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ESTIMATION AND TESTS IN FINITE MIXTURE MODELS
OF NONPARAMETRIC DENSITIES

Odile PONS1

Abstract. The aim is to study the asymptotic behavior of estimators and tests for the components
of identifiable finite mixture models of nonparametric densities with a known number of components.
Conditions for identifiability of the mixture components and convergence of identifiable parameters
are given. The consistency and weak convergence of the identifiable parameters and test statistics are
presented for several models.

Résumé. Dans les modèles de mélanges de densités non paramétriques, une question est de déterminer
le comportement asymptotique d’estimateurs et de statistiques de test sur les composantes identifiables.
Des modèles de mélanges non paramétriques d’un nombre connu de densités sont considérés. Des con-
ditions pour l’identifiabilité et pour les convergences des paramètres et fonctions identifiables sont
présentées. Le comportement des statistiques de test est décrit et des estimateurs des composantes des
densités sont définis dans plusieurs cas.
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1. Introduction

Consider a real random variable X on a probability space (Ω, A, P0) and F a family of densities with respect
to a probability μ on (Ω, A), such that the density f0 = dP0/dμ belongs to F and the functions of F are
L2(μ)-integrable, it is a metric space with the metric d2(f, f ′) = ‖f − f ′‖L2(μ).

For a fixed number p, the mixture of p components of F is defined by a vector of p unknown densities f(p) =
(f1, . . . , fp) of Fp with unknown proportions in Sp = {λ(p) = (λ1, . . . , λp) ∈]0, 1[p;

∑p
j=1 λj = 1}. The density

of the mixture is gf(p),λ(p) =
∑p

j=1 λjfj and we consider the functional set Gp = {gf(p),λ(p) ; f(p) ∈ Fp, λ(p) ∈ Sp}.
The densities and the proportions of a mixture gf(p),λ(p) of Gp are identifiable if for any f ′

(p) in Fp and λ′
(p) in

Sp, the equality
∑p

j=1 λjfj =
∑p

j=1 λ′
jf

′
j is satisfied μ-a.s. if there exists a permutation π of {1, . . . , p} such

that λ′
j = λπ(j) and f ′

j = fπ(j) μ-a.s., for j = 1, . . . , p. The identifiability condition is written as a condition on
the parameters of a nonparametric F , it requires that the densities cannot be confounded and a mixture of two
components f1 and f2 of F does not belong to F .

For a parametric mixture of two components g = λf +(1−λ)f0 of G2, the likelihood ratio test (LRT) for the
hypothesis H0 : g = f0 is studied through a reparametrization because the information matrix is not positive
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definite and either λ or f may be considered as nuisance parameters under H0. Conditions and proof of the
convergence of the LRT as f0 is known (admixture or contamination model) were given in [4,5] for parametric
families of two or p ≥ 2 components, for a test of a known density of Gq against Gp, q < p. The results were
generalized to an unknown density f0 by plugging an estimator of f0 in the same statistic, for identifiable families,
and they are easily adapted for testing sub-models of the semi-parametric mixture g =

∑p
j=1 λjf(η(· − μ)), f

in F and θ = (η, μ) in a Borel compact subset of R
2. The methods are extended here to nonparametric density

families G2 with identifiable components, the parameter of interest for an admixture is λd2(f, f0) which is zero if
and only if H0 holds, for a mixture it is λd2(f1, f2), with λ ≤ 1/2. Wald’s method [8] for the proof of consistency
for the parametric case is no more sufficient and the asymptotic distribution is not Gaussian, as it was known
for parametric distributions. The conditions are sufficient to remove the assumption of uniform convergence of
small order terms present in most papers about expansions of the LRT in parametric models [1–4,6]. Under
the alternative, direct estimators of λ and f are built and they satisfy the usual convergence. The tests are
extended to finite mixtures of nonparametric densities and the estimators to mixtures of two nonparametric
symmetric densities.

