0

Γ22
c (t, t)dwH

t + q
T
Γ11

f (T, T ) +
∫ T

0

q(t)Γ11
f (t, t)dt . (32)

Remark 2.2. (a) In the case H = 1/2 where, for all 0 ≤ s ≤ t, kH(t, s) = 1, p(t, s) = q(t, s) = A(t)/B(t), it is
easy to check that for all 0 ≤ s ≤ t ≤ T , the matrices Γf (t, s) and Γc(t, s) reduce to:

Γf (t, s) = γ(s)

(
1 A(s)

B(s)
A(s)
B(s)

A2(s)
B2(s)

)
; Γc(t, s) = ρ(t)

(
1 A(s)

B(s)γ(s)
A(s)
B(s)γ(s) A2(s)

B2(s)γ
2(s)

)
,

where ρ and γ are the solutions of the Riccati equations given in (4) and (5), respectively. Hence, it is readily
seen that actually the statement in Theorem 2.1 reduces globally to the well-known result recalled in Section 1.

(b) Introducing

v̄t =
∫ t

0

[Γ12
c (t, s) − ρ(t)Γ12

f (t, s)]dνs,

one can write the optimal control ūt as

ūt = − b(t)
r(t)

{ρ(t)πt(X̄) + v̄t}.

It is worth mentioning that actually the additional term v̄t which appears in the case H > 1/2 (and equals zero
when H = 1/2) can be interpreted in terms of the predictors at time t of the noise component V H

τ , t ≤ τ ≤ T
based on the observed optimal dynamics (Ȳs, s ≤ t) up to time t. Precisely, one can rewrite

v̄t =
∫ T

t

φ(τ, t)ρ(τ)σ(τ)
∂

∂τ
E(V H

τ /F ū
t ) dτ , t ≤ τ ≤ T, (33)

where

φ(τ, t) = exp{
∫ τ

t

[a(u) − b2(u)
r(u)

ρ(u)]du}, (34)

or, equivalently,

v̄t = E(
∫ T

t

φ(τ, t)ρ(τ)σ(τ)dV H
τ /Y ū

t ).

This will be made clear after the proof of Theorem 2.1.

Proof of Theorem 2.1. Clearly, due to its definition through a closed system in terms of the only process Ȳ ,
the control policy ū given by (28) belongs to Uad. Moreover, comparing (30) with (23), we see that πt(X̄) is
nothing but the filter of X̄ based on the observation of Ȳ . Actually, from the results in [9], it can be seen that
πt(Q̄) given (31) is also the filter of the process Q̄ which is the analogue for X̄ of Q defined from X by (19).
This explains why one may also substitute (29) for (20) in the representation of the innovation ν which does
not depend on the admissible control. Let us consider the process (pt, 0 ≤ t ≤ T ) defined by

pt = ρ(t)πt(X̄) +
∫ t

0

[Γ12
c (t, s) − ρ(t)Γ12

f (t, s)]dνs , (35)

which in particular allows the representation ūt = −(b(t)/r(t))pt . Parallelling the proof in [10], it can be shown
that it satisfies the following backward stochastic differential equation:

dpt = −a(t)ptdt − q(t)πt(X̄)dt + Γ12
c (t, t)dνt , t ∈ [0, T ] ; pT = qT πT (X̄). (36)
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Now we show that ū minimizes J
T

over Uad. Given an arbitrary u ∈ Uad, we evaluate the difference J
T
(u)−J

T
(ū)

between the corresponding cost and the cost for the announced candidate ū to optimality. Of course, we can
write

J
T
(u) − J

T
(ū) = E

{
q

T
[X2

T
− X̄2

T
] +
∫ T

0

{q(t)[X2
t − X̄2

t ] + r(t)[u2
t − ū2

t ]}dt
}

.

Using the equality y2 − ȳ2 = (y − ȳ)2 + 2ȳ(y − ȳ) and exploiting the property ū = −(b/r)p, it is readily seen
that

J
T
(u) − J

T
(ū) = E(∆1) + 2E(∆2) ,

where

∆1 = qT [XT − X̄T ]2 +
∫ T

0

{q(t)[Xt − X̄t]2 + r(t)[ut − ūt]2}dt ,

∆2 = q
T
X̄

T
[X

T
− X̄

T
] +
∫ T

0

{q(t)X̄t[Xt − X̄t] − b(t)pt[ut − ūt]}dt .

Actually, the last integral can be written as∫ T

0

{(Xt − X̄t)[q(t)X̄t + a(t)pt] − pt[a(t)(Xt − X̄t) + b(t)(ut − ūt)]}dt ,

and moreover, due to (1), (23) and (30), Xt − X̄t = πt(X) − πt(X̄). Hence we can rewrite ∆2 in the form

∆2 = q
T
[X̄

T
− π

T
(X̄)][π

T
(X) − π

T
(X̄)] +

∫ T

0

q(t)[X̄t − πt(X̄)][πt(X) − πt(X̄)]dt

+q
T
π

T
(X̄)[π

T
(X) − π

T
(X̄)] +

∫ T

0

[πt(X) − πt(X̄)][q(t)πt(X̄) + apt]dt

−
∫ T

0

pt[a(t)(πt(X) − πt(X̄)) + b(t)(ut − ūt)]dt .

Now, taking into account equation (36), we see that the difference of the last two integrals can be written as

−
∫ T

0

(πt(X) − πt(X̄))dpt −
∫ T

0

ptd(πt(X) − πt(X̄)) +
∫ T

0

(πt(X) − πt(X̄))Γ12
c (t, t)dνt .

Therefore, inserting this into the expression above of ∆2 and taking the expectation, since E[X̄t−πt(X̄)][πt(X)−
πt(X̄)] = 0 and the stochastic integral part gives also zero, we get that

E(∆2) = E

{
q

T
π

T
(X̄)[π

T
(X) − π

T
(X̄)] −

∫ T

0

(πt(X) − πt(X̄))dpt −
∫ T

0

ptd(πt(X) − πt(X̄))
}

.

Now, integrating by parts, since p
T

= q
T
π

T
(X̄) and π0(X) − π0(X̄) = 0, it comes that E(∆2) = 0 and finally

J
T
(u) − J

T
(ū) = E(∆1) ≥ 0. This of course means that ū minimizes J

T
over Uad.

Now we compute the optimal cost JT (ū). Since

X̄2
t = π2

t (X̄) + [X̄t − πt(X̄)]2 + 2πt(X̄)[X̄t − πt(X̄)] ,

and E[πt(X̄)(X̄t − πt(X̄))] = 0, we can write

J
T
(ū) = E

{
q

T
π2

T
(X̄) +

∫ T

0

[q(t)π2
t (X̄) + r(t)ū2

t ]dt
}

+q
T
E[X̄

T
− π

T
(X̄)]2 +

∫ T

0

q(t)E[X̄t − πt(X̄)]2dt .
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Comparing (28), (30) with (24), (26), we recognize that the first quantity in the right-hand side above is nothing
but the optimal cost (27) in the auxiliary control problem discussed in Section 2. Therefore, since moreover
E(X̄t − πt(X̄))2 = Γ11

f (t, t), we see that the expression (32) holds for J
T
(ū). �

Justification of Remark 2.2.b Paralleling the discussion in [10], it follows that

vt =
∫ T

t

φ(τ, t)ρ(τ)
∂

∂τ
E(Vτ/Y ū

t ) dτ ,

where φ(τ, t) is given by (34) and

Vτ =
∫ τ

0

Γ12
f (τ, r) dνr .

But for any τ ≥ t we have

E(Vτ /Y ū
t ) =

∫ t

0

Γ12
f (τ, r) dνr ,

and hence also
∂

∂τ
E(Vτ /Y ū

t ) =
∫ t

0

∂

∂τ
Γ12

f (τ, r) dνr .

Therefore, the equality (33) will be valid if we prove∫ t

0

∂

∂τ
Γ12

f (τ, r) dνr = σ(τ)
∂

∂τ
E(V H

τ /Y ū
t ); τ > t .

But for τ > t the following representation holds:

E(V H
τ /Y ū

t ) =
∫ t

0

[ ∂

∂〈ν〉r EV H
τ νr

]
dνr ,

and so we just need to show that

∂

∂τ
Γ12

f (τ, r) = σ(τ)
∂

∂τ

∂

∂〈ν〉r EV H
τ νr . (37)

To prove this equality, for r < t < τ , we introduce the quantity

G(τ, r) =
∂

∂〈ν〉r EX0
τ νr,

where X0 stands for Xu with u ≡ 0. Since Eπτ (X0)νr = EX0
τ νr, from equations (23) and (1) (with u ≡ 0), we

can derive the following two equations for G(τ, r):

∂

∂τ
G(τ, r) = a(τ)G(τ, r) +

∂

∂τ
Γ12

f (τ, r),

∂

∂τ
G(τ, r) = a(τ)G(τ, r) + σ(τ)

∂

∂τ

∂

∂〈νr〉EV H
τ νr .

