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Abstract. Even for a well-trained statistician the construction of a histogram for a given real-valued
data set is a difficult problem. It is even more difficult to construct a fully automatic procedure which
specifies the number and widths of the bins in a satisfactory manner for a wide range of data sets. In
this paper we compare several histogram construction procedures by means of a simulation study. The
study includes plug-in methods, cross-validation, penalized maximum likelihood and the taut string
procedure. Their performance on different test beds is measured by their ability to identify the peaks
of an underlying density as well as by Hellinger distance.

Mathematics Subject Classification. 62G05, 62G07.

Received April 26, 2007. Revised February 13, 2008.

1. Introduction

Let xn = {x(1), . . . , x(n)} be an ordered sample of real data points of size n. The goal is to find an automatic
procedure which based on the data delivers a histogram with an appropriate number and widths of bins.
This is known as the problem of histogram construction. We use the term “automatic procedure” (or simply
“procedure”) to refer to a fully prescribed algorithm for constructing a histogram that requires no further input
by a user.

Most available histogram procedures yield so called regular histograms having equal length bins. Even
for a regular histogram, the choice of the proper bin length has no generally accepted automatic solution.
The number of proposed regular histogram procedures has become amazingly large. In contrast, irregular
histogram constructions, which may adapt to local variability and result in histograms of varying bin width,
are more rare. This may be due to a reliance on classical statistical decision theory to drive model selection.
That is, a decision theory framework has produced many regular histogram procedures but has applied less
easily in selecting highly parametrised irregular histograms. While some irregular histogram constructions have
been proposed, these typically depend on tuning parameters without default values. Thus, they are not fully
automatic procedures [3,11,20]) In addition, regular histogram procedures are often fast while many irregular
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histograms come with more extreme computational demands involving exhaustive search routines ([3,18–20,28]).
One exception is the taut string method of [7] which produces an automatic generally irregular histogram at
a computational cost of O(n log n). We include this method here as well as a method motivated by the taut
string procedure which produces a regular histogram using appropriate Kuiper metrics.

The construction of histograms is an excellent problem for comparing the different paradigms of model
choice. Our goal is to examine the performance of existing histogram procedures, each motivated by varying
concepts of model quality, through simulation. We consider only histogram constructions available through
full procedures. With the exception of the taut string, this treatment does exclude most irregular histogram
methods mentioned above that depend on tuning parameters. However, it is fair to say that there are no
guidelines available for using these in practice and we wish to avoid inventing implementations which may not
accurately reflect these methods. Instead, we focus our investigation also on how existing histogram procedures
perform in terms of a visual measure of model quality. This model metric assesses the extent to which a histogram
construction matches the shape of a data generating density in terms of modes. The ability to identify the peaks
in underlying densities is graphically an important property that has not received much consideration among
histogram procedures. In addition we consider Hellinger distance as a measure of histogram quality.

2. Histogram procedures

Almost all histogram procedures involve optimality considerations based on statistical decision theory, where
the performance of any data-based histogram procedure f̂(x) ≡ f̂(x | xn) is quantified through its risk

Rn(f, f̂ , �) = Ef

[
�(f, f̂)

]
(2.1)

with respect to a given, nonnegative loss function � and a density f , that is assumed to have generated the data
xn. One usually seeks the histogram procedure f̂ that minimizes (2.1), which is then deemed optimal.

The choice of a loss � is important for judging histograms. There are many possibilities which include
Lr-metrics

�(f, g) =
(∫

R

|f(x) − g(x)|rdx

)1/r

, 1 ≤ r < ∞; sup
x

|f(x) − g(x)|, r = ∞,

the squared Hellinger distance

�2(f, g) =
1
2

∫
R

(√
f(x) −

√
g(x)

)2

dx

and the Kullback-Leibler discrepancy

�(f, g) =
∫

R

log
(

f(y)
g(y)

)
f(y)dy ∈ [0,∞].

Although the choice of a loss function is to some extent arbitrary, reasons can be put forward for using one or
the other. Birgé and Rozenholc [4] argue that Kullback-Leibler divergence is inappropriate because �(f, f̂) = ∞
whenever a histogram f̂ has an empty bin. However, there are histogram methods based on AIC, [1], or cross-
validation rules [14], which are derived from risk minimization with this type of loss. The L2-loss is popularly
used because the asymptotic risk from (2.1) can then often be expanded and analysed (cf. [39] and references
therein). Barron, Birgé and Massart [3] rely on squared Hellinger distance for determining histograms. Devroye
and Györfi [9] give arguments in favour of the L1-metric.

