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ESTIMATION OF THE HAZARD FUNCTION IN A SEMIPARAMETRIC MODEL
WITH COVARIATE MEASUREMENT ERROR
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Abstract. We consider a failure hazard function, conditional on a time-independent covariate Z,
given by ηγ0(t)fβ0(Z). The baseline hazard function ηγ0 and the relative risk fβ0 both belong to
parametric families with θ0 = (β0, γ0)� ∈ R

m+p. The covariate Z has an unknown density and is
measured with an error through an additive error model U = Z + ε where ε is a random variable,
independent from Z, with known density fε. We observe a n-sample (Xi, Di, Ui), i = 1, . . . , n, where
Xi is the minimum between the failure time and the censoring time, and Di is the censoring indicator.
Using least square criterion and deconvolution methods, we propose a consistent estimator of θ0 using
the observations (Xi, Di, Ui), i = 1, . . . , n. We give an upper bound for its risk which depends on the
smoothness properties of fε and fβ(z) as a function of z, and we derive sufficient conditions for the√

n-consistency. We give detailed examples considering various type of relative risks fβ and various
types of error density fε. In particular, in the Cox model and in the excess risk model, the estimator
of θ0 is

√
n-consistent and asymptotically Gaussian regardless of the form of fε.
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1. Introduction

We are interested in the relationship between a survival time T and a covariate Z described by the conditional
hazard function of T given Z = z intuitively defined by

R(t|z) = lim
Δt↓0

1
Δt

P(t ≤ T < t+ Δt|T ≥ t, Z = z).

In this paper we consider a parametric proportional hazard model, R(t, θ0|Z) = ηγ0(t)fβ0(Z), conditional on
a time-independent covariate Z with unknown density g. The proportional hazard model is often used to
describe a covariate effect on a survival time. Under the condition fβ(0) = 1, ηγ0(t) is the baseline hazard
function, that is the conditional hazard function of T given Z = 0. The function fβ0 is the relative risk and
the conditional failure rates associated with any two values of the covariate Z is proportional. Here we assume
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that the functions ηγ and fβ both belong to parametric families and θ0 = (β0, γ0)� belongs to the interior of a
compact set Θ = B×Γ ⊂ R

m+p. To ensure that the hazard function is a nonnegative function, we assume that
ηγ(t) ≥ 0 for all γ ∈ Γ and for all t ∈ [0, τ ], τ < ∞, and also that fβ(Z) ≥ 0 for all β ∈ B and Z with density
g. The parametric modelling of the hazard function has some advantages. In particular, the coefficients can be
clinically meaningful and fitted values from the model can provide estimates of survival time.

Among the best known parametric models are exponential models where R(t, θ|Z) = γf(β�Z), Weibull mod-
els with R(t, θ|Z) = γ1t

γ2f(β�Z), models with a piecewise constant baseline function and Gomperz-Makeham
models with R(t, θ|Z) = (γ1 + γ2(γ3)t)f(β�Z). This latter is commonly used in analysis of mortality data
(see [37]). We refer to [2,10,17] for discussions on parametric survival time models and their advantages.

Suppose we observe the covariate Z in a cohort of n individuals. For each individual, we would observe a
triplet (Xi, Di, Zi), where Xi = min(Ti, Ci) is the minimum between the failure time Ti and the censoring time
Ci, Di = 1ITi≤Ci denotes the failure indicator, and Zi is the value of the covariate. In this context, one usual
way is to estimate θ0 = (β0, γ0)� by the maximum likelihood estimator. We refer for instance to [1,4,5,16] for
related results.

In this paper we consider that the covariate Z is mismeasured. For example, the covariate Z could be a stage of
a disease, which may be misdiagnosed, or Z could be a dose of ingested pathogenic agent not correctly evaluated,
such that the error range between the unknown dose and the evaluated dose is sizeable. We observe a cohort
of n individuals during a fixed time interval [0, τ ] with τ <∞. For each individual, the available observation is
thus the triplet Δi = (Xi, Di, Ui) where Ui = Zi + εi, and where the sequences of random variables (εi)i=1,··· ,n
and (Zi, Ti, Ci)i=1,··· ,n are independent. The density of ε is known and is denoted by fε. Our aim is to estimate
the parameter θ0 = (β0, γ0)� from the n-sample of independent and identically distributed random variables
(Δ1, . . . ,Δn), in the presence of the completely unknown density g of the unobservable covariate Z, where g is
viewed as a nuisance parameter belonging to a functional space G. Hence this model belongs to the class of the
so-called semiparametric models.