This gives that (37) holds and hence also (33).
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3. Infinite time horizon control problem – First solution

Here we assume that the coefficients a, b, σ, A and B in (1) are fixed constants and that q and r are positive
constants. Then, in equation (21) for Γf (t, s) = ((Γij

f (t, s))), the coefficients Af and C take the particular form

Af (t, r) = a

(
1 0

A
B p∗(t, r) 0

)
; C(t, r) = σ

(
KH(t, r)
A
B q∗(t, r)

)
, (38)

with

p∗(t, r) =
d

dwH
t

∫ t

r

kH(t, v) dv ; q∗(t, r) =
d

dwH
t

∫ t

r

kH(t, v)KH(v, r) dv , (39)

where kH is given by (13) and KH denotes Kg
H defined by (17) when g ≡ 1, i.e.,

KH(t, s) = H(2H − 1)
∫ t

s

rH− 1
2 (r − s)H− 3

2 dr , 0 ≤ s ≤ t .

Taking benefit of the approach led in [12] for the infinite time horizon control problem with complete observation,
it is natural to introduce the following family of auxiliary functions (γ12

c (., s), s ≥ 0). For any fixed s ≥ 0, we
define the function γ12

c (., s) = (γ12
c (t, s), t ≥ s) by

γ12
c (t, s) = δ

c
eδc t

∫ +∞

t

e−δcτΓ12
f (τ, s)dτ , (40)

where δc is given by (8). Now, we can state our main result:

Theorem 3.1. Let kH(t, s), p∗(t, s), q∗(t, s) and Γf(t, s) be the kernels defined in (13), (39) and (21) with Af

and C given by (38). Let also the constants ρ̄, γ̄ be defined by (8), (11) and the function γ12
c be given by (40).

In the control problem

min
u∈Uad

J∞(u) subject to (1) ,

with J∞ defined by (7), an optimal control ū in Uad and the corresponding optimal triple (ū, X̄, Ȳ ) are governed
by the system

ūt = − b

r
ρ̄{πt(X̄) +

∫ t

0

[γ12
c (t, s) − Γ12

f (t, s)]dνs} ; X̄t = X ū
t ; Ȳt = Y ū

t , (41)

where

νt = B−1

∫ t

0

kH(t, s)dȲs −
∫ t

0

πs(Q̄)dwH
s , (42)

and the pair (πt(X̄), πt(Q̄)) is generated by

πt(X̄) = x +
∫ t

0

aπs(X̄)ds +
∫ t

0

būsds +
∫ t

0

Γ12
f (t, s)dνs, (43)

πt(Q̄) =
A

B
{p∗(t, 0)x + a

∫ t

0

p∗(t, s)πs(X̄)ds + b

∫ t

0

p∗(t, s)ūsds} +
∫ t

0

Γ22
f (t, s)dνs. (44)

Moreover the optimal cost is

J∞(ū) = ζ∞(H) + qγ∞(H) , (45)
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where

ζ∞(H) =
A2

B2
ρ̄γ̄2 Γ(2H + 1) sinπH

(δ
f
− δc)2(δf

+ δc)

{
(δc + a)

[
δ

f
− a

δH− 1
2

c

− δ
c
− a

δ
H− 1

2
f

]2

+(δ
f
− δ

c
)(δ

f
− a)

[
δ

f
− a

δ2H−1
c

− δ
c
− a

δ2H−1
f

]}

+Γ(2H + 1)
qσ2

2
(1 − sin πH)

δ2
f
− a2

δ2
f
− δ2

c

[
1

δ2H
c

− 1
δ2H

f

]
,

(46)

and

γ∞(H) =
σ2Γ(2H + 1)

2δ2H
f

[
1 +

δ
f

+ a

δ
f
− a

sin πH

]
, (47)

with δc , δ
f

given by (8), (11).

Remark 3.2. (a) From the proof below, it will appear that the term γ∞(H), given by (47) which is involved in
the representation (45) of the optimal cost J∞(ū), is nothing but the limit as t tends to infinity of the variance
E(X̄t − πt(X̄))2 of the filtering error.
Actually, in the statement above, for δ

f
= δ

c
, the quantity ζ∞(H) must be interpreted as the limit of the right

hand side of (46) as δ
c

tends to δ
f
. This limit is nothing but

A2

B2 ρ̄γ̄2 Γ(2H+1) sin πH
2δ2H+2

f

{
(δ

f
+ a)

[
δ

f
+
(
H − 1

2

)
(δ

f
− a)

]2 + δ
f
(δ

f
− a)[δ

f
+ (2H − 1)(δ

f
− a)]

}
+Γ(2H + 1)

Hqσ2

2δ2H+2
f

(1 − sinπH)(δ2
f
− a2).

(48)

(b) In the case H = 1/2 where, for all 0 ≤ s ≤ t, kH(t, s) = 1, p∗(t, s) = q∗(t, s) = 1, it is easy to check that for
all 0 ≤ s ≤ t ≤ T , the matrix Γf(t, s) and the quantity γ12

c (t, s) reduce to:

Γf(t, s) =
(

1 A
B

A
B

A2

B2

)
γ(s); γ12

c (t, s) =
A

B
γ(s),

where γ is the solution of the Riccati equation given in (5). Hence, it is readily seen that actually the statement
in Theorem 3.1 reduces globally to the well-known result recalled in Section 1.

(c) Introducing

v̄t =
∫ t

0

[γ12
c (t, s) − Γ12

f (t, s)]dνs,

one can write the optimal control ūt as

ūt = − b

r
ρ̄[πt(X̄) + v̄t] .

It is worth mentioning that actually the additional term v̄t which appears in the case H > 1/2 (and equals zero
when H = 1/2) can be interpreted in terms of the predictors at time t of the noise component V H

τ , τ ≥ t based
on the observed optimal dynamics (Ȳs, s ≤ t) up to time t. Precisely, one can rewrite

v̄t = σ

∫ +∞

t

e−δc (τ−t) ∂

∂τ
E(V H

τ /Y ū
t ) dτ, τ ≥ t, (49)

or, equivalently,

v̄t = σE(
∫ +∞

t

e−δc (τ−t)dV H
τ /Y ū

t ) .

This can be derived from the discussion in [12] by means of arguments similar to those which have been used
above to prove (33).
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Proof of Theorem 3.1. Concerning the admissibility of ū and the interpretation of the different terms involved
in the system, one may repeat exactly the arguments at the beginning of the proof of Theorem 2.1. Let us
consider the process (pt, t ≥ 0) defined by

pt = ρ̄{πt(X̄) +
∫ t

0

[γ12
c (t, s) − Γ12

f (t, s)]dνs}, (50)

which in particular allows the representation ūt = −(b/r)pt . Parallelling the proof in [12], it can be shown that
it satisfies the following stochastic differential equation:

dpt = −aptdt − qπt(X̄)dt + ρ̄γ12
c (t, t)dνt, t ≥ 0 ; p0 = ρ̄x. (51)

Now we compute the cost J∞(ū) corresponding to the control ū. Given an arbitrary u ∈ Uad, we use the notation

jT (u) =
∫ T

0

[qX2
t + ru2

t ]dt,

where Xt = Xu
t . For u = ū, we can write

j
T
(ū) =

∫ T

0

[qπ2
t (X̄) + rū2

t ]dt

+q

∫ T

0

[X̄t − πt(X̄)]2dt + 2q

∫ T

0

πt(X̄)[X̄t − πt(X̄)]dt.

(52)

From (41), (43) and (51), we recognize that the pair (ūt, πt(X̄)) is governed by a dynamic similar to that of
the optimal pair obtained in [12] for an infinite horizon time problem under fractional Brownian perturbation
and complete observation. Therein, the function KH(t, s) plays exactly the same role as Γ12

f (t, s) here. Then,
we may parallel the developments (see section 6.3 in the Appendix below) to get the limit a.s.

lim
T→+∞

1
T

∫ T

0

[qπ2
t (X̄) + rū2

t ]dt = ζ∞(H), (53)

where ζ∞(H) is given by (46). Concerning the second term in (52), of course again we have E(X̄t − πt(X̄))2 =
Γ11

f (t, t). Moreover, the result obtained in [8] for the limiting behavior of this variance of the filtering error in
an autonomous linear model driven by fractional Brownian noises tells that

lim
t→+∞Γ11

f (t, t) = γ∞(H) ,

where γ∞(H) is given by (47). Actually, in the Appendix (cf. Sect. 6.3), we prove that the process X̄t − πt(X̄)
possesses the following ergodic type property:

lim
T→+∞

1
T

∫ T

0

[X̄t − πt(X̄)]2dt = γ∞(H), a.s. (54)

Moreover we shall show that a.s.

lim
T→+∞

1
T

∫ T

0

πt(X̄)[X̄t − πt(X̄)]dt = 0. (55)

So, finally, the limit limT→+∞ 1
T j

T
(ū) exists a.s. and inserting (53)–(55) into (52), we see that the expressio (45)

holds for J∞(ū).
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Now we show that ū minimizes J∞ over Uad. Proceeding along steps quite similar to those followed in the
proof of Theorem 2.1, we can evaluate the difference jT (u) − jT (ū) as

j
T
(u) − j

T
(ū) = ∆1(T ) + 2∆2(T ) ,

where

∆1(T ) =
∫ T

0

{q[Xt − X̄t]2 + r[ut − ūt]2}dt ,

and

∆2(T ) =
∫ T

0

q[πt(X) − πt(X̄)][X̄t − πt(X̄)]dt + ρ̄

∫ T

0

[πt(X) − πt(X̄)]γ12
c (t, t)dνt

−
∫ T

0

ptd[πt(X) − πt(X̄)] −
∫ T

0

[πt(X) − πt(X̄)]dpt .