The construction of a histogram on the data range [x(1), x(n)] is essentially the same for all histogram
procedures. A histogram is of the form

fm(x) ≡ fm,tm(x) =
N1

n
I{t0 ≤ x ≤ t1} +

m∑
j=2

Nj

n
I{tj−1 < x ≤ tj}, (2.2)
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with the bin positions as a sequence of m + 1 knots tm = (t0, t1, . . . , tm) ∈ R
m+1, tj < tj+1. The number of

bins of the histogram is m ∈ N. The corresponding bin frequencies are

Nj,m =

{ ∣∣{i : x(i) ∈ [t0, t1]}
∣∣ j = 1,∣∣{i : x(i) ∈ (tj−1, tj ]}

∣∣ j = 2, . . . , m.
(2.3)

For regular histograms with equisized bins we get

tm = t0 +
(tm − t0)

m
(0, 1, . . . , m) ∈ R

m+1, t0 < tm ∈ R (2.4)

and a regular histogram f̂ reg
m (x), x ∈ [x(1), x(n)], with m bins is determined by the knots

t̂j = x(1) +
j(x(n) − x(1))

m
, j = 0, . . . , m. (2.5)

The bin frequencies are estimated by N̂j,m as in (2.3) with tj replaced by t̂j . The so called “anchor position” of
the histogram (see [36]) is thus chosen here as x(1). Regular histogram procedures reduce to rules for determining
an optimal number mopt of bins that minimizes some type of risk in selecting a histogram from (2.5):

Rn(f, f̂ reg
mopt , �) = inf

m∈N

Rn(f, f̂ reg
m , �).

Three broad categories of regular histogram constructions which differ by the methods used for determining
mopt in (2.5) are described in Sections 2.1–2.3. We present the taut string procedure and a Kuiper-metric based
method in Section 2.4.

2.1. Plug-in methods

Assuming a sufficiently smooth underlying density f , the asymptotic risk (2.1) of a histogram f̂ reg
m from

(2.5) can often be expanded and minimized to obtain an asymptotically optimal bin number mopt, which
often depends on a constant C(f) > 0 determined by f . For example, a bin number mopt = C(f)n1/3 is
asymptotically optimal for minimizing the Lr-risk for 1 ≤ r < ∞ as well as the squared Hellinger distance,
while mopt = C(f)[n/ log(n)]1/3 is asymptotically optimal with the L∞-risk (cf. [12,32,39] for L2; [9,16], for L1;
[20] for Hellinger distance; [34] for L∞). The estimation of unknown quantities in C(f) yields a plug-in estimate
m̂ of mopt. Additionally, expressions for C(f) and estimates of m̂ are often simplified by assuming an underlying
normal density f (cf. [32]). We will consider in greater detail a more sophisticated kernel method proposed in
[39] for estimating m̂. The WAND procedure is defined here using the two-stage bin width estimator h̃2 with
M = 400 given in [39] and implemented by dpih in the R-package KernSmooth ([40]).

2.2. Cross-validation

Cross-validation (CV) attempts to directly estimate the risk Rn(f, f̂ reg
m , �) in approximating f by f̂ reg

m . This
empirical risk can then be minimized by an estimate m̂. In particular, the data xn are repeatedly divided into
two parts, one of which is used to fit f̂ reg

m and the other to evaluate an empirical loss. These repeated loss
evaluations can be averaged to estimate the risk Rn(f, f̂ reg

m , �). Based on loss functions evoked by their names,
L2 cross-validation (L2CV) and Kullback-Leibler (KLCV) procedures require maximization of

m(n + 1)
n2

m∑
j=1

N2
j,m − 2m and

m∑
j=1

Nj,m log(Nj,m − 1) + n log(m),

respectively (cf. Rudemo [30], L2CV; Hall [14], KLCV).
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2.3. Penalized-maximum likelihood

Many regular histogram procedures determine a histogram f̂ reg
m̂ from (2.5) based on a bin number m̂ that

maximizes a penalized log-likelihood

Ln(m) =
m∑

j=1

Nj,m log(mNj,m) − pen(m). (2.6)

Apart from an irrelevant constant, the first sum above corresponds to the log-likelihood
∑n

j=1 log(f̂ reg
m (x(j)))

of the observed data. The value Ln(m) is viewed as a single numerical index that weighs a regular histogram’s
fit to the data, as measured by the likelihood, against its complexity measured by the penalty term. The final
histogram f̂ reg

m̂ is judged to achieve the best balance between model fit and model complexity.
The penalty in (2.6) heavily influences the histogram f̂ reg

m̂ and numerous choices have been proposed:

pen(m) :=

⎧⎪⎪⎨⎪⎪⎩
m AIC,

m + {log(m)}2.5 BR,
m log(n)/2 BIC,
log(Cm,n) NML.

Akaike’s Information Criterion (AIC), [1], is based on minimizing estimated Kullback-Leibler discrepancy. Birgé
and Rozenholc [4] propose a modified AIC penalty (BR above) to improve the small-sample performance of the
AIC procedure. The Bayes Information Criterion (BIC) follows from a Bayesian selection approach introduced
in [31]. The Normalized Maximum Likelihood (NML) criterion uses an asymptotic ideal code length expansion
(cf. [27]), derived by Szpankowski [38], as a penalty:

log(Cm,n) =
m − 1

2
log

(n

2

)
+ log

( √
π

(Γ(m
2 ))

)
+

√
2mΓ(m

2 )
3
√

nΓ(m−1
2 )

+
1
n

(
3 + m(m − 2)(2m + 1)

36
− m2Γ2(m

2 )
9Γ2(m−1

2 )

)
,

where Γ(·) denotes the gamma function.
Rissanen [24–26] proposes several model selection techniques based on the principle of minimum description

length (MDL). Information theory is applied to characterize the best model, with respect to a given model
class, as the one providing the shortest encoding of the data xn. Hall and Hannan [15] apply different coding
formulations to derive two further selection rules. To choose a bin number m̂, the stochastic complexity (SC)
and the minimum description length (MDL) procedures require maximization of

mn(m − 1)!
(m + n − 1)!

m∏
j=1

Nj,m! or
m∑

j=1

N∗
j,m log(N∗

j,m) −
(
n − m

2

)
log

(
n − m

2

)
n log(m) − m

2
log(n),

respectively, with N∗
j,m = Nj,m − 1/2.