1.1. Our results

We propose an estimation procedure based on the least square criterion estimation using deconvolution
methods. The least square criterion is defined by

Sθ0,g(θ) = E

(
(f2

βW )(Z)
∫ τ

0

Y (t)η2
γ(t)dt

)
− 2E

(
(fβW )(Z)

∫ τ

0

ηγ(t)dN(t)
)

(1.1)

where W is a nonnegative weight function to be chosen, N(t) = 1IX≤t,D=1 and Y (t) = 1IX≥t. Since the
intensity of the censored process N(t) with respect to Ft = σ{Z,U,N(s), 1IX≥s, 0 ≤ s ≤ t ≤ τ} is equal to
λ(t, θ0, Z) = ηγ0(t)Y (t)fβ0(Z), we can rewrite Sθ0,g(θ) as

Sθ0,g(θ) =
∫ τ

0

{
E

[(
ηγ(t)fβ(Z) − ηγ0(t)fβ0(Z)

)2
Y (t)W (Z)

]
− E

[(
ηγ0(t)fβ0(Z)

)2
Y (t)W (Z)

] }
dt. (1.2)

This shows that Sθ0,g(θ) is minimum if θ = θ0 as soon as W is a nonnegative function. We propose to
estimate Sθ0,g(θ) for all θ ∈ Θ by a quantity Sn,1(θ), which depends on the error density fε, on the observations
Δ1, · · · ,Δn, with Δi = (Xi, Di, Ui), and where g is replaced with a deconvolution kernel estimator. The
parameter θ0 is then estimated by minimizing Sn,1(θ). We refer to [38] for properties of M -estimators and
to [33] for other results on the estimation of intensity processes using the least square criterion.

Under classical smoothness and identifiability assumptions and for a W suitably chosen such that fβW has
the best smoothness properties, the estimator θ̂1 = argmin

θ∈Θ
Sn,1(θ) converges to argmin

θ∈Θ
Sθ0,g(θ) = θ0 which

ensures the consistency of θ̂1. Its rate of convergence depends on the smoothness of fε and on the smoothness
of (fβW )(z) as a function of z. More precisely, if we denote by ϕ�(t) =

∫
eitxϕ(x)dx the Fourier transform

of an integrable function ϕ, the rate of convergence of θ̂1 depends on the behavior of the ratios of the Fourier
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transforms (fβW )∗(t)/f∗
ε (−t) and (f2

βW )∗(t)/f∗
ε (−t) as t tends to infinity. We give an upper bound of the

quadratic risk E ‖ θ̂1 − θ0 ‖2
�2 where ‖ θ ‖2

�2=
∑m+p

k=1 θ2k, for various relative risks and various types of error
density, and we derive sufficient conditions ensuring

√
n-consistency and asymptotic normality. Through these

examples, we also show that a simple choice of W can significantly improve the rate of convergence of θ̂1,
up to the parametric rate in many cases. Specific choices for W ensure that θ̂1 from the Cox model and
the excess relative risk model is

√
n-consistent and asymptotically Gaussian. No consistent estimators for the

excess relative risk model with mismeasured covariate have been found previously. Moreover, the previous
methods developped for the parameter estimation in the Cox model do not apply in the excess relative risk
model. Furthermore, from an application point of view, this result is promising since the excess relative risk
model is commonly used in radioprotection research to investigate the relationship between cancer occurence
and radiation dose which is always mismeasured (see [27,30]).

By construction our estimation procedure is related to the problem of the estimation of Sθ0,g(θ). For some
particular relative risks, Sθ0,g(θ) can be estimated at the parametric rate without deconvolution methods.
In these special cases we propose a second estimator θ̂2 which is always a

√
n-consistent and asymptotically

Gaussian estimator of θ0.

1.2. Previous results and ideas

Models with measurement errors have been thoroughly studied since the 1950s with the first papers studying
regression models with errors-in-variables (see, e.g. [21,32]). We refer to [8,13] for a presentation of such models
and results related to measurement error models. It is well known that in regression models, the measurement
errors on the explanatory variables make the estimation of the regression function much more difficult, even if
the regression function has a parametric form. For recent results and illustration of such difficulties, we refer
to [6,35] for parametric regression functions, and to [9,11] for nonparametric regression functions.