Notice that, integrating by parts in the last line above, since π0(X) − π0(X̄) = 0, we can rewrite ∆2(T ) as

∆2(T ) =
∫ T

0

q[πt(X) − πt(X̄)][X̄t − πt(X̄)]dt − p
T
[π

T
(X) − π

T
(X̄)]

+ρ̄

∫ T

0

[πt(X) − πt(X̄)]γ12
c (t, t)dνt.

Since J∞(u) = lim supT→+∞
1
T j

T
(u) a.s. and ∆1(T ) ≥ 0, of course we have

J∞(u) ≥ J∞(ū) + lim inf
T→+∞

1
T

∆2(T ) a.s.

Hence, in order to prove that ū minimizes J∞ over Uad, it is sufficient to show that limT→+∞ 1
T ∆2(T ) = 0 a.s.

To this end, it suffices to show that, if u ∈ Uad is such that J∞(u) < +∞, then the following limits hold a.s.

lim
T→+∞

1
T

∫ T

0

[πt(X) − πt(X̄)][X̄t − πt(X̄)]dt = 0, (56)

lim
T→+∞

1
T

p
T
[π

T
(X) − π

T
(X̄)] = 0 , (57)

and

lim
T→+∞

1
T

∫ T

0

[πt(X) − πt(X̄)]γ12
c (t, t)dνt = 0 . (58)

These three properties will be proved in the Appendix (cf. Sect. 6.3). �

4. Infinite time horizon control problem – Second solution

Here the setting is the same as in Section 4. At first, it is worth emphasizing that the analysis therein
has provided not only an optimal control but also the explicit value of the minimal cost. Hence for any other
control possibly candidate for optimality, the only thing to check is that it achieves the minimal cost. On this
basis, now we propose a simpler and more explicit control which is also optimal. With respect to the first
solution, it has the advantage that the involved feedback is more clearly expressed in terms of the observation
process Y . Moreover, it is coherent with the asymptotically optimal filter proposed in [11] for linear systems
without control and with the second solution proposed in [12] for the infinite time horizon optimal control
problem under complete observation.
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In the classical case H = 1
2 where the noises are standard Brownian motions and hence the system of filtering

equations reduces to the usual Kalman-Bucy system, the asymptotic variance of the filtering error is γ̄ given by
(11). In that case, substituting the constant γ̄ for the function γ(t) in the equations (5) and (9), one gets the
simpler controller ⎧⎪⎨⎪⎩

u∗
t = − b

r
ρ̄π∗

t ; X∗
t = Xu∗

t ; Y ∗
t = Y u∗

t ,

dπ∗
t = [aπ∗

t + bu∗
t ]dt +

A

B2
γ̄[dY ∗

t − Aπ∗
t dt] , π∗

0 = 0 ,

(59)

where ρ̄ is still given by (8). Observe that, taking into account (8) and (11), actually π∗
t is governed by

dπ∗
t = −[a + δ

c
+ δ

f
]π∗

t dt +
A

B2
γ̄dY ∗

t ; π∗
0 = 0 . (60)

Hence π∗
t can be represented as

π∗
t =

A

B2
γ̄

∫ t

0

e−[a+δc+δ
f
](t−s)dY ∗

s . (61)

It can be checked that, as a filter of X∗
t from the observations {Y ∗

s , s ≤ t}, π∗
t is asymptotically optimal in

the sense that, as t goes to infinity, the variance E(X∗
t − π∗

t )2 of the corresponding filtering error converges to
the same limit γ̄ as E(X∗

t − πt(X∗))2. Moreover, it can also be checked that the triple (u∗, X∗, Y ∗) is actually
optimal in the infinite time horizon control problem, i.e., J∞(u∗) = J∞(ū) given by (10). Observe that, in this
case, the optimality is achieved in the class of controls which can be represented as

∫ t

0
φ(t − s)dYs. Below, we

show that this still holds for H > 1
2 and we identify in this class a control for which the cost value is J∞(ū)

given by (45).

So, we start with a control ut = uφ
t in the form

ut =
∫ t

0

φ(t − s)dYs.

Then, from (1), it is readily seen that we have also 1

⎧⎪⎪⎨⎪⎪⎩
ut =

∫ t

0

U
V
(t − s)dV H

s +
∫ t

0

U
W

(t − s)dWH
s ,

Xt =
∫ t

0

X
V
(t − s)dV H

s +
∫ t

0

X
W

(t − s)dWH
s ,

(62)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẊV (τ) = aXV (τ) + bUV (τ) , τ ≥ 0 ; XV (0) = σ ,

Ẋ
W

(τ) = aX
W

(τ) + bU
W

(τ) , τ ≥ 0 ; X
W

(0) = 0 ,

U
V
(τ) = A

∫ τ

0

φ(v)X
V

(τ − v)dv , τ ≥ 0 ,

U
W

(τ) = A

∫ τ

0

φ(v)X
W

(τ − v)dv + Bφ(τ) , τ ≥ 0.

(63)

1For simplicity, here we deal only with the case x = 0.
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Actually, it can be recognized that X
W

≡ (Bb/Aσ)U
V
. Hence, for the system (62)-(63), we can substitute the

following: ⎧⎪⎪⎨⎪⎪⎩
ut =

∫ t

0

U
V
(t − s)dV H

s +
∫ t

0

U
W

(t − s)dWH
s ,

Xt =
∫ t

0

X
V
(t − s)dV H

s +
Bb

Aσ

∫ t

0

U
V
(t − s)dWH

s ,

(64)

where ⎧⎨⎩
Ẋ

V
(τ) = aX

V
(τ) + bU

V
(τ) , τ ≥ 0 ; X

V
(0) = σ ,

U̇
V
(τ) = aU

V
(τ) +

Aσ

B
U

W
(τ) , τ ≥ 0 ; U

V
(0) = 0 ,

(65)

and

U
W

(τ) =
Bb

σ

∫ τ

0

φ(v)U
V
(τ − v)dv + Bφ(τ) , τ ≥ 0.

We observe that in the system defined by the last two equations above which link φ, U
V

and U
W

, to fix a function
φ is equivalent to fix a function UW . So, we may forget about the last equation and from now on, instead of a
function φ, we look for an appropriate function U

W
. Of course, we are interested in those functions U

W
such

that, for the process (u, X) given by (64)–(65), the limits limT→+∞ T−1
∫ T

0
u2

t dt and limT→+∞ T−1
∫ T

0
X2

t dt
exist and are finite almost surely. Our guess is that the minimum for J∞ can be obtained by choosing U

W
in

such a way that these limits are nothing but limT→+∞ Eu2
T and limT→+∞ EX2

T respectively and moreover the
minimum value of

Ĵ∞(UW ) = lim
T→+∞

E[qX2
T + ru2

T ] ,

is achieved. Actually, for a stochastic integral

St =
∫ t

0

g(t − s)dBH
s ,

we can evaluate

lim
T→+∞

ES2
T = H(2H − 1)

∫ +∞

0

∫ +∞

0

g(s)g(r) |s − r|2H−2 dsdr.

Exploiting the representation

|s − r|2H−2 =
1

B(H − 1
2 , 2 − 2H)

∫ +∞

s∨r

(τ − s)H− 3
2 (τ − r)H− 3

2 dτ,

it is easy to check that we can rewrite

lim
T→+∞

ES2
T =

2HΓ(3
2 − H)

Γ(H + 1
2 )Γ(2 − 2H)

∫ +∞

0

g̃2(s)ds, (66)

where

g̃(s) =
d

ds

∫ s

0

g(r)(s − r)H− 1
2 dr. (67)

Hence, due to (64) and the independence between V H and WH , we can rewrite the quantity Ĵ∞(U
W

) as

J̃∞(Ũ
W

) =
2HΓ(3

2 − H)
Γ(H + 1

2 )Γ(2 − 2H)

∫ +∞

0

{
qX̃ 2

V
(s) + [q

B2b2

A2σ2
+ r]Ũ2

V
(s) + rŨ2

W
(s)
}

ds, (68)
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where the triple (X̃
V
, Ũ

V
, Ũ

W
) corresponds to (X

V
,U

V
,U

W
) by (67). Actually, it can be readily seen from (65)

that the dynamics which link X̃
V
, Ũ

V
, Ũ

W
are nothing but⎧⎪⎨⎪⎩

˙̃X
V
(τ) = aX̃

V
(τ) + bŨ

V
(τ) + σ(H − 1

2 )τH− 3
2 , τ ≥ 0 ; X̃

V
(0) = 0 ,

˙̃U
V
(τ) = aŨ

V
(τ) +

Aσ

B
Ũ

W
(τ) , τ ≥ 0 ; Ũ

V
(0) = 0 .

(69)

Now we solve the infinite time horizon deterministic control problem.

min
Ũ

W

J̃∞(Ũ
W

) subject to (69). (70)

Let us define the 2 × 2 matrices A, Q and the vector B in R
2 by:

A =
(

a b
0 a

)
; Q =

⎛⎝q 0

0 q
B2b2

A2σ2
+ r

⎞⎠ ; B =

(
0

Aσ

B

)
,

and introduce also the R
2-valued functions Z̃

V
(τ) and K(τ) as

Z̃
V
(τ) =

(
X̃V (τ)
Ũ

V
(τ)

)
; K(τ) =

(
σ(H − 1

2 )τH− 3
2

0

)
.