2.4. The taut string histogram procedure and a Kuiper-method

The taut string procedure is described in [7], see also [6]. It assumes no true density and hence there is
no loss or risk function. Instead it defines what is meant by an adequate approximation of the data and then
attempts to find an adequate histogram with minimum number of peaks. This second step constitutes a kind
of regularization.
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We first give a brief description of the original taut string procedure. Let En denote the empirical distribution
function of the data xn. Write the so called Kolmogorov tube of radius ε > 0 centered at En as

T (En, ε) =
{
G; G : R → [0, 1], sup

x
|En(x) − G(x)| ≤ ε

}
.

The taut string function is best understood by imagining a string constrained to lie within the tube T (En, ε)
and tied down at (x(1), 0) and (x(n), 1) which is then pulled until it is taut. There are several equivalent analytic
ways of defining this. The taut string defines a spline function Sn on [x(1), x(n)] that is piecewise linear between
knots {x(1), x(n)} ∪ {x(i) : 1 < i < n, |Sn(x(i)) − En(x(i))| = ε}, corresponding to points where Sn touches the
upper or lower boundary of the tube T (En, ε). The knots define the bins and hence the histogram bin number,
bin locations and bin probabilities as follows. If two consecutive knots are x(ij) and x(ij+1), then the area of the
bin (x(ij), x(ij+1)] is proportional to the number of data points in (x(ij), x(ij+1)] except for the first bin where
the left point x(1) is included. The thus constructed taut string histogram sn is known to have the fewest peaks
or modes of any histogram whose integral lies in Tn(En, ε).

The size of the tube radius ε is important for the shape of the taut string histogram sn. Davies and Kovac [7]
prescribe a tube squeezing factor εn that determines the tube T (En, εn) and sn as part of the taut string
histogram procedure. This is done using a data approximation concept involving weak metrics applied to a
continuous distribution function E and the empirical distribution En based on an i.i.d. sample from E. The
κ-order Kuiper metric, κ ∈ N, is defined by

dku,κ(E, En) = sup

⎧⎨⎩
κ∑

j=1

∣∣(E(bj) − E(aj)
) − (

En(bj) − En(aj)
)∣∣ : aj ≤ bj ∈ R, bj ≤ aj+1

⎫⎬⎭ . (2.7)

The definition of adequacy is based on the differences between successive Kuiper metrics ρ1(E, En) = dku,1(E, En)
and ρi(E, En) = dku,i(E, En)−dku,i−1(E, En) for i > 1. The distribution of ρi(E, En), i ∈ N, does not depend on
E for continuous E. This can be seen as follows. If we denote a random i.i.d. sample from E by X1, . . . , Xn then
this can be generated as Xi = E−1(Ui) where E−1 denotes the inverse of E and the Ui are i.i.d. random variables
uniformly distributed on (0, 1). It follows that E(bj)−E(aj) = dj − cj and En(bj)−En(aj) = Ẽn(dj)− Ẽn(cj)
where cj = E(aj), dj = E(bj) and Ẽn denotes the empirical distribution function of the Ui. As E is continuous
E((−∞,∞)) ⊃ (0, 1) and hence the sup in (2.7) is taken over all cj and dj in (0, 1) with cj ≤ dj ≤ cj+1. The
above argument follows the proof of the corresponding result for the Kolmogorov metric. We now take κ ≥ 3 to
be a fixed odd integer. The software allows a maximum value of 19. Given this κ we choose qκ,i, i = 1, 2, . . . κ
and say that a taut string distribution Sn from a tube T (En, ε) provides an adequate data approximation if

ρi(Sn, En) ≤ qκ,i for each i = 1, . . . , κ. (2.8)

The qκ,i are chosen such that if E is the uniform distribution on (0, 1) then with probability 0.95 the resulting
histogram has just the one bin. Asymptotically the chosen value of κ is irrelevant as the correct number of
modal values will be found [7]. The finite sample performance does depend on κ. If it were known a priori that
the density corresponding to E has k peaks then it is intuitively clear that κ = 2k + 1 would be the optimal
choice. Failing this κ has to be fixed in advance. As it is clearly a hopeless task to find 10 peaks on a sample of
size n = 20 from a ten-peaked distribution we choose κ as a function of the sample size n. In particular we put

κ = κ(n) =

⎧⎨⎩
5 n ≤ 50,
9 51 ≤ n ≤ 100,
19 n ≥ 101

(2.9)

but clearly other choices are possible. In the taut string (TS) procedure we now reduce the tube radius ε
of T (En, ε) until the approximation standard, ρi(Sn, En) ≤ qκ,i, i = 1, . . . , κ, is first met; this provides the
squeezing factor εn to determine a final, usually irregular, taut string histogram sn.
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The software we use is available at http://www.stat-math.uni-essen.de/davies.html. The R-package
ftnonpar [8] contains another version pmden of the TS algorithm which essentially has the same features.