2. Admixture models for a density

Let (X1, . . . , Xn) be an i.i.d. sample with density having two mixture components g = λf +(1−λ)f0 in G2,0,
the subset of G2 of the mixtures with a known f0. Denote dχ2(f, f ′) =

∫
(f − f ′)2f ′−1dμ and assume that

A1: λ and F are identifiables: if λf + (1 − λ)f0 = λ′f ′ + (1 − λ′)f0, μ-a.s., with λ and λ′ in [0, 1], f and
f ′ in F , then λ = λ′ and f = f ′, μ-a.s.,

A2: There exists a function ϕ0 in L2(P0) s.t.

lim sup
d2(f,f0)→0

d−1
2 (f, f0)‖f−1

0 (f − f0) − d2(f, f0)ϕ0‖L2(P0) → 0.

For f in F and λ ∈]0, 1[, denote U = {d2(f, f0); f ∈ F} ⊂ R+,

αf = λd2(f, f0), ϕf = d−1
2 (f, f0)f−1

0 (f − f0) if f �= f0, (2.1)

and ϕf = ϕ0 defined by A2 if f = f0, DF = {ϕf ; f ∈ F}, the L2(P0)-closure defined using A2 of the set of
functions ϕf . Let E0 the expectation under P0, further conditions are

A3: E0 supf∈F | log f | < ∞ and E0 supϕ∈DF ‖ϕ(X)‖3 < ∞,
A4: supϕ∈DF |n−1/2

∑n
i=1 ϕ(Xi)−Gϕ| tends to zero in P0-probability, with Gϕ a centred Gaussian process

with variance Σϕ = E0ϕ
2(X) and covariance Σϕ1,ϕ2 = E0ϕ1(X)ϕ2(X).

Remark 1. The L2(P0)-norm of the convergence in A2 is a dχ2 -derivability of F at f0. It is not symmetric
with respect to its arguments f and f0, unlike the L2 distance with respect to μ, and it is weaker than the
Hellinger-derivability of F . It appears naturally for the convergence under the null hypothesis of the variance of
the likelihood ratio after the reparametrization. The function ϕ0 is related to the direction of the approximation
of f0 by f .
Remark 2. By A2–A3 and the definition of DF , Eϕ(X) = 0 and the weak convergence of n−1/2

∑n
i=1 ϕ(Xi)

holds for every ϕ of DF , and for n−1/2
∑n

i=1{supDF ϕ(Xi)−E0 supDF ϕ(X)} by integrability of supDF ϕ2(X).
Condition A4 is satisfied under a stronger condition on the dimension of DF .

2.1. Tests for the density f0

Under the alternative, a density is written

gλ,f = f0{1 + λf−1
0 (f − f0)} = f0(1 + αfϕf ), αf ≥ 0.
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The parameters set for a test of f0 against an admixture alternative is {αf ≥ 0; f ∈ F} and the hypothesis H0

is equivalent to the existence of a function f in F such that αf = 0, or inff∈F αf = 0. For a sample (Xi)1≤i≤n

of X , the LRT statistic is written

Tn = 2 sup
λ∈]0,1[,

sup
f∈F

∑
1≤i≤n

{log gλ,f (Xi) − log f0(Xi)}

= 2 sup
α∈U ,

sup
ϕ∈DF

∑
1≤i≤n

ln(α, ϕ)

with ln(α, ϕ) =
∑

1≤i≤n log{1 + αϕ(Xi)}.
Lemma 2.1. The estimator α̂n(ϕ) = arg maxα∈U ln(α, ϕ) converges P0-a.s. to zero, uniformly on U .