Interest in survival models when covariates are subject to measurement errors is more recent. To our knowl-
edge, there are no results on consistent estimation of the hazard function (for any type of modelling) in the
case of general parametric relative risk with a mismeasured covariate. All the previously known results are
obtained in the semiparametric Cox model. Let us specify the related methods: to take into account the fact
that the covariate Z is measured with error, one idea is simply to replace Z with the observation U in the
partial likelihood. This idea, usually called naive method, provides biased estimators (see for instance [28,29]).
One can also cite [25] who study the resulting bias in case of heterogeneous covariate measurement error. A
second idea, related to calibration methods, is to propose corrections of the estimation criterion, for instance by
replacing Zi with an approximation of E(Zi|Ui). The third idea, proposed by [30,36,39] is to approximate the
partial log-likelihood related to the filtration generated by the observations Et = σ{U,N(s), 1IX>s, 0 ≤ s ≤ t}.
All these methods provide biased estimators of the parameters in the semiparametric Cox model and also in
general proportional hazard models. The last idea, extensively used in the semiparametric Cox model, is to
correct the partial score function where the mismeasured Zi’s have been replaced with the observations Ui’s.
By definition, the partial score function is (see [14])

L(1)
n (β, Z(n)) =

1
n

n∑
i=1

∫ τ

0

(
f

(1)
β (Zi)/fβ(Zi) −

[ n∑
j=1

Yj(t)f
(1)
β (Zj)

]
/
[ n∑

j=1

Yj(t)fβ(Zj)
])

dNi(t),

with Ni(t) = 1IXi≤t,Di=1, Yi(t) = 1IXi≥t, Z(n) = (Z1, . . . , Zn), and with f (1)
β the first derivative of fβ with respect

to β. The β̃ such that L(1)
n (β̃, U (n)) = 0 is not consistent but, in the Cox model, one can exhibit corrections of

L
(1)
n (β, Z(n)) ensuring the consistency. Among those who have used related methods, one can cite [7,18–20,22,

23,28,29,34] and [3], and more recently [26]. These corrections strongly depend on the exponential form of the
relative risk of the Cox model. Indeed, if U = Z+ε, with Z independent of ε, then limn→∞ E[L(1)

n (β, Z(n))] only
depends on E(Z) and on E[exp(βZ)], with E(Z) = E(U) and E[exp(βU)] = E[exp(βZ)]E[exp(βε)]. Extension
of such methods to other relative risks have not been conclusive. For instance, in the semiparametric model
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of excess relative risk where fβ(Z) = (1 + βZ), easy calculations give that limn→∞ E[L(1)
n (β, Z(n))] depends on

E[Z/(1 + βZ)] whereas limn→∞ E[L(1)
n (β, U (n))] depends on E[U/(1 + βU)]. Since the error model U = Z + ε

does not provide any expression of E[Z/(1+βZ)] in terms of E[U/(1+βU)], a correction analogous to the ones
proposed in the Cox model cannot be exhibited. In other words, it seems impossible to find a function Ψn(β, U)
that is independent of the unknown density g and that satisfies limn→∞ E(Ψn(β, U)) = E[Z/(1 + βZ)].

The paper is organized as follows. Section 2 presents the model and the assumptions. In Sections 3 and 4 we
present the main estimator and its asymptotic properties. In Section 5 we extend our estimation procedure and
propose a second estimator. In Section 6 we give detailed examples. The proofs are given in Sections 7 and 8.

2. Model, assumptions and notations

Notation: For two complex-valued functions u and v in L2(R)∩L1(R), we define u∗(x) =
∫

eitxu(t)dt, u�
v(x) =

∫
u(y)v(x− y)dy, and 〈u, v〉 =

∫
u(x)v(x)dx with z the conjugate of a complex number z. We also use

‖u‖1 =
∫ |u(x)|dx, ‖u‖2

2 =
∫ |u(x)|2dx, ‖u‖∞ = supx∈R

|u(x)|, and for θ ∈ R
d, ‖ θ ‖2

�2=
∑d

k=1 θ
2
k. For a map

(θ, u) �→ ϕθ(u) from Θ × R to R, the first and second derivatives with respect to θ are denoted by

ϕ
(1)
θ (·) =

(
ϕ

(1)
θ,j(·)

)
j

with ϕ(1)
θ,j(·) =

∂ϕθ(·)
∂θj

for j ∈ {1, · · · ,m+ p}

and ϕ
(2)
θ (·) =

(
ϕ

(2)
θ,j,k(·)

)
j,k

with ϕ(2)
θ,j,k(·) =

∂2ϕθ(·)
∂θjθk

, for j, k ∈ {1, · · · ,m+ p}.