Although not used in the remainder of the paper we mention that the version of the software applied here
also includes a multiscale analysis of the data as developed by Dümbgen and Walther [10]. This removes one
weakness of the Kuiper metric definition of adequacy which sometimes fails to pick up low power peaks centred
on small intervals. If this is included then one bin only is returned in 90% (as against 95%) of the cases for
uniformly distributed data.

Motivated by the taut string procedure we can derive a method which automatically produces regular his-
tograms. We denote it by KUIP. This histogram results from computing histogram distribution functions for
an increasing number of bins until all Kuiper-conditions, i.e. condition (2.8) above, are fulfilled.

3. Real data examples

We illustrate histogram construction with three data sets: eruptions of the Old Faithful geyser, the duration
of treatment of patients in a suicide study, and the velocities of 82 galaxies from 6 well-separated conic sections
of an unfilled survey of the Corona Borealis region. The first data set is found in [2], see also [13], the second
in [35] and the last one in [23]. Extensive analyses by other authors have produced right skewed histograms for
the suicide study data (cf. [33,35]) and histograms of varying modality for the galaxy data (cf. [23,29]). There
are various versions of the Old Faithful data, which often produce histograms with two peaks; the version here
(from geyser(MASS) in R) is heavily rounded with several observations identically “2” or “4”.

Figures 1–3 provide histograms constructed with procedures from Section 2. The point made visually is the
degree to which the histograms disagree in their shapes, largely when it comes to the number and position of
peaks. We explore this aspect further in our numerical studies.

4. Simulation study

Our simulation study focuses on regular histogram procedures described in Section 2 as well as the irregular
taut string procedure and the regular Kuiper-histogram. To limit the size of the study, we have excluded several
regular histogram procedures involving plug-in estimates, such as Sturges’s rule of 1 + log2(n) bins [37], as well
as methods from [5] and [17]. Numerical studies in [4] indicate that these are not competitive with the other
methods that we consider.

We outline a new performance criterion in Section 4.1, motivated by the data examples in Figures 1–3.
Section 4.2 describes the design of the simulation study to compare performances of histogram construction
methods and the simulation results are summarized in Section 4.3.

4.1. Performance criterion: peak identification loss

We define a mode or peak of a density f as the midpoint of an interval (x1, x2) ⊂ I ⊂ [x1, x2] which satisfies
the following: f(x) = c > 0 is constant on x ∈ I and, for some δ > 0, it holds that c > f(x) if x ∈ Iδ \ I for the
enlargement Iδ = ∪y∈I{x ∈ R : |x − y| ≤ δ} of I.

Identifying the locations of peaks in a reference density f is known to be a difficult problem for many
histograms; see the discussion in [33] for the normal density. To illustrate this, Figure 4 provides histograms for
a sample from the claw density, which is a normal mixture with five peaks taken from [22]. Two main errors in
identifying peaks of the claw density f become evident in Figure 4. Histogram constructions can miss peaks of
f (e.g., BIC, MDL) or they can produce unnecessary peaks (e.g., AIC). With these observations in mind, we
propose the following loss to measure a histogram’s performance in identifying peaks of a density f .

Suppose f is a density with p = p(f) ∈ N peaks at z1, . . . , zp satisfying (zi−δi, zi +δi)∩(zj −δj, zj +δj) = ∅,
i 
= j, for some positive vector δ = δ(f) ≡ (δ1, . . . , δp) ∈ R

p. Assume that a histogram f̂ has p̂ = p̂(f̂) peaks at
y1, . . . , yp̂. We say a peak of f̂ at yj matches a peak of f at zi if min1≤j′≤p̂ |zi − yj′ | = |zi − yj| < δi. An f̂ -peak

http://www.stat-math.uni-essen.de/davies.html
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Figure 1. Histogram constructions from Old Faithful geyser data, n = 299.

that matches no peak of f is spurious for f while an f -peak that has no matches is said to be unidentified by
f̂ . We can then define a peak identification loss as a count:

�i.d.(f, f̂ , δ) = # of unidentified peaks of f + # of spurious peaks of f̂

= (p − Ci.d.) + (p̂ − Ci.d.) (4.1)

using the number Ci.d. =
∑p

i=1 I{min1≤j≤p̂ |zi−yj| < δi} of correctly identified f -peaks. That is, the nonnegative
loss �i.d.(f, f̂ , δ) ≥ 0 measures the two possible errors incurred by identifying peaks of f with the peaks of f̂ .
The vector δ represents the tolerances demanded in identifying each peak. Using �i.d. in (2.1), we obtain a
risk for identifying peaks of a density f with a histogram procedure f̂ , which is a meaningful and interpretable
measure of model quality.