Proof. For any ϕ ∈ DF , the MLE ĝϕ,n = f0{1 + α̂nϕ} of a density gα,ϕ = f0{1 + αϕ}, with α ≥ 0 and α̂n ≥ 0
converges at the parametric rate, therefore sup

R
|ĝϕ,n − f0| ≤ sup

R
|ĝn − f0| for any other estimators ĝn without

this parametric model. For every ε > 0 there exists δε > 0 s.t. for n large enough

P0{ sup
ϕ∈DF

α̂n(ϕ) > ε} ≤ P0{ sup
ϕ∈DF

n−1{ln(α̂n(ϕ), ϕ) − ln(0, ϕ)} > δε}

≤ P0{
∫

f0>0

sup
ϕ∈DF

log{1 + α̂n(ϕ)ϕ} dP̂n > δε},

for the empirical d.f. P̂n of P0. Let ḡn = supϕ∈DF f0{1 + α̂n(ϕ)ϕ}, then

P0{ sup
ϕ∈DF

α̂n(ϕ) > ε} ≤ P0{
∫

f0>0

log
ḡn

f0
dP̂n > δε}

≤ P0{
∫

f0>0

log
ĝn

f0
dP̂n > δε}

≤ P0{
∫

f0>0

log
ĝn

f0
d(P̂n − P0) > δε}

and this sequence tends to zero by the weak convergence of P̂n. �
Let Yn the process defined by Yn(ϕ) = n−1/2

∑n
i=1 ϕ(Xi), with variance-covariance Σ, Zn = Σ−1/2Yn and Z

be a centred and continuous Gaussian process on DF , with covariance Σ−1/2
ϕ1 Σϕ1,ϕ2Σ

−1/2
ϕ2 .

Theorem 2.2. Under H0, supϕ∈DF ‖n1/2α̂n(ϕ)− (Σϕ)−1/2Z(ϕ)1{Z(ϕ)>0}‖ converges in probability to zero and
Tn converges weakly to the variable supϕ∈DF Z2(ϕ)1{Z(ϕ)>0}.

Proof. Let ϕ in DF , l̇n(·, ϕ) the derivative of ln(·, ϕ) with respect to α and α̂n(ϕ) under the constraint α̂n ≥ 0,
then α̂n(ϕ) = 0 or it is solution of

0 = n−1/2 l̇n(ϕ, α̂n(ϕ))1{α̂n(ϕ)>0}

= n−1/2
∑

i

ai(ϕ)
1 + α̂n(ϕ)ai(ϕ)

1{α̂n(ϕ)>0}. (2.2)

For every ϕ ∈ DF , let ai ≡ ai(ϕ) = ϕ(Xi) and R1n = n−1
∑

i a3
i (1 + α̂nai)−1. If α̂n(ϕ) > 0, the score equation

is simply written

0 = Yn(ϕ) − n1/2α̂n(ϕ){n−1
∑

i

a2
i (ϕ) − α̂n(ϕ)R1n(ϕ)}. (2.3)
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Under supϕ∈DF |n−1
∑

i{ϕ2(Xi) − Σϕ}| converges P0-a.s. to zero and (2.3) becomes

0 = Yn(ϕ) − n1/2α̂n(ϕ) {Σϕ + op(1) − α̂n(ϕ)R1n(ϕ)} .

As proved in [7]:

n1/2α̂n(ϕ) = (Σϕ)−1/2Zn(ϕ)1{Zn(ϕ)>0} + op(1). (2.4)

By integration of R1n, ln(α̂n(ϕ), ϕ) = n1/2α̂n(ϕ)Yn(ϕ) − 1
2 α̂2

n(ϕ)
∑

i ϕ2(Xi) + R2n(ϕ) where

R2n =
∑

i

∫ α̂n(ϕ)

0

a3
i α

2

1 + αai
dα =

∑
i

α̂n
α∗2

n a3
i

1 + α∗
nai

with α∗
n(ϕ) between 0 and α̂n(ϕ). As the functions α �→ a3

i (1 + αai)−1 are decreasing and from the bound
established for R1n, n−1|R2n| ≤ α̂3

nn−1|∑i a3
i |. Then supDF n−1|R2n(ϕ)| = op(1) and

ln(α̂n(ϕ), ϕ) = n1/2α̂n(ϕ)Yn(ϕ) − n

2
α̂2

n(ϕ)Σϕ + op(1)