Then, we can rewrite (69) and (68) as

˙̃Z
V
(τ) = AZ̃

V
(τ) + BŨ

W
(τ) + K(τ), τ ≥ 0; Z̃

V
(0) = 0, (71)

and

J̃∞(Ũ
W

) =
2HΓ(3

2 − H)
Γ(H + 1

2 )Γ(2 − 2H)

∫ +∞

0

{Z̃ ′
V
(s)QZ̃

V
(s) + rŨ2

W
(s)}ds. (72)

Hence, to solve the problem (70), it is natural to introduce the following Hamiltonian system in the functions
Z̃∗ and p̃∗: ⎧⎨⎩

˙̃Z∗(τ) = AZ̃∗(τ) − r−1BB′p̃∗(τ) + K(τ), Z̃∗(0) = 0; lim
τ→+∞ Z̃∗(τ) = 0,

˙̃p
∗
(τ) = −QZ̃∗(τ) −A′p̃∗(τ); lim

τ→+∞ p̃∗(τ) = 0.
(73)

Observe that, if (Z̃∗, p̃∗) is a solution of (73), then Z̃∗ = (X̃ ∗
V
, Ũ∗

V
)′ is nothing but the solution of (71) corre-

sponding to the control
Ũ∗

W
(τ) = −r−1B′p̃∗(τ).

Actually, standard calculations permit to show that if (Z̃∗, p̃∗) is a solution of (73), then the pair (Z̃∗, Ũ∗
W

) is
an optimal pair in the control problem (70). So, finally, to solve this problem we have just to identify a solution
of (73). Let us look for a solution in such a way that for some fixed 2× 2 matrix Γ and R

2-valued function λ̃∗,
the function p̃∗ can be represented as

p̃∗(τ) = Γ[Z̃∗(τ) + λ̃∗(τ)]. (74)

Hence, it is readily seen that one may take Γ as the nonnegative solution of the algebraic Riccati equation

A′Γ + ΓA− r−1ΓBB′Γ + Q = 0,
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and λ̃∗ as the solution of the differential equation

Γ ˙̃
λ∗(τ) = [r−1ΓBB′ −A′]Γλ̃∗(τ) − ΓK(τ) ; lim

τ→+∞ λ̃∗(τ) = 0. (75)

It can be checked that the matrices Γ and Λ = r−1ΓBB′ −A′ are given by

Γ =
B2r

A2σ2b2

(
(a + δc)(a + δ

f
)(δc + δ

f
) b(a + δc)(a + δ

f
)

b(a + δ
c
)(a + δ

f
) b2(2a + δ

c
+ δ

f
)

)
, (76)

and

Λ = r−1ΓBB′ −A′ =
(−a b−1(a + δc)(a + δ

f
)

−b a + δ
c
+ δ

f

)
. (77)

The eigenvalues of Λ are δ
c

and δ
f
. If δ

c
�= δ

f
, then it can be decomposed as

Λ = P−

(
δc 0
0 δ

f

)
P−1
− ,

where

P− =
(

a + δ
f

a + δc

b b

)
; P−1

− =
1

b(δ
f
− δ

c
)

(
b −(a + δc)
−b a + δ

f

)
.

Similarly, if δ
c

= δ
f
, then Λ can be decomposed as

Λ = P+

(
δ

c

1
b [b2 + (a + δ

c
)2]

0 δ
c

)
P−1

+ ,

where

P+ =
(

a + δc −b
b a + δ

c

)
; P−1

+ =
1

b2 + (a + δ
c
)2

(
a + δc b
−b a + δ

c

)
.

Of course, we have

Γλ̃∗(t) = eΛt

∫ +∞

t

e−ΛsΓK(s)ds,

or

Γλ̃∗(t) =
∫ +∞

0

e−ΛτΓK(t + τ)dτ.

For δc �= δ
f
, this gives

Γλ̃∗(t) =
ρ̄γ̄

σ(δ
f
− δc)

(
(δ2

f
− a2)ϕ̃

c
(t) − (δ2

c
− a2)ϕ̃

f
(t)

b[(δ
f
− a)ϕ̃

c
(t) − (δ

c
− a)ϕ̃

f
(t)]

)
, (78)

where

ϕ̃
f
(t) = eδ

f
t

∫ +∞

t

e−δ
f

sdsH− 1
2 ; ϕ̃

c
(t) = eδc t

∫ +∞

t

e−δcsdsH− 1
2 , (79)

and in particular

Γλ̃∗(0) =
Γ(H + 1

2 )
σ

ρ̄γ̄

δ
f
− δc

(
(δ2

f
− a2)δ

1
2−H
c

− (δ2
c
− a2)δ

1
2−H
f

b[(δ
f
− a)δ

1
2−H

c
− (δ

c
− a)δ

1
2−H
f ]

)
. (80)

Concerning the cost, starting from (73) and evaluating by integration by parts the variation of p̃∗(t)′Z̃∗(t) over
[0, +∞), it is readily seen that

J̃∞(Ũ∗
W

) =
2HΓ(3

2 − H)
Γ(H + 1

2 )Γ(2 − 2H)

∫ +∞

0

K′(τ)Γp̃∗(τ)dτ.
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Consequently, evaluating by integration by parts the variation of λ̃∗(t)′ΓZ̃∗(t) over [0, +∞), we get that J̃∞(Ũ∗
W

)
can also be represented as

J̃∞(Ũ∗
W

) =
2HΓ(3

2 − H)
Γ(H + 1

2 )Γ(2 − 2H)

{
2
∫ +∞

0

K′(τ)Γλ̃∗(τ)dτ − r−1

∫ +∞

0

λ̃∗(τ)′ΓBB′Γλ̃∗(τ)dτ
}
.

Then, evaluating the variation of λ̃∗(t)′Γλ̃∗(t) over [0, +∞), it comes that also

J̃∞(Ũ∗
W

) =
2HΓ(3

2 − H)
Γ(H + 1

2 )Γ(2 − 2H)

{
λ̃∗(0)′Γλ̃∗(0) +

∫ +∞

0

λ̃∗(τ)′Qλ̃∗(τ)dτ
}
.

Finally, an alternative expression for J̃∞(Ũ∗
W

) can be derived. We introduce the nonnegative solution R of the
algebraic Lyapunov equation

Λ′R + RΛ = r−1BB′.
Then, evaluating by integration by parts the variation of λ̃∗(t)′ΓRΓλ̃∗(t) over [0, +∞), it comes that we can
also write

J̃∞(Ũ∗
W

) =
2HΓ(3

2 − H)
Γ(H + 1

2 )Γ(2 − 2H)

{
λ̃∗(0)′ΓRΓλ̃∗(0) + 2

∫ +∞

0

K′(τ)[I − ΓR]Γλ̃∗(τ)dτ
}
. (81)

Actually, we get

R =
A2σ2

2B2r

1
δ

c
δ

f
(δ

c
+ δ

f
)

(
b2 −ab
−ab a2 + δ

c
δ

f

)
.

Now, from (78)-(80), we can compute the value J̃∞(Ũ∗
W

). At first, from (78), it comes that the second term
within brackets in the right hand side of (81) gives

qσ2 Γ(H + 1
2 )Γ(2 − 2H)Γ(2H)
2Γ(3

2 − H)

(δ2
f
− a2)δ−2H

c
− (δ2

c
− a2)δ−2H

f

δ2
f
− δ2

c

·

Moreover, from (80), it comes that the first term within brackets in the right hand side of (81) gives

Γ2(H +
1
2
)
A2γ̄2ρ̄

2B2

δ
c
+ a

δ
c
δ

f
(δ

f
− δ

c
)2(δ

f
+ δ

c
)

{
[δ

1
2−H
c

δ
f
(δ

f
− a) − δ

1
2−H
f

δc(δc − a)]2

+δ
c
δ

f
[δ

1
2−H

c
(δ

f
− a) − δ

1
2−H

f
(δ

c
− a)]2

}
.

Finally, from these expressions, it can be checked that J̃∞(Ũ∗
W

) can be represented as

J̃∞(Ũ∗
W

) = ζ∞(H) + qγ∞(H),

where ζ∞(H) and γ∞(H) are given by (46) and (47), respectively. In other words, J̃∞(Ũ∗
W

) is nothing but the
optimal cost J∞(ū) given by (45) for our original infinite horizon stochastic control problem.
The case δ

c
= δ

f
can be treated similarly to obtain the same conclusion, with the limiting value (48) instead of

(46) for the term ζ∞(H).

Now, taking into account the fact that the connection (67) can be inverted by

g(s) =
1

B(H + 1
2 , 3

2 − H)
d
ds

∫ s

0

g̃(r)(s − r)
1
2−Hdr, (82)
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we may reformulate our initial guess by telling that the triple (U∗
V
,X ∗

V
,U∗

W
), obtained from (Ũ∗

V
, X̃ ∗

V
, Ũ∗

W
) through

(82), is a candidate to define through (64) an optimal pair (u∗, X∗) in the original infinite horizon stochastic
control problem. Actually the proof that this is true is included below in the proof of the following statement.