4.2. Simulation study design

As test beds we select nineteen reference densities f of differing degrees of smoothness, tail behavior, support,
and modality. The collection of reference densities includes: the standard Normal N(0, 1), the Uniform U(0, 1),
standard Cauchy, triangle, and exponential distribution, eight mixture distributions from [22], a ten normal
mixture used in [21], four densities, which are chosen to have roughly the same shapes as the test-case densities
appearing in [4], and the “nearest unimodal density” to the bimodal density of [22].

The test densities are depicted in Figures 5 and 6. We use them for evaluating the performance of eleven
histogram procedures: AIC, BIC, BR, KLCV, L2CV, MDL, NML, SC, WAND, KUIP, TS. We include the
taut string histogram (TS) to consider this natural irregular competitor of KUIP. To measure the quality of
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Figure 2. Histogram constructions from suicide data, n = 86.
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Figure 3. Histogram constructions from galaxy data, n = 82.



A COMPARISON OF AUTOMATIC HISTOGRAM CONSTRUCTIONS 189

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

Claw density AIC (33 bins)

D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

BIC (7 bins)

D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

BR, SC, NML, KUIP (28 bins)

D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

KLCV (14 bins)
D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

L2CV (48 bins)

D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

MDL (19 bins)

D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

WAND (16 bins)

D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

TS (37 bins)

D
en
si
ty

−3 −2 −1 0 1 2 3

0.
0
0.
4
0.
8
1.
2

Figure 4. Histogram constructions for the claw density (first graph) based on a sample n =
500. The data sample was chosen here so that the histogram realisations have peak identification
losses roughly matching the average losses (or risks) for each procedure in Table 1.

histograms, we consider risks based on two different losses: squared Hellinger distance and the peak iden-
tification (PID) loss from (4.1). The peak identification loss has an immediate interpretation, while the
Hellinger loss seems appropriate for likelihood-based histograms. For each reference density f and sample
size n = (30, 50, 100, 500, 1000), we use 1000 independent size n samples xj,n ≡ xj,n(f), j = 1, . . . , 1000, to
approximate the risk of each histogram procedure f̂ :

R̂n(f, f̂ , �) =
1

1000

1000∑
j=1

�(f, f̂j,n),

with loss evaluations �(f, f̂j,n) from histograms f̂j,n at each simulation run xj,n.

4.3. Simulation results

Tables 1 and 2 provide the peak identification and Hellinger risks, respectively, for all procedures and for the
sample sizes n = 50, 500, 1000.

To present a rough overview of the results of the simulation study, Figures 7–10 show the average ranks of
the eleven histogram methods, resulting from ranking the procedures by their risks. In Figures 7 and 9 the
ranks are calculated over all considered densities and all sample sizes of the simulation study; in Figures 8 and
10 the ranks are only taken over the unimodal and the multimodal densities separately.
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Figure 5. Data-generating densities used in the simulation study.
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Figure 6. Data-generating densities used in the simulation study.
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Figure 7. Average ranks for PID (all sample sizes and all densities).

Figure 8. Average ranks for PID (all sample sizes) and unimodal or multimodal densities, respectively.

Figure 9. Average ranks for Hellinger loss (all sample sizes and all densities).
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Figure 10. Average ranks for Hellinger loss (all sample sizes) and unimodal or multimodal
densities, respectively.

From these figures, the differences among the average ranks for Hellinger loss are generally smaller than those
for peak identification across the procedures. This indicates that more disagreement consistently emerges among
the histograms when identifying modes rather than Hellinger distance. Such differences in peak identification
are particularly evident in considering the ranks over unimodal densities (Fig. 8), where AIC, L2CV and
WAND methods were generally the worst performers and BIC and TS methods performed relatively well. This
demonstrates that regular histogram procedures generally tend to find too many peaks, which is also clear
in examining the unimodal cases in Table 1. Such behavior can carry over to multimodal cases as well but
some caution is required in interpreting the results. For illustration, we may consider the “bimodal” density in
Table 1 where most regular histograms appear to perform well and BIC has the lowest peak identification risk
of only 0.09 for samples of size n = 500. This compares to 1.37 for the taut string. However, if we look at the
nearest unimodal density to the bimodal, shown in Figure 5, the performance of BIC deteriorates and its risk is
now 0.82 as against 0.09 for the taut string; this pattern holds for many other regular histograms as well. The
explanation is that the two peaks of the bimodal are not very pronounced and are difficult to find reliably. In
this case, BIC seems to identify these peaks because it always tends to put two peaks there whether they are
present in the density or not. The taut string cannot detect such weak peaks and has an error around 1. In
fact no method can detect these peaks reliably, BIC only gives the illusion of doing so.

The irregular taut string histogram often exhibited the lowest Hellinger risk over many test densities and
sample sizes, but differences were often relatively small compared to regular histograms (Tab. 2). The real
weakness of regular histograms in being unable to adapt to local variability emerges most clearly in peak
identification. The taut string procedure does not suffer from this weakness. This is also evident in comparing
the taut string to its regular counterpart KUIP.

We can now summarize the results of the simulation study as follows:

• L2CV consistently is the worst performer in both peak identification and Hellinger distance.
• Of the information theory-based histograms, according to work of Rissanen [25,26], the NML and SC

tend to perform similarly and are typically worse than MDL. Agreement between NML and SC also
appears in the data examples (Figs. 2–4).