uniformly on DF . The expression (2.4) of α̂n(ϕ) implies a uniform approximation of Tn as Tn = 2 supϕ∈DF
ln(α̂n(ϕ), ϕ) = supϕ∈DF [Z2

n(ϕ)1{Zn(ϕ)>0}] + oP (1). �

With p additional components in the mixture under the alternative, the metric is written d2(f, f ′) =∑p
k=1 ‖fk − f ′

k‖L2(μ) for two densities f = (f1, . . . , fp) and f ′ = (f ′
1, . . . , f

′
p). The density gλ,f = (1 − λ)f0 +∑p

k=1 λkfk becomes

gλ,f = f0{1 +
p∑

k=1

λkf−1
0 (fk − f0)} = f0(1 + αT

f ϕf ),

where the coefficient of f0 satisfies λ =
∑p

k=1 λk, αf = (αfk)1≤k≤p and ϕf = (ϕfk)1≤k≤p are given by

αfk = λkd2(fk, f0k), ϕfk = d−1
2 (fk, f0k)f−1

0k (fk − f0k) if f �= f0, (2.5)

and ϕ0k = f−1
0k f ′

0k. The hypothesis H0 is equivalent to ‖αf‖ = 0 and the result of Lemma 2.1 still holds. The
process Yn(ϕ) is a p-dimensional process with a diagonal variance Σ = (Σϕk

)1≤k≤p. and Theorem 2.2 adapts
for each component with the same proof, using tensor product and norms of the vectors already defined when
necessary. Denoting 1{Z(ϕ)>0} for the vector of indicators 1{Zk(ϕ)>0}, we obtain

Theorem 2.3. Under H0, supϕ∈DF |n1/2‖α̂n(ϕ)‖ − ‖(Σϕ)−1/2Z(ϕ)‖1{Z(ϕ)>0}| converges in probability to zero
and Tn converges weakly to the variable supϕ∈DF ‖Z(ϕ)‖21{Z(ϕ)>0}.

When f0 is already a known mixture of functions in F , the result is extended as in [5] for mixtures of several
parametric densities.

2.2. Estimation of the densities and mixture coefficients

Under the alternative, λ0 �∈ {0, 1} and the model for the mixture density is g0 = λf + (1 − λ)f0 where λ
belongs to a close subset of ]0, 1[. We consider a class of functions F with compact supports not all confounded
with the support suppF0 of the distribution function F0, then both λ0 and f are identifiable and may be
estimated. If all the functions of F have the same support, further conditions are necessary for identifiability
of the components of g0. Estimators of λ and f are obtained after the estimation of the different supports.
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Let Ĝn the empirical estimator of the d.f. of the variable X , with support supp Ĝn = [mini Xi, maxi Xi], and

G̃n(x) = n−1
n∑

i=1

1{Xi∈supp F0}1{Xi≤x} − F0(x)

a consistent estimator of (G0 − F0)1{suppF∩supp F0} = λ(F − F0)1{supp F∩suppF0}, with support estimated by
supp G̃n. An estimator of λ0 is deduced from a classification of the observations into three intervals,

I1n = supp G̃n, I2n = supp F0 \ supp G̃n, I3n = supp Ĝn \ supp F0.

The following identities ∫
I2n

dĜn = (1 − λ)
∫

I2n

dF0,∫
I1n

1x≤t dĜn(x) = λ

∫
I1n

1x≤t dF̂n(x) + (1 − λ)
∫

I1n

1x≤t dF0(x),∫
I3n

1x≤tdĜn(x) = λ

∫
I3n

1x≤t dF̂n(x),

imply simple expressions for the estimators of λ0 and F on I1n and I3n

λ̂n = 1 −
∫

I1n
dĜn∫

I1n
dF0

, (2.6)

∫
I1n

1x≤t dF̂n(x) = λ̂−1
n

{∫
I1n

1x≤t dĜn(x) −
∫

I1n
dĜn∫

I1n
dF0

∫
I1n

1x≤t dF0(x)

}
,∫

I3n

1x≤t dF̂n(x) = λ̂−1
n

∫
I3n

1x≤tdĜn(x).