Theorem 4.1. Let the pairs of constants (ρ̄, δc) and (γ̄, δ
f
) be defined by (8) and (11) respectively. In the

control problem
min

u∈Uad

J∞(u) subject to (1) ,

with J∞ defined by (7), an optimal control u∗ in Uad and the corresponding triple (u∗, X∗, Y ∗) are governed by
the system

u∗
t = − b

r
ρ̄[π∗

t +
Aσ2

B

vf
t − vc

t

δc − δ
f

] ; X∗
t = Xu∗

t ; Y ∗
t = Y u∗

t , (83)

where the process π∗ is defined by

π∗
t = π̂t +

A

B
γ̄vf

t , (84)

with
dπ̂t = aπ̂tdt + bu∗

t dt +
A

B2
γ̄[dY ∗

t − Aπ̂tdt]; π̂0 = x , (85)

and the processes vc and vf satisfy the integral equations

vc
t =

∫ t

0

δ
c
vc

sds +
∫ t

0

[
δ

1
2−H
c

Γ(3
2 − H)

(t − s)
1
2−H − 1

]
B−1[dY ∗

s − Aπ̂sds], (86)

vf
t =

∫ t

0

δ
f
vf

s ds +
∫ t

0

[
δ

1
2−H
f

Γ(3
2 − H)

(t − s)
1
2−H − 1

]
B−1[dY ∗

s − Aπ̂sds]. (87)

Remark 4.2. (a) Actually, in the statement above, for δ
f

= δ
c
, one has vf ≡ vc. The term (vc − vf )/(δ

c
− δ

f
)

must be changed into a process v̇c which satisfies the equation

v̇c
t =

∫ t

0

[vc
s + δc v̇

c
s]ds +

∫ t

0

(
1
2
− H

)
δ−

1
2−H

c

Γ(3
2 − H)

(t − s)
1
2−HB−1[dY ∗

s − Aπ̂sds].

(b) In the case H = 1/2, one has vf ≡ vc ≡ 0 and hence it is readily seen that the statement reduces globally
to the well known result recalled at the beginning of Section 5.

(c) As a filter of X∗
t from the observations {Y ∗

s , s ≤ t}, π∗
t defined by (84) is asymptotically optimal in the sense

that, as t goes to infinity, the variance E(X∗
t − π∗

t )2 of the corresponding filtering error converges to the same
limit γ∞(H) given by (47) as E(X∗

t −πt(X∗))2 for the optimal filter πt(X∗). This can be seen by reworking the
developments in [11] concerning an autonomous linear system with u ≡ 0, which generates the pair (X0, Y 0).
The result therein can be reformulated as follows: defining the processes

dπ0
t = aπ0

t dt +
A

B2
γ̄[dY 0

t − Aπ0
t dt] ; π0

0 = 0 ,

and

v0
t =

∫ t

0

δ
f
v0

sds +
∫ t

0

[
δ

1
2−H
f

Γ(3
2 − H)

(t − s)
1
2−H − 1

]
B−1[dY 0

s − Aπ0
sds],

then π0
t + A

B γ̄v0
t is asymptotically optimal as a filter of X0

t from the observations {Y 0
s , s ≤ t}. Now, observing

that actually X∗ − π̂ ≡ X0 − π0, Y ∗ − ∫ .

0 Aπ̂ds ≡ Y 0 − ∫ .

0 Aπ0ds and hence also vf ≡ v0, it follows that
π∗

t = π̂t + A
B γ̄vf

t is also asymptotically optimal as a filter of X∗
t from the observations {Y ∗

s , s ≤ t}.
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Proof of Theorem 4.1. The statement for arbitrary values of σ and B can be easily derived from the statement
for σ = B = 1. So, for simplicity, here we deal only with this particular case. Moreover, since the case δc = δ

f

can be treated similarly, we assume also that δ
c
�= δ

f
. From the discussion above, we get the candidate pair

(u∗, X∗): ⎧⎪⎪⎨⎪⎪⎩
u∗

t =
∫ t

0

U∗
V
(t − s)dV H

s − A

r

∫ t

0

p∗2(t − s)dWH
s ,

X∗
t =

∫ t

0

X ∗
V
(t − s)dV H

s +
b

A

∫ t

0

U∗
V
(t − s)dWH

s ,

(88)

where, for Γ and Λ defined by (76) and (77), the function Z∗ = (X ∗
V
,U∗

V
)′ is the solution of

Ż∗ = −Λ′Z∗ − r−1BB′Γλ∗; Z∗(0) = (1, 0)′, (89)

and p∗2 is the second component of the vector p∗ = Γ(Z∗ + λ∗) where Γλ∗ corresponds through (82) to Γλ̃∗

given by (78)-(79). Actually, applying (82) to (78)–(79), we get that Γλ∗ is given by:

Γλ∗(t) =
ρ̄γ̄

δ
f
− δ

c

(
(δ2

f
− a2)ϕc(t) − (δ2

c
− a2)ϕ

f
(t)

b[(δ
f
− a)ϕc(t) − (δc − a)ϕ

f
(t)]

)
, (90)

where

ϕ
f
(t) = − δ

1
2−H
f

Γ(3
2 − H)

∫ ∞

t

eδ
f
(t−s)ds

1
2−H ; ϕc(t) = − δ

1
2−H
c

Γ(3
2 − H)

∫ ∞

t

eδc (t−s)ds
1
2−H . (91)

At first, we prove that the cost J∞(u∗) corresponding to the pair (u∗, X∗) defined by (88)–(91) is the optimal
cost J∞(ū) given by (45), i.e.

lim
T→+∞

1
T

∫ T

0

[qX∗2
t + ru∗2

t ]dt = J∞(ū) a.s. (92)

Since by construction of the pair (u∗, X∗) we have already guaranteed that

lim
t→+∞ E[qX∗2

t + ru∗2
t ] = J∞(ū) ,

it is sufficient to show that

lim
T→+∞

1
T

∫ T

0

[X∗2
t − EX∗2

t dt] = 0 a.s. ; lim
T→+∞

1
T

∫ T

0

[u∗2
t − Eu∗2

t ]dt = 0 a.s. (93)

To estimate the covariances EX∗
t X∗

t+τ and Eu∗
t u

∗
t+τ , we shall take benefit of the following extension of the

equality (66) for a stochastic integral St =
∫ t

0 g(t − s)dBH
s : for any τ ≥ 0

lim
t→+∞ EStSt+τ =

2HΓ(3
2 − H)

Γ(H + 1
2 )Γ(2 − 2H)

∫ +∞

0

g̃(s)g̃(s + τ)ds , (94)

where g̃ is defined by (67). Due to (73)–(74) and (78)–(79), it can be seen that there exists a constant2 C > 0
such that for all s ≥ 0

|Z̃∗(s)| ≤ C(1 ∧ sH− 3
2 ); |p̃∗(s)| ≤ C(1 ∧ sH− 3

2 ).

2We use here and throughout the proof C to denote an unspecified positive constant, not always the same.
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So the g̃’s corresponding to the g’s involved in the representation (88) of the pair (u∗, X∗) in terms of V H and
WH satisfy also such an inequality. Hence, from (94), we get that for all t ≥ 0 and τ ≥ 0∣∣EX∗

t X∗
t+τ

∣∣ ≤ C(1 ∧ τ2H−2) ;
∣∣Eu∗

t u
∗
t+τ

∣∣ ≤ C(1 ∧ τ2H−2).

Consequently, we can apply assertion (ii) in Proposition 5.1 of the Appendix to the continuous and centered
Gaussian processes X∗ and u∗ with β = 2 − 2H > 0 and k = 1. It gives that the limits in (93) hold, which
implies also the validity of (92).

Now we turn to the representation (83)–(87) of the optimal control u∗. Taking into account the form (41)
of ū in terms of the optimal filter π(X̄) in the first solution of the problem, it is natural to guess that here a
similar decomposition may hold for u∗ in terms of an asymptotically optimal filter for X∗. In Remark 4.2(c),
we have already seen that the process π∗ = π̂ + Aγ̄vf

t , given by (84), (85) and (87), is a candidate to be such
a filter. Since it plays a key role in the definition of the terms π̂ and vf

t appearing in the expression of π∗, it
seems reasonable to look for a complete representation of u∗ in terms of the process Y ∗ − ∫ .

0 Aπ̂ds. So, as a
first step, we look for u∗ in the form

u∗
t =

∫ t

0

g∗(t − s)[dY ∗
s − Aπ̂sds]. (95)

Then it can be checked that equation (85) and the first equation in (88) imply that

π̂t =
∫ t

0

Ψ∗(t − s)[dY ∗
s − Aπ̂sds], (96)

with a function Ψ∗ satisfying
Ψ̇∗ = aΨ∗ + bg∗ ; Ψ∗(0) = Aγ, (97)

where g∗ is given by

g∗(t) = Aγ̄U∗
V
− A

r
p∗2(t).

Since p∗2 is the second component of the vector p∗ = Γ(Z∗ + λ∗) where Γ is given by (76) and Z∗ = (X ∗
V
,U∗

V
)′,

we get that

g∗(t) = ĝ(t) − A

r
(Γλ∗)2(t) , (98)

where (Γλ∗)2 is the second component of the vector Γλ∗ given by (90) and

ĝ(t) = −a + δc

A

[
a + δ

f

b
X ∗

V
(t) + U∗

V
(t)
]

.