194 P.L. DAVIES ET AL.

Table 1. Peak identification risk for histograms by density and sample size n.

density n AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS
50 0.68 0.06 0.06 0.10 0.85 0.93 0.50 0.57 0.18 0.06 0.01

N(0, 1) 500 1.37 0.04 0.22 0.23 1.64 0.18 0.26 0.17 0.75 0.01 0.01
1000 1.78 0.07 0.42 0.28 1.99 0.22 0.29 0.21 1.13 0.02 0.02

50 0.76 0.04 0.06 0.31 0.56 0.23 0.38 0.35 1.00 0.05 0.05
U(0, 1) 500 0.61 0.01 0.05 0.52 0.57 0.00 0.01 0.01 2.32 0.06 0.15

1000 0.60 0.00 0.09 0.55 0.55 0.00 0.00 0.00 3.33 0.06 0.18
50 2.67 2.30 2.25 1.68 3.75 2.47 1.57 2.70 4.58 2.66 0.00

Cauchy 500 8.64 6.32 6.87 1.98 12.64 7.50 2.06 8.69 19.59 14.05 0.00
1000 12.45 8.93 9.59 2.02 18.73 10.82 2.11 12.53 13.86 20.57 0.01

50 3.63 2.70 2.68 2.39 4.49 3.52 2.90 3.61 3.29 2.25 1.22
strongly skewed 500 8.42 2.42 4.05 2.08 13.92 3.81 2.74 3.91 8.60 3.89 0.09

1000 12.41 3.17 7.86 2.19 17.38 5.82 3.51 6.13 12.31 5.67 0.01
50 2.12 1.44 1.40 1.44 3.12 1.70 1.01 2.11 3.08 1.64 0.00

Outlier 500 10.70 4.83 9.01 1.28 17.45 6.59 1.77 9.14 17.66 10.92 0.01
1000 15.43 8.45 13.30 1.24 26.01 10.13 2.20 12.29 26.44 13.99 0.01

50 1.48 0.23 0.23 0.28 1.53 1.84 1.02 1.21 1.04 0.24 0.26
three uniform 500 0.64 0.00 0.00 0.46 0.94 0.00 0.01 0.00 3.54 0.10 0.07

1000 0.58 0.00 0.00 0.52 0.93 0.00 0.00 0.00 4.99 0.09 0.07
50 1.62 2.27 2.16 1.60 1.61 2.84 1.87 2.49 0.85 2.30 2.02

bimodal 500 1.02 0.09 0.15 0.32 1.07 0.16 0.18 0.11 0.25 0.20 1.37
1000 1.43 0.02 0.27 0.44 1.37 0.16 0.20 0.13 0.52 0.03 0.48

50 0.98 0.16 0.22 0.47 0.96 0.51 0.65 0.56 0.64 0.16 0.10
nearest 500 2.14 0.82 1.05 1.37 2.01 1.09 1.12 0.99 1.29 0.56 0.09

unimodal 1000 2.75 1.01 1.54 1.77 2.56 1.39 1.43 1.32 1.83 0.62 0.06
50 1.33 1.05 1.06 1.00 1.34 1.59 1.10 1.49 1.10 1.11 1.04

skewed bimodal 500 1.88 0.46 0.60 0.65 1.95 0.56 0.58 0.55 0.97 0.74 1.00
1000 2.51 0.33 0.87 0.59 2.65 0.55 0.58 0.57 1.66 0.39 0.92

50 1.96 2.30 2.24 1.97 1.97 2.67 2.02 2.49 2.08 2.36 2.51
trimodal 500 1.26 0.93 0.80 0.77 1.31 0.79 0.78 0.81 0.63 1.09 1.53

1000 1.34 0.61 0.49 0.62 1.24 0.45 0.44 0.46 0.46 0.77 1.06
50 1.88 2.19 2.19 3.62 2.91 2.79 2.08 3.05 2.98 2.76 1.11

exp mixture 500 3.08 0.17 0.88 1.29 5.54 1.11 1.45 0.78 0.84 0.05 0.01
1000 3.67 0.20 1.39 2.54 6.97 1.14 1.30 0.79 2.23 0.09 0.01

50 4.81 4.31 4.29 4.11 4.96 5.41 4.38 5.18 4.45 4.14 4.00
eight uniform 500 4.13 3.54 3.65 3.58 4.67 3.71 3.75 3.64 3.95 4.44 1.72

1000 3.72 3.38 3.41 3.45 3.91 3.41 3.41 3.40 5.34 3.05 0.94
50 4.75 5.33 5.22 5.14 5.09 6.09 4.81 5.76 5.47 5.42 4.49

smooth comb 500 7.07 3.05 4.55 3.17 6.97 4.84 3.58 4.48 3.63 3.35 1.98
1000 10.3 2.88 5.79 3.43 9.78 4.95 4.21 4.68 3.68 4.15 1.16

50 4.03 4.57 4.39 4.91 4.21 4.96 3.82 4.78 5.73 4.68 3.83
discrete comb 500 4.36 3.73 2.74 3.56 4.75 2.88 2.88 2.80 3.38 3.06 0.98