Throughout the paper P, E and Var denote respectively the probability, the expectation, and the variance when
the underlying and unknown true parameters are θ0 and g. Finally, a− denotes the negative part of a, which is
equal to a if a ≤ 0 and 0 otherwise.

Model assumptions:

For all γ ∈ Γ, ηγ is nonnegative and
∫ τ

0

η2
γ(t)dt <∞. (A1)

For all β ∈ B and for all g ∈ G, if Z has density g, fβ(Z) ≥ 0. (A2)
Conditional on Z and U, the failure time T and the censoring time C are independent. (A3)
The conditional distribution of the failure time T given (Z,U) does not depend on U. (A4)
The conditional distribution of the censoring time C given (Z,U) does not depend on U. (A5)

These assumptions are common in most of the frameworks dealing with survival data analysis and covariates
measured with error (see [2,15,30,31,36]). Concerning (A2), as is mentioned in [31], a sufficient requirement
would be to assume that fβ(z) ≥ 0 for all z ∈ R. But this condition is too strong in general, and does not
allow one to consider regression forms of particular interest, such as linear form fβ(z) = 1 + βz. We only
assume in (A2) that fβ(z) ≥ 0 for all z in the support of the density g of the covariate Z and for all β ∈ B.
Assumption (A3) states that a general censorship model is considered. Assumption (A4) and (A5) state that
both the failure time and the censoring time are independent of the observed covariate when the observed and
true covariates are both given, i.e. the measurement error is not prognostic.

Smoothness assumptions.

The functions β �→ fβ and γ �→ ηγ admit continuous derivatives up to order 3 (A6)
with respect to β and γ respectively.
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We denote by S
(1)
θ0,g(θ) and S

(2)
θ0,g(θ) the first and second derivatives of Sθ0,g(θ) with respect to θ. For all t in

[0, τ ], let S(2)
θ0,g(θ, t) be the second derivative of Sθ0,g when the integral is taken over [0, t] in (1.2), with the

convention that S(2)
θ0,g(θ) = S

(2)
θ0,g(θ, τ).

Identifiability and moment assumptions.

S
(1)
θ0,g(θ) = 0 if and only if θ = θ0. (A7)

For all t ∈]0, τ ], the matrix S(2)
θ0,g(θ

0, t) exists and is positive definite. (A8)

For all j = 1, · · · , p,
∫ τ

0

η4
γ0(t)dt <∞, and

∫ τ

0

|η(1)
γ0,j |3(t)ηγ0(t)dt <∞. (A9)

For γ ∈ Γ and j = 1, · · · , p, E

(∫ τ

0

ηγ(t)dN(t)
)2

<∞ and E

(∫ τ

0

η
(1)
γ0,j(t)dN(t)

)2

<∞. (A10)

sup
g∈G

‖ fβ0g ‖2
2≤ C1(fβ0), sup

g∈G
‖ f2

β0g ‖2
2≤ C2(f2

β0). (A11)

The function W is such that for all β ∈ B and g ∈ G, E[(f2
βW )(Z)] is finite. (A12)

The function W is such that for all g ∈ G and E[(f6
β0W )(Z)] (A13)

and for j = 1, · · · ,m, E[(|f (1)
β0,j |3|fβ0W )(Z)|] are finite.

We can use the equality (1.2), to see see that Sθ0,g(θ) is minimum at θ = θ0. Assumptions (A7) and (A8)
ensure that θ0 is the unique minimum. The density g and the parameter β vary over sets G and B, such that
(A2), (A7), (A8), (A10) and (A11) hold.

3. Estimation procedure

If the Zi’s were observed, Sθ0,g(θ) would be estimated by

S̃n(θ) = − 2
n

n∑
i=1

(fβW )(Zi)
∫ τ

0

ηγ(t)dNi(t) +
1
n

n∑
i=1

(f2
βW )(Zi)

∫ τ

0

η2
γ(t)Yi(t)dt.