Now, from equation (89), it comes that

˙̂g = −δc ĝ +
A

r
(a + δc)(Γλ∗)2 ; ĝ(0) = −a + δ

c

b
· a + δ

f

A
,

which can be rewritten as
˙̂g = aĝ − (a + δc)g

∗ ; ĝ(0) = −a + δ
c

b
· a + δ

f

A
· (99)

Since a+δc

b = b
r ρ̄ and

a+δ
f

A = Aγ̄, a comparison of equations (97) and (99) gives that ĝ = − b
r ρ̄Ψ∗ and hence,

due to (98), we have

g∗(t) = − b

r
ρ̄Ψ∗ − A

r
(Γλ∗)2(t).
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Inserting this equality into (95) and taking into account (96), it follows that

u∗
t = − b

r
ρ̄π̂t − A

r

∫ t

0

(Γλ∗)2(t − s)[dY ∗
s − Aπ̂sds].

But from (90) we have

(Γλ∗)2(t) =
bρ̄γ̄

δ
f
− δ

c

{
(δ

f
− a)ϕc(t) − (δc − a)ϕ

f
(t)
}

,

where ϕ
f

and ϕ
c

are given by (91). It can be checked that actually the processes

v
c
(t) =

∫ t

0

δ
1
2−H
c

Γ(3
2 − H)

ϕ
c
(t − τ)[dYτ − Aπ̂τdτ ],

and

v
f
(t) =

∫ t

0

δ
1
2−H

f

Γ(3
2 − H)

ϕ
f
(t − τ)[dYτ − Aπ̂τdτ ],

are nothing but the solutions of equations (86) and (87) respectively. Therefore, we can write

u∗
t = − b

r
ρ̄{π̂t +

Aγ̄

δc − δ
f

[(δc − a)vf
t − (δ

f
− a)vc

t ]}.

Finally, using (84), it is readily seen that u∗
t can be rewritten as in (83). �

5. Appendix – Auxiliary results

5.1. Some sufficient condition on moments for ergodic type properties of processes

The following sufficient condition for ergodic type properties is the key of several steps in our developments.
It has already been used in the proof of Theorem 4.1 and it will be again repeatedly used below. Notice that
throughout the statements and the proofs, below we use C to denote an unspecified positive constant, not
always the same.

Proposition 5.1. Let ξ = (ξt, t ≥ 0) be a centered continuous process. Suppose that there exists some constants
C > 0 and β > 0 such that the condition

|Eξtξt+τ | ≤ C(1 ∧ τ−β), (100)

holds for all t ≥ 0 and τ ≥ 0. Then the process (ξt, t ≥ 0) possesses the following ergodic type properties:

(i)

lim
T→+∞

1
T

∫ T

0

ξt dt = 0 a.s.

(ii) if moreover ξ is Gaussian, then for any integer k ≥ 1,

lim
T→+∞

1
T

∫ T

0

[ξ2k
t − Eξ2k

t ] dt = 0 a.s.

Proof. For 0 < β < 1, assertion (i) is actually an immediate consequence of the last statement written on
page 95 in [2] since if the above condition (100) is satisfied then the condition 0 ≤ 2α < β < 1 numbered (5.5.3)
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therein is obviously fulfilled with α = 0. For β ≥ 1, it is clear that the condition (100) is stronger than for
0 < β < 1 and so the conclusion remains still valid.
Now, if the centered process ξ is Gaussian, for any k ≥ 1, we have

|E[ξ2k
t − Eξ2k

t ][ξ2k
t+τ − Eξ2k

t+τ ]| ≤ C[Eξtξt+τ ]2k ,

with some positive constant C, and hence also, if ξ satisfies (100), then

|E[ξ2k
t − Eξ2k

t ][ξ2k
t+τ − Eξ2k

t+τ ]| ≤ C(1 ∧ τ−2kβ) .

Consequently, assertion (ii) follows by a simple application of the first statement in the Proposition to the
centered process (ξ2k

t − Eξ2k
t , t ≥ 0) with β changed into 2kβ. �

5.2. About some technical results used in the proof of Theorem 3.1

Here we are concerned with a system with constant coefficients. Again, without any loss of generality and
for simplicity, we assume that σ = B = 1 and x = 0. Moreover, since the case δc = δ

f
can be treated similarly,

we assume also that δc �= δ
f
. For the pair (X, Y ) solution of the system (1), we introduce the filtering error

process ∆ as
∆t = Xt − πt(X) , t ≥ 0 . (101)

Recall that this process, which is centered, does not depend on the specific control u involved in the system.
Hence, to analyze the second order structure and the asymptotic behavior of ∆, we may deal only with the case
u ≡ 0. Notice that, from the asymptotical point of view, from [8], we know already that for t tending to infinity
the variance function Γ11

f (t, t) = E∆2
t behaves as follows:

lim
t→+∞ E∆2

t = γ∞(H) , (102)

where γ∞(H) is the constant given by (47). But, in order to derive ergodic type properties of ∆ on the basis of
Proposition 5.1, we need a much deeper analysis of the behavior of the covariance function E∆t∆s. Preparing
for that, we give a key representation of this covariance function in terms of covariances of some other processes.
Hereafter, the 2 × 2 matrices AH , BH , J and the vector bH in R

2 are defined by:

AH(s) =
(

1 s1−2H

s2H−1 1

)
; BH(s) =

(
s1−2H 1

1 s2H−1

)
,

and

J =
(

0 1
1 0

)
; bH(s) =

(
1

s2H−1

)
.

Following [8], we introduce the auxiliary process ζ = (ζt, t ≥ 0) as the solution of the equation

ζt =
a

2

∫ t

0

AH(s)ζsds +
∫ t

0

bH(s)dV ∗
s ,

in which V ∗ denotes the fundamental martingale associated to V H through (15). In terms of ζ, the process Q
defined by (19) can be represented as

Q(t) =
AλH

2(2 − 2H)
b′H(t)Jζt , (103)
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and, for all fixed t ≥ 0, we define another auxiliary process Xt on [0, t] as the solution of the equation

Xt
s =

a

2

∫ t

0

KH(t, u)b′H(u)Jζudu +
∫ s

0

KH(t, u)dV ∗
u ; 0 ≤ s ≤ t.

From [8], we know that the covariance function γ
ζζ

defined by

γ
ζζ

(s) = E(ζs − πs(ζ))(ζs − πs(ζ))′ , s ≥ 0 ,

is the solution of the Riccati equation

γ
ζζ

(s) =
a

2

∫ s

0

[AH(u)γ
ζζ

(u) + γ
ζζ

(u)A′
H(u)]du

+
2 − 2H

λH

∫ s

0

BH(u)du − A2λH

4(2 − 2H)

∫ s

0

γ
ζζ

(u)B1−H(u)γ
ζζ

(u)du .
(104)

Reworking the developments in [8], one can show that the covariances

γ
Xζ

(t, s) = E(Xt
s∧t − πs∧t(Xt))(ζs − πs(ζ)) , s ≥ 0 , t ≥ 0 ,

satisfy for all s ≥ 0 and t ≥ 0 the equation

γ
Xζ

(t, s) =
∫ t

0

{a

2
AH(u) − A2λH

4(2 − 2H)
γ

ζζ
(u)B1−H(u)

}
γ

Xζ
(t, u)du

+
∫ s∧t

0

KH(t, u)
{a

2
γ

ζζ
(u) +

2 − 2H

λH
J
}
b1−H(u)du.

(105)

Finally, in terms of the previous covariances, one can derive the following representation of the covariance
E∆t∆s: for all 0 ≤ s ≤ t

E∆t∆s =
∫ s

0

KH(s, r)KH(t, r)dwH
r +

a

2

∫ s

0

KH(s, r)b′1−H(r)γ
Xζ

(t, r)dr

+
∫ t

0

{
a

2
KH(t, r)b′1−H(r) − A2λH

4(2 − 2H)
γ′

Xζ
(t, r)B1−H(r)

}
γ

Xζ
(s, r)dr.

(106)

Now, on the basis of this representation and Proposition 5.1, we are able to prove the following statement which
provides ergodic type properties of the process ∆.

Lemma 5.2. Let ∆ be the process defined by (101) for the solution pair (X, Y ) of the system (1). Then the
following assertions hold:

(i) there exists a constant C > 0 such that for all t ≥ 0 and τ ≥ 0

|E∆t∆t+τ | ≤ C(1 ∧ τ2H−2), (107)

(ii) the process ∆ possesses the ergodic type property

lim
T→+∞

1
T

∫ T

0

∆2
t dt = γ∞(H) a.s. , (108)

where γ∞(H) is given by (47),
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(iii) if v = (vt, t ≥ 0) is a (Yt)-adapted continuous process such that almost surely lim sup
T→+∞

T−1
∫ T

0
v2

t dt < +∞,

then

lim
T→+∞

1
T

∫ T

0

vt∆t dt = 0 a.s. (109)

Proof. Concerning assertion (i), since the complete proof is quite long and very technical, here we just give
some hints about the main steps.3 At first, in the representation (106), explicite expressions of the involved
solutions of equations (104)–(105) can be obtained. Then, from these expressions, refining the methods used in
[8], precise limiting properties of the various terms inside the integrals in the right hand side of (106) can be
analyzed. Finally, it can be shown that for any fixed τ ≥ 0,

lim
t→+∞ E∆t∆t+τ = γ∆(τ) ,

where the limit γ∆(τ) is finite and explicit, with of course in particular γ∆(0) = γ∞(H) given by (47). Moreover,
a complementary study gives that

lim
τ→+∞ τ2−2Hγ∆(τ) = γ∆ ,

where again the limit γ∆ is finite and can be written explicitly. Hence, it is readily seen that the assertion (i)
holds.