1000 7.24 2.15 2.51 2.13 7.12 2.01 1.62 1.76 2.46 2.35 0.29
50 5.23 5.30 5.30 5.36 5.18 5.43 5.18 5.44 5.6 5.34 4.72

claw 500 5.47 5.35 4.12 4.98 7.10 4.14 4.41 4.25 5.07 3.99 0.34
1000 7.44 4.08 4.46 4.65 10.17 3.51 3.72 3.72 4.11 4.36 0.02

50 7.75 10.87 10.82 10.91 8.59 8.93 10.87 8.75 10.14 10.9 9.56
ten normal 500 3.18 3.99 2.31 2.47 2.72 2.76 2.18 2.41 10.45 2.50 0.57

1000 2.83 1.8 1.42 1.24 2.32 1.51 1.36 1.18 8.58 1.07 0.22
50 31.14 24.71 24.73 24.94 32.84 39.8 25.37 40.05 25.32 25.58 22.94

24 normal 500 1.44 10.31 34.45 30.67 2.10 1.41 32.12 1.27 27.14 17.22 0.24
1000 0.52 0.92 4.03 31.28 1.70 0.23 34.18 0.40 28.07 2.15 0.02

50 1.58 0.68 0.75 1.01 1.51 1.09 1.33 1.08 1.64 0.61 0.98
triangle 500 1.98 0.93 1.11 1.76 1.85 1.13 1.10 1.03 1.20 0.99 0.35

1000 2.01 0.92 0.98 1.80 1.79 0.96 0.97 0.96 0.88 0.98 0.21
50 1.45 0.55 0.54 0.67 2.41 1.04 0.62 1.14 1.60 0.53 0.01

exponential 500 2.98 0.90 1.45 0.61 5.50 1.15 0.78 1.35 7.78 0.68 0.02
1000 3.82 1.17 2.16 0.64 7.38 1.40 0.87 1.70 12.04 1.19 0.03

• Among the regular histogram construction methods BIC, MDL and KUIP emerge (determined by
average ranks in this order) as superior in terms of identifying the peaks of a density properly. BIC
and KUIP show better results for unimodal densities while MDL has a small peak identification loss for
multimodal densities (see Fig. 8).

• Among the regular histogram construction methods BR, MDL and WAND perform best in terms of
Hellinger distance. BR yields small Hellinger risks consistently for unimodal and multimodal densi-
ties. WAND performs best for unimodal densities and MDL for multimodal densities (see Fig. 10).
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Table 2. Hellinger risk*100 for histograms by density and sample size n.

density n AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS
50 5.13 4.68 4.59 4.31 5.33 6.84 4.60 5.60 3.41 5.44 4.96

N(0, 1) 500 0.91 1.05 0.91 0.98 0.92 0.92 0.89 0.93 0.71 1.35 0.92
1000 0.55 0.69 0.56 0.71 0.55 0.59 0.56 0.60 0.45 0.80 0.56

50 3.76 2.18 2.27 2.57 3.18 2.60 2.77 2.92 4.90 2.09 2.29
U(0, 1) 500 0.31 0.20 0.22 0.30 0.30 0.20 0.21 0.20 1.37 0.21 0.26

1000 0.15 0.10 0.11 0.15 0.15 0.10 0.10 0.10 0.95 0.10 0.13
50 12.78 14.96 17.15 39.22 12.22 12.61 29.67 12.15 10.60 13.49 5.84

Cauchy 500 9.02 14.03 15.47 65.61 7.99 9.99 57.25 8.81 3.28 9.23 1.17
1000 7.87 13.87 15.29 72.38 6.56 9.07 65.21 7.65 1.09 7.89 0.73

50 7.25 5.93 5.92 5.70 8.57 7.05 5.19 7.59 5.42 5.95 4.76
strongly skewed 500 2.04 2.36 1.99 2.93 2.30 2.00 2.32 2.01 1.93 2.29 0.99

1000 1.32 1.80 1.29 3.06 1.41 1.39 2.05 1.38 1.19 1.75 0.59
50 8.37 8.56 8.57 26.01 8.90 8.38 15.92 8.47 7.98 8.57 5.16

Outlier 500 2.88 3.75 2.93 15.87 3.44 3.29 7.76 2.93 3.39 2.85 1.02
1000 1.92 2.47 1.92 13.22 2.45 2.12 6.20 1.95 2.46 1.83 0.69

50 5.69 3.98 3.87 3.67 5.56 7.64 4.36 5.83 4.89 4.24 4.37
three uniform 500 0.45 0.36 0.36 0.43 0.48 0.36 0.36 0.36 1.35 0.38 0.49

1000 0.23 0.18 0.19 0.22 0.24 0.18 0.18 0.18 0.98 0.19 0.27
50 5.16 4.54 4.51 4.30 4.99 5.58 4.64 5.22 3.53 4.65 4.50

Bimodal 500 0.89 1.11 0.93 0.91 0.92 0.93 0.91 0.97 0.71 1.41 0.95
1000 0.55 0.70 0.57 0.60 0.56 0.60 0.58 0.61 0.45 0.89 0.58