Since the Zi’s are not observable we estimate Sθ0,g by

Sn,1(θ) =
1
n

n∑
i=1

[
(f2

βW ) � Kn,Cn(Ui)
∫ τ

0

η2
γ(t)Yi(t)dt− 2(fβW ) � Kn,Cn(Ui)

∫ τ

0

ηγ(t)dNi(t)
]

where Kn,Cn(·) = CnKn(Cn·) is a deconvolution kernel defined through a kernel K, fε and a sequence Cn via:
K∗

n(t) = K∗(t)/f∗
ε (−tCn). The kernel K is such that K∗ is compactly supported satisfying |1−K∗(t)| ≤ 1I|t|≥1,∫

K(t)dt = 1, and Cn → ∞ as n → ∞. By construction, the deconvolution kernel Kn,Cn also satisfies
K∗

n,Cn
(t) = K∗

Cn
(t)/f∗

ε (−t) = K∗(t/Cn)/f∗
ε (t).

For the construction of Sn,1(θ) we require that

the density fε belongs to L2(R) ∩ L∞(R) and for all x ∈ R, f∗
ε (x) �= 0. (N1)

The key ideas for this construction are the following: For any integrable function Φ, limn→∞ n−1
∑n

i=1 Φ �
Kn,Cn(Ui) = E(Φ(Z)). Hence we estimate E(Φ(Z)) by n−1

∑n
i=1 Φ � Kn,Cn(Ui) instead of n−1

∑n
i=1 Φ(Zi)



92 M.-L. MARTIN-MAGNIETTE AND M.-L. TAUPIN

which is not available. Similarly, for any ψ ∈ L1(R) and Φ such that E(Φ(Z)) <∞,

lim
n→∞n−1

n∑
i=1

ψ(Xi)Φ � Kn,Cn(Ui) = E(ψ(X)Φ(Z)).

Indeed, if fX,U,Z is the joint distribution of (X,U,Z), Assumptions (A4)–(A5) and the independence between
Z and ε imply that fU = g � fε and fX,U,Z(x, u, z) = fX,Z(x, z)fε(u− z). Consequently, under mild conditions
Sn,1(θ)

P−→
n→∞ Sθ0,g(θ) for all θ ∈ Θ and we propose to estimate θ0 by

θ̂1 = (β̂1, γ̂1)� = arg min
θ=(β,γ)�∈Θ

Sn,1(θ). (3.1)

4. Asymptotic properties

4.1. General results for the risk of θ̂1

The weight function W is chosen such that

sup
β∈B

(Wfβ), W and sup
β∈B

(Wf2
β) belong to L1(R). (A14)

sup
β∈B

(Wf
(1)
β ) and sup

β∈B

(Wfβf
(1)
β ) belong to L1(R). (A15)

E

[
sup
θ∈Θ

S
(1)
n,1(θ)

]
<∞. (A16)

We say that a function ψ ∈ L1(R) satisfies (4.2) if for a sequence Cn we have

min
q=1,2

‖ ψ∗(K∗
Cn

− 1) ‖2
q +n−1 min

q=1,2

∥∥ψ∗K∗
Cn

f∗
ε

∥∥2

q
= o(1). (4.2)

We note that for any integrable function ψ, one can always find Cn such that (4.2) hold.

Theorem 4.1. Let (A1)–(A15) and (N1) hold. Let θ̂1 = θ̂1(Cn) be defined by (3.1).
1) For all the sequences Cn such that Wfβ and Wf2

β and their first derivatives with respect to β satisfy (4.2),
E(‖θ̂1(Cn) − θ0‖2

�2) = o(1) as n→ ∞, and θ̂1 = θ̂1(Cn) is consistent.
2) Assume moreover that for all β ∈ B, fβW and f2

βW and their derivatives up to order 3 with respect
to β satisfy (4.2). Then E(‖ θ̂1 − θ0 ‖2

�2) = O(ϕ2
n) with ϕ2

n = ‖(ϕn,j)‖2
�2 , ϕ

2
n,j = B2

n,j(θ
0) + Vn,j(θ0)/n,

B2
n,j(θ

0) = min{B[1]
n,j(θ

0), B[2]
n,j(θ

0)}, Vn,j(θ0) = min{V [1]
n,j(θ

0), V [2]
n,j(θ

0)}, j = 1, · · · ,m where

B
[q]
n,j(θ

0) =
∥∥(f2

β0W )∗(K∗
Cn

− 1)
∥∥2

q
+
∥∥(fβ0W )∗(K∗

Cn
− 1)