Now we prove assertion (ii). Since ∆ is a centered Gaussian process and, due to (102), we have

lim
T→+∞

1
T

∫ T

0

[E∆2
t ]dt = lim

t→+∞ E∆2
t = γ∞(H) ,

(108) follows by a simple application of Proposition 5.1 (ii) with β = 2 − 2H and k = 1.

Finally we turn to assertion (iii). At first, we prove (109) for a bounded process v. Since v is (Yt)-adapted
and ∆ is centered, Evt∆t = 0 for all t ≥ 0, i.e., the process v∆ is centered. Since ∆ is Gaussian, for all t ≥ 0
and τ ≥ 0, the conditional covariance E[∆t∆t+τ/Yt+τ ] is deterministic and hence

Evtvt+τ∆t∆t+τ = E
[
E[vtvt+τ∆t∆t+τ/Yt+τ ]

]
= Evtvt+τE∆t∆t+τ .

So, if sup
t≥0

|vt| ≤ C < ∞ a.s., then for all t ≥ 0 and τ ≥ 0

|Evtvt+τ∆t∆t+τ | = |Evtvt+τ ||E∆t∆t+τ | ≤ C(1 ∧ τ2H−2) .

Consequently, by application of Proposition 5.1 (i) to v∆ with β = 2 − 2H , we get that (109) holds.
Now, we consider the case of a possibly unbounded v. For any fixed positive constant K, we can write

1
T

∫ T

0

vt∆tdt = IK
1 (T ) + IK

2 (T ) ,

where

IK
1 (T ) =

1
T

∫ T

0

I(|vt| ≤ K)vt∆tdt ; IK
2 (T ) =

1
T

∫ T

0

vtI(|vt| > K)∆tdt .

Since the process (I(|vt| ≤ K)vt, t ≥ 0) is bounded, by the first step above, we know that IK
1 (T ) tends a.s. to

zero as T goes to infinity and so we obtain that for all K > 0

lim sup
T→+∞

| 1
T

∫ T

0

vt∆tdt| ≤ lim sup
T→+∞

|IK
2 (T )| a.s.

3Further details can be obtained upon request to the author for correspondence.
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Hence, to prove that (109) is still valid, it suffices to show that

lim
K→+∞

lim sup
T→+∞

|IK
2 (T )| = 0 a.s. (110)

But, using the Cauchy-Schwarz inequality, we see that

|IK
2 (T )| ≤

√
1
T

∫ T

0

v2
t dt

4

√
1
T

∫ T

0

I(|vt| > K)dt
4

√
1
T

∫ T

0

∆4
t dt.

In the second factor of the right hand side, we have

1
T

∫ T

0

I(|vt| > K)dt ≤ 1
KT

∫ T

0

|vt| dt ≤ 1
K

√
1
T

∫ T

0

v2
t dt,

and so, we get

|IK
2 (T )| ≤ 1

4
√

K
[
1
T

∫ T

0

v2
t dt]

5
8 [

1
T

∫ T

0

∆4
t dt]

1
4 . (111)

Since ∆ is a centered Gaussian process, we have E∆4
t = 3(E∆2

t )
2 and hence, due to (102), it follows that

lim
T→+∞

1
T

∫ T

0

[E∆4
t ]dt = lim

t→+∞ E∆4
t = 3γ2

∞(H).

Then, applying Proposition 5.1 (ii) with β = 2 − 2H and k = 2 to ∆, it turns that

lim
T→+∞

1
T

∫ T

0

∆4
t dt = 3γ2

∞(H) a.s.

Finally, thanks to the assumption lim supT→+∞ T−1
∫ T

0
v2

t dt < +∞ a.s., the inequality (111) shows that (110)
is valid and hence also (109) holds for v. �

Lemma 5.3. Let the kernel Γ12
f

(t, s) be the (1, 2)-entry of Γf (t, s) defined by (21) with Af and C given by (38).
Let z̄ = (z̄t, t ≥ 0) be the process driven by the equation

z̄t = −δ
c

∫ t

0

z̄sds +
∫ t

0

Γ12
f

(t, s) dνs. (112)

Then the following assertions hold:

(i) for all τ ≥ 0

lim
t→+∞

√
2 − 2H

λH
t

1
2−HΓ12

f
(t + τ, t) = Γ�(τ),

where

Γ�(τ) = A
√

Γ(2H + 1) sin πH
{ aγ̄

δ
H+ 1

2
f

+
1

Γ(H + 1
2 )

∫ +∞

0

e−δ
f

s(τ + s)H− 1
2 ds
}
, (113)

(ii) there exists a constant C > 0 such that for all t ≥ 0 and τ ≥ 0

|Ez̄tz̄t+τ | ≤ C(1 ∧ τ2H−2),
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(iii) the process z̄ possesses the ergodic type property

lim
T→+∞

1
T

∫ T

0

z̄2
t dt =

A2Γ(2H + 1)
2(δ2

f
− δ2

c
)

[
1

δ2H
c

− 1
δ2H

f

]

+A2Γ(2H + 1) sinπH

{
δ1−2H

f

(δ
c
+ δ

f
)2

[
γ̄2(δ

c
+ a)2

2δ
c

+
2γ̄(δ

c
+ a)

δ
c
− δ

f

− 1
2δ

f

]
+

δ
1
2−H
f δ−

1
2−H

c

δ2
f
− δ2

c

γ̄(δ
c
+ a)

}
a.s.

Proof. At first we deal with assertion (i). Here again, the complete proof is rather long and very technical and
so we just give some hints.4 The first step is to derive an appropriate representation of the kernel Γ12

f
(t, s).

From [9], we know that if X̃t denotes the auxiliary process defined on [0, t] by

X̃t
s = a

∫ s

0

Xrdr +
∫ s

0

KH(t, r)dV ∗
r ; 0 ≤ s ≤ t ,

in which V ∗ stands for the fundamental martingale associated to the fBm V H through (15), then

Γ12
f (t, s) = E(X̃t

s − πs(X̃t))(Qs − πs(Q)) ; 0 ≤ s ≤ t ,

where Q is the process defined by (19). Now, due to the representation (103) of Q, for 0 ≤ s ≤ t, the kernel
Γ12

f (t, s) is given by

Γ12
f (t, s) =

AλH

2(2 − 2H)
b′H(s)JΓ

Xζ
(t, s) , (114)

where the vectors Γ
Xζ

(t, s) in R
2 are the covariances

Γ
Xζ

(t, s) = E(X̃t
s − πs(X̃t))(ζs − πs(ζ)) ; 0 ≤ s ≤ t .

It can be shown that these covariances satisfy the equation

Γ
Xζ

(t, s) = a

∫ s

0

Γ
Xζ

(r, r) dr +
2 − 2H

λH

∫ s

0

KH(t, r)J b1−H(r) dr

+
∫ s

0

{a

2
AH(r) − A2λH

4(2 − 2H)
γ

ζζ
(r)B1−H(r)

}
Γ

Xζ
(t, r) dr,

where γ
ζζ

(r) is the solution of equation (104). An explicit expression can be obtained for Γ
Xζ

(t, s) and then the
asymptotic behavior of Γ12

f (t + τ, t) can be analyzed from (114) by means of refinements of the methods used
in [8].

Now, we prove assertion (ii). Due to equation (112), we get that z̄ can be represented as

z̄t =
∫ t

0

G(t, s)dνs, (115)

where the kernel G(t, s) is given by

G(t, s) = Γ12
f

(t, s) − δ
c

∫ t

s

e−δc (t−r)Γ12
f

(r, s)dr.

4Further details can be obtained upon request to the author for correspondence.



122 M.L. KLEPTSYNA, A. LE BRETON AND M. VIOT

For all t ≥ 0 and τ ≥ 0, we can write

G(t + τ, t) = Γ12
f

(t + τ, t) − δ
c

∫ τ

0

e−δc (τ−u)Γ12
f

(t + u, t)du.

Hence, thanks to assertion (i), after checking that the theorem of dominated convergence can be applied, it
comes that

lim
t→+∞

√
2 − 2H

λH
t

1
2−HG(t + τ, t) = G�(τ), (116)

where

G�(τ) = Γ�(τ) − δc

∫ τ

0

e−δc (τ−u)Γ�(u)du,

or, equivalently,

G�(τ) = e−δc τΓ�(0) +
∫ τ

0

e−δc (τ−u)Γ̇�(u)du. (117)

Now, concerning the covariance function of the process z̄, from equation (115), we have

Ez̄tz̄t+τ =
∫ t

0

G(t, s)G(t + τ, s)d〈ν〉s ; τ ≥ 0.

Consequently, since the variance function 〈ν〉 of the process ν is nothing but the function wH given by (14) and
moreover again the theorem of dominated convergence is applicable, it follows from (116) that

lim
t→+∞ Ez̄tz̄t+τ =

∫ +∞

0

G�(r)G�(r + τ)dr ; τ ≥ 0.

Actually, it can be seen that there exists a constant C > 0 such that for all s ≥ 0

|G�(s)| ≤ C(1 ∧ sH− 3
2 ),

and so we get also that for all t ≥ 0 and τ ≥ 0

|Ez̄tz̄t+τ | ≤ C(1 ∧ τ2H−2) ,

which means that assertion (ii) is valid.