50 5.00 4.37 4.37 4.18 5.01 5.34 4.50 5.18 3.40 4.49 4.39
nearest 500 0.86 1.05 0.91 0.87 0.93 0.91 0.90 0.94 0.70 1.49 0.81

unimodal 1000 0.52 0.68 0.55 0.56 0.55 0.57 0.56 0.59 0.44 0.99 0.49
50 5.51 4.72 4.66 4.40 5.33 6.48 4.74 5.84 3.76 5.19 4.74

skewed bimodal 500 1.00 1.20 1.04 1.21 1.01 1.05 1.01 1.07 0.81 1.51 0.91
1000 0.62 0.81 0.64 0.88 0.62 0.68 0.66 0.69 0.52 1.00 0.55

50 5.26 4.32 4.33 4.30 5.08 5.33 4.57 5.21 3.71 4.34 4.32
trimodal 500 0.94 1.15 0.98 0.94 0.97 0.97 0.96 1.01 0.76 1.44 0.97

1000 0.58 0.76 0.60 0.62 0.58 0.62 0.61 0.65 0.48 0.88 0.59
50 9.43 8.08 7.89 7.35 11.01 11.11 6.05 11.49 12.96 7.00 6.58

exp mixture 500 1.36 1.50 1.30 1.20 1.46 1.28 1.26 1.31 3.22 1.57 1.00
1000 0.77 0.94 0.76 0.73 0.83 0.78 0.77 0.80 2.23 0.99 0.59

50 8.34 6.49 6.38 6.22 8.87 10.07 6.27 9.10 7.91 7.65 6.34
eight uniform 500 1.02 1.17 0.97 1.03 1.09 0.97 0.97 0.98 2.91 2.64 0.98

1000 0.48 0.46 0.46 0.46 0.49 0.46 0.46 0.46 2.02 1.16 0.56
50 9.97 10.14 10 9.63 10.39 12.7 8.67 12.32 10.55 10.32 9.40

smooth comb 500 2.58 3.08 2.51 3.12 2.57 2.46 2.60 2.52 3.36 2.92 2.25
1000 1.78 2.16 1.70 2.24 1.75 1.72 1.76 1.74 2.35 2.07 1.34

50 10.47 10.62 10.44 10.43 10.83 12.42 8.90 12.38 13.49 10.44 10.15
discrete comb 500 2.47 3.38 2.49 3.27 2.50 2.41 2.85 2.51 3.47 3.01 2.31

1000 1.67 2.33 1.53 2.28 1.64 1.51 1.66 1.53 2.34 2.22 1.31
50 7.59 6.47 6.39 6.21 8.27 9.17 6.06 8.58 5.46 7.26 6.28

claw 500 1.92 2.31 1.82 2.52 2.05 1.84 1.94 1.86 2.15 1.73 1.49
1000 1.25 1.52 1.16 2.07 1.32 1.17 1.46 1.17 1.44 1.13 0.86

50 12.86 8.19 8.25 8.55 12.10 13.56 8.74 14.14 10.34 8.39 8.91
ten normal 500 2.80 3.51 2.71 2.70 2.66 2.72 2.46 2.72 7.10 2.74 2.64

1000 1.64 2.18 1.63 1.64 1.59 1.62 1.57 1.67 6.33 1.77 1.59
50 59.81 62.70 62.72 62.83 58.28 53.68 62.86 53.51 63.68 63.10 60.63

24 normal 500 8.65 14.76 35.9 60.22 8.14 8.64 60.11 8.41 61.86 10.64 8.33
1000 7.08 9.05 12.71 59.97 4.42 7.42 59.49 6.96 61.86 4.17 4.83

50 4.83 4.25 4.15 3.86 4.64 5.70 4.46 5.13 3.20 4.32 4.50
triangle 500 0.77 0.89 0.79 0.75 0.79 0.79 0.80 0.82 0.60 1.03 0.82

1000 0.46 0.59 0.49 0.45 0.48 0.50 0.51 0.53 0.38 0.65 0.53
50 5.70 4.69 4.69 6.19 6.79 5.29 4.42 5.52 4.65 5.03 4.25

exponential 500 1.03 1.10 0.99 2.90 1.18 1.03 1.32 1.01 1.28 1.14 0.78
1000 0.63 0.75 0.63 2.73 0.73 0.69 1.06 0.66 0.88 0.72 0.47

In particular, the WAND method in our simulations, based on two-stage estimation as described in [39],
performed better in Hellinger distance than in simulations from Birgé and Rozenholc [4] (which used
one-stage estimation described in [39]).

• The irregular TS method performs best in terms of Hellinger distance as well as in terms of peak
identification for almost all densities.
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As was to be expected, there is no overall optimal regular histogram procedure that delivers the best histogram
for every data-generating density. However, the BR, BIC, WAND and MDL procedures provide good compro-
mise methods for regular histogram construction over a wide range of densities and a variety of sample sizes.
The BR method is better in terms of Hellinger risk and the BIC method with respect to detecting the peaks of
a density. Altogether, the irregular TS histogram procedure is generally the best performer.
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