∥∥2

q
+
∥∥(f (1)

β0,jW
)∗(K∗

Cn
− 1)

∥∥2

q

+
∥∥(f (1)

β0,jfβ0W
)∗(K∗

Cn
− 1)

∥∥2

q
,

and

V
[q]
n,j(θ

0) =
∥∥(f2

β0W )∗
K∗

Cn

f∗
ε

∥∥2

q
+
∥∥(fβ0W )∗

K∗
Cn

f∗
ε

∥∥2

q
+
∥∥(f (1)

β0,jW
)∗K∗

Cn

f∗
ε

∥∥2

q
+
∥∥(f (1)

β0,jfβ0W
)∗K∗

Cn

f∗
ε

∥∥2

q
.

The terms B2
n,j and Vn,j are the squared bias and variance terms, respectively. As usual, the bias is the smallest

for the smoothest functions (Wfβ)(z) and ∂(fβW )(z)/∂β, as functions of z. As in density deconvolution,
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or for regression function estimation in errors-in-variables models, the biggest variances are obtained for the
smoothest error density fε. Hence, the slowest rates are obtained for the smoothest error density fε, for instance
for Gaussian ε’s. Consequently, a good choice of W can improve θ̂1’s rate of convergence by smoothing Wfβ .
The rate for estimating β0 depends on the smoothness properties of ∂(fβW )(z)/∂β and ∂(f2

βW
2)(z)/∂β as

functions of z, whereas the rate for estimating γ0 depends on the smoothness properties of (fβW )(z) and
(f2

βW )(z) as functions of z. In both cases, the smoothness properties of ηγ , as a function of t, do not influence
the rate of convergence. The parametric rate of convergence is achieved as soon as (fβW ) and (f2

βW ) and their
derivatives, as functions of z, are smoother than the error density fε.

4.2. Sufficient conditions for
√

n-consistency

We say that (C1)–(C3) hold if

there exists a weight function W such that the functions (C1)

sup
β∈B

(fβW )∗/f∗
ε and sup

β∈B

(f2
βW )∗/f∗

ε belong to L1(R) ∩ L2(R);

the functions sup
β∈B

(
f

(1)
β W

)∗
/f∗

ε and sup
β∈B

(
f

(1)
β fβW

)∗
/f∗

ε belong to L1(R) ∩ L2(R); (C2)

for all β ∈ B,
(
f

(2)
β W

)∗
/f∗

ε and
(∂2(f2

βW )
∂β2

)∗
/f∗

ε belong to L1(R) ∩ L2(R). (C3)

Theorem 4.2. Under the assumptions of Theorem 4.1 and under (C1)–(C3), one can find Cn such that
θ̂1 = θ̂1(Cn) defined by (3.1) is a

√
n-consistent estimator of θ0. Moreover

√
n(θ̂1 − θ0) L−→

n→∞ N (0,Σ1), where
Σ1 equals

(
E
[− 2

∫ τ

0

∂2((fβW )(Z)ηγ(s))
∂θ2

|θ=θ0 dN(s) +
∫ τ

0

∂2((f2
βW )(Z)η2

γ(s))
∂θ2

|θ=θ0 Y (s)ds
])−1

×Σ0,1 ×
(

E
[− 2

∫ τ

0

∂2((fβW )(Z)ηγ(s))
∂θ2

|θ=θ0 dN(s) +
∫ τ

0

∂2((f2
βW )(Z)η2

γ(s))
∂θ2

|θ=θ0 Y (s)ds
])−1

with

Σ0,1 = E

{[
−2

∫ τ

0

∂(Rβ,fε,1(U)ηγ(s))
∂θ

|θ=θ0 dN(s) +
∫ τ

0

∂(Rβ,fε,2(U)η2
γ(s))

∂θ
|θ=θ0 Y (s)ds

]

×
[
−2

∫ τ

0

∂(Rβ,fε,1(U)ηγ(s))
∂θ

|θ=θ0 dN(s) +
∫ τ

0

∂(Rβ,fε,2(U)η2
γ(s))

∂θ
|θ=θ0 Y (s)ds

]�⎫⎬⎭ ,

Rβ,fε,1(U) = (2π)−1

∫
(Wfβ)∗(t)

e−itU

f∗
ε (t)

dt and Rβ,fε,2(U) = (2π)−1

∫
(Wf2

β)∗(t)
e−itU

f∗
ε (t)

dt.