Let K a symmetric kernel in L2(μ) and h a window, ĝn(x) = n−1
∑n

i=1 Kh(x−Xi) an estimator of g0, then the
unknown density of the mixture is estimated by

f̂n(x) = λ̂−1
n {ĝn(x) −

∫
I1n

dĜn∫
I1n

dF0
f0(x)}, if x ∈ I1n,

f̂n(x) = λ̂−1
n ĝn(x), if x ∈ I3n. (2.7)

Assume that the support of G is bounded and σ2
1,λ =

∫
x2 d(1−G)n(x)−(

∫
xd(1−G)n(x))2 < ∞ if inf suppF0 <

inf suppF , and σ2
2,λ =

∫
x2 dGn(x) − (

∫
xdGn(x))2 < ∞ if inf suppF0 > inf suppF , then n1/2(maxi Xi −

maxSuppG) and n1/2(mini Xi − min SuppG) converge weakly to centered Gaussian variables with variances
σ2

1,λ and σ2
1,λ. It follows that:

Proposition 2.4. The estimators λ̂n, F̂n and f̂n are uniformly P0-a.s. consistent. The variable n1/2(λ̂n − λ)
converges weakly to a centered Gaussian variable, n1/2(F̂n − F ) converges weakly to a transformed Brownian
bridge and if F is a subset of C2 and h = o(n−1/5), n2/5(f̂n − f) converges weakly to a centered Gaussian
process.
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3. Mixture model of nonparametric densities

Consider a mixture of two unknown distributions with densities in a family F of concave unimodal and
symmetric densities on R,

gλ,f1,f2 = λf1 + (1 − λ)f2.

An identifiable mixture of two symmetric densities of F does not belong to F even with overlapping densities
since the mixture density is not concave or not symmetric, except when they have the same mean and in that
case they are unidentifiable. Let H0 the null hypothesis of a single unknown distribution of F . The distribution
f0 under H0 may be estimated by a symmetric estimator f̂0n: let θ0 the center of symmetry of f0, estimated
by the median θ̂n of the sample and consider the transformed sample X ′

i = Xi if Xi ≥ θ̂n, X ′
i = 2θ̂n − Xi if

Xi < θ̂n hence (X ′
1, . . . , X

′
n) is a sample with asymptotic distribution a−1

0 F01]−∞,θ0], with a0 =
∫ θ0

−∞ dF0. The
density f0 is estimated by a kernel estimator f̂0n(x) = n−1

∑n
i=1 Kh(x − X ′

i) on ] −∞, θ̂n] and by symmetry,
f̂0n(x) = f̂0n(2θ̂n − x) on ]θ̂n,∞[, it is P0-a.s. uniformly consistent on R.

In the following, any other constraint on the form of the set F may obviously replace the symmetry, for
example a disymmetry with some proportions between both sides of the functions. The main condition about F
is the identifiability of the components of mixtures of functions belonging to F and mixtures cannot themselves
belong to F . Under H0, any estimator f̂0n of the single unknown density f0 with the relevant constraint may
be used.

A test of a mixture gλ,f1,f2 = λf1 + (1 − λ)f2 in G2, with f1 and f2 in F , against the alternative of a single
unknown distribution of F may be performed by replacing f0 by f̂0n in the expression of Tn, with the statistic

Sn = 2 sup
λ∈]0,1/2],

sup
f∈F

∑
1≤i≤n

{log gλ,f,f̂0n
(Xi) − log f̂0n(Xi)}.

The conditions for convergence of Sn are
A′1: λ and F are identifiable: if λf1 + (1 − λ)f2 = λ′f ′

1 + (1 − λ′)f ′
2, μ-a.s., with λ and λ′ ∈]0, 1/2], f1,

f2, f ′
1 and f ′

2 ∈ F , then λ1 = λ2, f1 = f ′
1 and f2 = f ′

2, μ-a.s.,
A′2: for all f in F , the L2(P0)-derivative at f , ϕf exists:

lim sup
d2(f,f ′)→0

d−1
2 (f, f ′)‖f−1(f ′ − f) − d2(f, f ′)ϕf‖L2(P0) → 0.