Finally, we turn to assertion (iii). Here, since the process z̄ is Gaussian and centered, due to Proposition 5.1
(ii) and assertion (ii) above, it suffices to show that the limit of Ez̄2

t as t goes to infinity is equal to the right
hand side of the equality stated in assertion (iii). We already know that this limit is given by

lim
t→+∞ Ez̄2

t =
∫ +∞

0

G2
�(r)dr,

where G� satisfies equation (117) and so it remains to calculate the integral in the right hand side. But, from
equations (113) and (117), we can write a differential system for the pair (G�, Γ̇�) and then the integral appears
as the value of the cost function corresponding to a specific control policy in some infinite time horizon linear
quadratic control problem. Finally, this value can be computed by applying a standard method in such a
setting. �
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Lemma 5.4. Let the function γ12
c (s, s) be defined by (40) and w̄ = (w̄t, t ≥ 0) be the process driven by the

equation

w̄t = −δ
c

∫ t

0

w̄sds +
∫ t

0

γ12
c (s, s) dνs. (118)

Let γ� be the constant

γ� = A
√

Γ(2H + 1) sin πH
{ aγ̄

δ
H+ 1

2
f

+
δc

δ
f
− δ

c

[
1

δH+ 1
2

c

− 1

δ
H+ 1

2
f

]}
. (119)

Then the following assertions hold:

(i)

lim
t→+∞

√
2 − 2H

λH
t

1
2−Hγ12

c (t, t) = γ� ,

(ii)

lim
t→+∞

w̄t√
t

= 0 a.s.,

(iii)

lim
T→+∞

1
T

∫ T

0

w̄2
t dt =

γ2
�

2δ
c

a.s.

Proof. From the definition (40), we have

γ12
c (t, t) = δc

∫ +∞

0

e−δcτΓ12
f (t + τ, t)dτ,

and so, due to assertion (i) in Lemma 5.3,

lim
t→+∞

√
2 − 2H

λH
t

1
2−Hγ12

c (t, t) = δ
c

∫ +∞

0

e−δcτΓ�(τ)dτ,

where Γ�(τ) is given by (113). Then, by computing the integral in the right hand side, one gets that assertion
(i) is valid with the constant γ� given by (119).

Now, to prove assertions (ii) and (iii), we parallel the proof of Proposition 4.1 in [12]. At first, we recall that
the variance function 〈ν〉 of the process ν is nothing but the function wH given by (14). Then, from assertion
(i), we have also

lim
T→+∞

1
T

∫ T

0

[γ12
c (t, t)]2 d〈ν〉t = γ2

� ; lim
T→+∞

2δ
c

e2δc T

∫ T

0

e2δc t[γ12
c (t, t)]2 d〈ν〉t = γ2

� . (120)

Due to equation (118), we can write

w̄T = e−δcT

∫ T

0

eδc tγ12
c (t, t)dνt.

Hence, taking into account the second limiting property in (120), assertion (ii) follows directly by application
of the law of iterated logarithm for continuous martingales.
To prove assertion (iii), we apply the Itô formula to the process (w̄2

t , t ∈ [0, T ]) to get the representation

w̄2
T = −2δ

c

∫ T

0

w̄2
t dt + 2

∫ T

0

γ12
c (t, t)w̄t dνt +

∫ T

0

[γ12
c (t, t)]2 d〈ν〉t.
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This can be rewritten as[
1
T

∫ T

0

w̄2
t dt

][
1 − LT

〈L〉T ΨT

]
= − w̄2

T

2δcT
+

1
2δcT

∫ T

0

[γ12
c (t, t)]2 d〈ν〉t, (121)

where

LT =
∫ T

0

γ12
c (t, t)w̄t dνt; 〈L〉T =

∫ T

0

[γ12
c (t, t)]2 w̄2

t d〈ν〉t; ΨT =
〈L〉T

δ
c

∫ T

0 w̄2
t dt

·

Thanks to the first limiting property in (120) and assertion (ii), we see that the right hand side in (121) tends
to γ2

�

2δc
as T goes to +∞. Now, in the left hand side of (121), we observe that due to assertion (i), we have

0 < lim
T→+∞

ΨT < ∞ a.s.

Therefore, making use of Lemma 2.6.3 in [14] to discuss the behavior of the second factor within brackets, it is
readily seen that for the first one the statement (iii) holds. �

5.3. Last steps in the proof of Theorem 3.1

Proof of Properties (53)–(55). Here we prove the key properties used to compute the cost corresponding to the
control ū defined by (41) and (43). Recall that we can write ūt = − b

rpt where pt = ρ̄[πt(X̄) + v̄t] with

v̄t =
∫ t

0

[γ12
c (t, s) − Γ12

f (t, s)]dνs.

From the definition (40) of γ12
c (t, s), it is easy to check that v̄ satisfies the equation

v̄t = δc

∫ t

0

v̄sds +
∫ t

0

[γ12
c (s, s) − Γ12

f (t, s)]dνs.

Now, starting from (43) and paralleling the proof of Lemma 2.5 in [12], one can check that∫ T

0

[qπ2
t (X̄) + rū2

t ] dt = q

∫ T

0

[z̄2
t +

δ
c
+ a

δ
c
− a

w̄2
t ] dt +

q

δ
c
+ a

(π
T
(X̄) − z̄T )2, (122)

where z̄ and w̄ are the processes defined by (112) and (118) respectively and the difference πT (X̄) − z̄T can be
represented as

π
T
(X̄) − z̄T =

būt + (δc + a)w̄t

δc − a
· (123)

Moreover, since using pt = ρ̄[πt(X̄) + v̄t] equation (50) for p can be rewritten as

pt = −δ
c

∫ t

0

psds + q

∫ t

0

v̄sds +
∫ t

0

γ12
c (s, s) dνs,

from equation (118) for w̄, one sees that

pt = ρ̄w̄t + q

∫ t

0

e−δc (t−s)v̄sds. (124)
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Inserting (124) into ūt = − b
r pt, from (123), it comes that

π
T
(X̄) − z̄T = −(δ

c
+ a)

∫ t

0

e−δc (t−s)v̄sds . (125)

Now, recall (see Rem. 3.2) that v̄ can be represented as

v̄t = E(
∫ +∞

t

e−δc (τ−t)dV H
τ /Y ū

t ).

Therefore, it follows from Propositions 4.2 and 4.3. in [12] that limt→+∞ v̄t√
t

= 0 a.s. and hence, from (125), we
obtain immediately that

lim
T→+∞

π
T
(X̄) − z̄T√

T
= 0 a.s. (126)

Then, inserting into (122) the limits given in (126) and assertions (iii) of Lemmas 5.3 and 5.4, it is easy to
check that (53) is valid.
Now, observing that X̄ − π(X̄) = ∆, assertion (ii) in Lemma 5.2 says exactly that (54) holds and it remains
only to show that (55) is valid. But (53) tells in particular that lim supT→+∞

1
T

∫ T

0
π2

t (X̄)dt < +∞ a.s. Hence,
since of course the process π(X̄) is (Y ū

t )-adapted, to conclude we can just apply assertion (iii) of Lemma 5.2
with v ≡ π(X̄). �

Proof of properties (56)–(58). Here we prove the key properties used to show that ū minimizes J∞. We need only
to work with an admissible control u such that J∞(u) < +∞ a.s. and so, in particular, lim supT→+∞

1
T

∫ T

0 X2
t dt <

+∞ a.s. Since π2
t (X) ≤ 2X2

t +2∆2
t and (54) holds, for such a control we have also lim supT→+∞

1
T

∫ T

0
π2

t (X)dt <
+∞ a.s. Hence, applying assertion (iii) in Lemma 5.2 with v ≡ π(X), we get that

lim
T→+∞

1
T

∫ T

0

πt(X)∆tdt = 0 a.s.

which, due to (55), gives that (56) is also valid.
Concerning (57), we write

1
T

pT [πT (X̄) − πT (X)] =
p

T√
T

π
T
(X̄) − π

T
(X)√

T
.

Paralleling the proof of Lemma 2.6 in [12], one can show that

lim sup
T→+∞

∣∣∣∣πT
(X̄) − π

T
(X)√

T

∣∣∣∣ < +∞ a.s. (127)

Moreover, since assertion (ii) in Lemma 5.4 says that limt→+∞ w̄t√
t

= 0 a.s. and we know that limt→+∞ v̄t√
t

=
0 a.s., due to (124), we have

lim
T→+∞

p
T√
T

= 0 a.s. ,

and hence (57) holds.
Now, it remains only to show that (58) is valid. We rewrite it as

lim
T→+∞

NT

〈N〉T
〈N〉T

T
= 0 a.s. ,
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where (Nt, t ≥ 0) is the martingale defined by

Nt =
∫ t

0

[πs(X) − πs(X̄)]γ12
c (s, s) dνs,

with the quadratic variation process (〈N〉t, t ≥ 0) given by

〈N〉t =
∫ t

0

[πs(X) − πs(X̄)]2[γ12
c (s, s)]2 dwH

s .

Due to (127) and assertion (i) in Lemma 5.4, we have

lim sup
T→+∞

〈N〉T
T

< +∞ a.s. on {〈N〉T → +∞} ,

and so (58) follows immediately from Lemma 2.6.3 in [14]. �
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