Conditions (C1)–(C3) ensure the existence of the functions Rβ,fε,j for j = 1, 2 and hence the
√
n-consistency.

Nevertheless it is not always possible to find W such that (C1)–(C3) hold.
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Table 1. Rates of convergence ϕ2
n of θ̂1.

fε

ρ = 0 in (N2) ρ > 0 in (N2)
ordinary smooth super smooth

Wfβ0

d = r = 0
in (R1)Sobolev

a < α + 1/2 n− 2a−1
2α

a ≥ α + 1/2 n−1
(log n)

− 2a−1
ρ

r > 0
in (R1)
C∞

n−1

r < ρ (log n)A(a,r,ρ) exp

{
−2d

(
log n
2δ

)r/ρ
}

r = ρ
d < δ (log n)A(a,r,ρ)+2αd/(δr)n−d/δ

d = δ, a < α + 1/2 (log n)(2α−2a+1)/rn−1

d = δ, a ≥ α + 1/2 n−1

d > δ n−1

r > ρ n−1

where A(a, r, ρ) = (−2a + 1 − r + (1 − r)−)/ρ.

4.3. Rates for general smoothness classes

We now specify the asymptotic properties of θ̂1 when f∗
ε and (Wfβ)∗ satisfy assumptions (N2) and (R1)

given below.

There exist positive constants C(fε), C(fε), and nonnegative δ, α, u0 and ρ ≤ 2 (N2)

such that C(fε) ≤ |f∗
ε (u)| |u|α exp (δ |u|ρ) ≤ C(fε) for all |u| ≥ u0.

When ρ = 0 = δ in (N2), with the convention that δ = 0 if and only if ρ = 0, fε is called “ordinary smooth”.
An example of an ordinary smooth density is the double exponential (also called Laplace) distribution with
ρ = 0 = δ and α = 2. The square integrability of fε in (N1) requires that α > 1/2 when ρ = 0 in (N2). When
δ > 0 and ρ > 0, fε is infinitely differentiable and is called super smooth. The standard examples for super
smooth densities are the Gaussian and Cauchy distributions. The smoothness of fβW is described by:

A function f satisfies (R1) if f belongs to L1(R ∩ L2(R)) and if there exist a, d, (R1)

u′0, r ≥ 0 such that 0 < L(f) ≤ |f∗(u)||u|a exp(d|u|r) ≤ L(f) <∞ for all |u| ≥ u′0,

with the convention that d = 0 if and only if r = 0.

Corollary 4.1. Under the assumptions of Theorem 4.1, assume that fε satisfies (N2) and that for all β ∈ B,
(fβW ), (f2

βW ) and their derivatives with respect to βj, j = 1, . . . ,m up to order 3, satisfy (R1). Consider the
sequences Cn such that

C(2α−2a+1−ρ)+(1−ρ)−
n exp{−2dCr

n + 2δCρ
n}/n = o(1) as n→ +∞. (4.3)

Then θ̂1 is a consistent estimator of θ0 and E(‖θ̂1 − θ0‖2
�2) = O(ϕ2

n) with ϕ2
n as in Table 1.

5. Extension of the estimation procedure: a second estimator θ̂2

Our estimation procedure requires the estimation of the two following linear functionals of the density g,
E[
∫ τ

0
(fβW )(Z)dN(t)] and E[

∫ τ

0
(f2

βW )(Z)Y (t)dt]. We now study the particular cases in which these linear
functionals can be directly estimated without using a kernel deconvolution plug-in.
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We say that conditions (C4)–(C6) hold if there exist a weight function W and two functions Φβ,fε,1 and
Φβ,fε,2 not depending on g, such that for all β ∈ B and for all g

E

[ ∫ τ

0

(fβW )(Z)dN(t)
]

= E

[ ∫ τ

0

Φβ,fε,1(U)dN(t)
]
,E
[ ∫ τ

0

(f2
βW )(Z)Y (t)dt

]
= E

[ ∫ τ

0

Φβ,fε,2(U)Y (t)dt
]
; (C4)

for k = 0, 1, 2 and for j = 1, 2, E[sup
β∈B

‖Φ(k)
β,fε,j(U)‖�2 ] <∞; (C5)

for j = 1, 2 and for all β ∈ B, E

[
‖Φ(1)