For all f and f ′ in F , denote αf ′,f = λd2(f, f ′), ϕf ′,f = d−1
2 (f, f ′)f−1(f ′ − f) if f ′ �= f and ϕf,f = ϕf ,

Uf = {d2(f, f ′); f ′ ∈ F} ⊂ R+; DFf = {ϕf ′,f ; f ′ ∈ F} and DF = {ϕf ′,f ; f, f ′ ∈ F}.
A′3: E0 supλ∈]0,1], supf1,f2∈F | log λf1 + (1 − λ)f2| < ∞ and there exists a sequence of neighborhoods V0n

of f0 in F containing (f̂0n)n and converging to f0 s.t.

E0 sup
f0n∈V0n,

sup
ϕn∈DFf0n

‖ϕn(X)‖3 < ∞,

A′4: supf0n∈V0n, supϕn∈DFf0n
|n−1/2

∑n
i=1 ϕn(Xi)−Gϕ| converges in P0-probability to zero, with Gϕ de-

fined as in A4.
The mixture density is written gλ,f,f ′ = λf ′ + (1 − λ)f = f(1 + αf ′,fϕf ′,f ) and the parameter set for a
test of H0 is {αf ′,f ; f, f ′ ∈ F}. A sequence of parameters of smaller size is sufficient for the test with the
statistic Sn, it is defined by {(αf,f̂0n

)n; f ∈ F}. Let un,f = u(f, f̂0n), αn,f = λun,f , ϕn,f = ϕ(f, f̂0n), and

gn,f = f̂0n(1 + αn,fϕn,f ), Un = {un,f ; f ∈ F} and DFn = {ϕn,f ; f ∈ F}. The statistic Sn is then written

Sn = 2 sup
αn∈Un/2,

sup
ϕn∈DFn

log(1 + αnϕn).
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Under conditions A′, the proofs of Section 2 are easily extended, with the same notations.

Lemma 3.1. For every ϕn in DFn, the estimator

α̂n(ϕn) = arg max
αn∈Un/2

ln(α, ϕn)

is such that lim supϕn∈DFn
|α̂n(ϕn)| converges P0-a.s. to zero.

Theorem 3.2. Under H0, supϕn∈DFn
|n1/2α̂n(ϕn) − (Σϕ)−1/2Z(ϕ)1{Z(ϕ)>0}| converges in probability to zero

and the statistic Sn converges weakly to supϕ∈DF Z2(ϕ)1{Z(ϕ)>0}.

As in Section 2, the convergence rate is due to the sum of n i.i.d. variables and does not depend on the
convergence rate of ϕn.

With a vector of p additional components f ′ = (f1, . . . , fp) to an unknown density f with true value f0 in
the mixture under the alternative, gλ,f,f ′ = (1 − λ)f +

∑p
k=1 λkfk in Gp is written with the notations of A′

2 as

gλ,f, = f0(1 + αT
f ′,fϕf ′,f ),

the hypothesis H0 is equivalent to ‖αf‖ = 0 and the results of Lemma 2.1 and Theorem 2.3 hold. They are
extended to a model with a mixture of identifiable components under H0, as in Section 2.

Under the alternative of a mixture of two functions of F with different supports, the components of the true
density g0 = λ0f1,0 + (1− λ0)f2,0 may be estimated. For densities with known or estimated supports (densities
with estimable center of symmetry), λ0 is estimated as in (2.6) and both symmetric densities are estimated
by an estimator similar to f̂0n defined in this section. If only one center of symmetry of f1,0 or f2,0 may be
estimated, one density is estimated by this method and the other density is defined by (2.7) where f0 is replaced
by f̂0n. If both supports are unknown, a learning sample is necessary for the estimation of the support of the
densities.
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