β,fε,j(U)‖2
�2

]
<∞. (C6)

Under (C4)–(C6), we estimate θ0 by θ̂2 = arg min
θ∈Θ

Sn,2(θ) where

Sn,2(θ) = − 2
n

n∑
i=1

∫ τ

0

Φβ,fε,1(Ui)ηγ(t)dNi(t) +
1
n

n∑
i=1

∫ τ

0

Φβ,fε,2(Ui)η2
γ(t)Yi(t)dt. (5.1)

The main difficulty for finding such functions Φβ,fε,1 and Φβ,fε,2 lies in the constraint that they must not depend
on the unknown density g. We refer to Section 5.2 for the construction of such functions.

5.1. Asymptotic properties of θ̂2

Theorem 5.1. Let (A1)–(A13), and conditions (C4)–(C6) hold. Then θ̂2, defined by (5.1) is a
√
n-consistent

estimator of θ0. Moreover
√
n(θ̂2 − θ0) L−→

n→∞ N (0,Σ2), where Σ2 is equal to

[
E

(
−2

∫ τ

0

∂2(Φβ,fε,1(U)ηγ(s))
∂θ2

|θ=θ0 dN(s) +
∫ τ

0

∂2(Φβ,fε,2(U)η2
γ(s))

∂θ2
|θ=θ0 Y (s)ds

)]−1

× Σ0,2

[
E

(
−2

∫ τ

0

∂2(Φβ,fε,1(U)ηγ(s))
∂θ2

|θ=θ0 dN(s) +
∫ τ

0

∂2(Φβ,fε,2(U)η2
γ(s))

∂θ2
|θ=θ0 Y (s)ds

)]−1

with

Σ0,2 = E

[(
−2

∫ τ

0

∂(Φβ,fε,1(U)ηγ(s))
∂θ

|θ=θ0 dN(s) +
∫ τ

0

∂(Φβ,fε,2(U)η2
γ(s))

∂θ
|θ=θ0 Y (s)ds

)

×
(
−2

∫ τ

0

∂(Φβ,fε,1(U)ηγ(s))
∂θ

|θ=θ0 dN(s) +
∫ τ

0

∂(Φβ,fε,2(U)η2
γ(s))

∂θ
|θ=θ0 Y (s)ds

)�⎤⎦ .
5.2. Comments

Let us briefly compare conditions (C1)–(C3) and (C4)–(C6). It is noteworthy that conditions (C4)–(C6) are
more general. For instance, condition (C4) does not require that fβW , f2

βW belong to L1(R) (as for instance
in the Cox Model with W ≡ 1). Moreover (C1) implies (C4), with Φβ,fε,j = Rβ,fε,j . Indeed, under (C1)–(C3),
if we define Φ∗

β,fε,1 = (Wfβ)∗/f∗
ε and Φ∗

β,fε,2 = (Wf2
β)∗/f∗

ε , we have

E[Y (t)Φβ,fε,2(U)] =
∫∫

1Ix≥tfX,Z(x, z)
1
2π

∫ (Wf2
β)∗(s)

f∗
ε (s)

e−iszf∗
ε (s)ds dxdz = E[Y (t)(Wf2

β)(Z)].
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Consequently, E
[ ∫ τ

0 Φβ,fε,2(U)η2
γ(t)Y (t)dt

]
= E

[ ∫ τ

0 (f2
βW )(Z)η2

γ(t)dt
]
, and analogously

E
[ ∫ τ

0
Φβ,fε,1(U)ηγ(t)dN(t)

]
= E

[ ∫ τ

0
(fβW )(Z)ηγ(t)dN(t)

]
. Hence Condition (C4) holds and Σ0,1 = Σ0,2 with

Σ0,1 defined in Theorem 4.2.
The choice of W is very important, as illustrated in Example 4 where we consider fβ(z) = 1−β+β/(1+ z2)

and fε is the Gaussian density. In this case, when W ≡ 1 it seems impossible to find a function Φβ,fε,2

such that E[Y (t)Φβ,fε,2(U)] = E[Y (t)f2
β(Z)]. Whereas (C1)–(C3) and (C4)–(C6) hold by taking W (z) =

(1 + z2)4 exp(−z2/(4δ)) where δ is as (N2).
To summarize: θ̂1 always exists and is consistent under mild regularity conditions, though θ̂1’s rate of

convergence is not always
√
n. By judicious choice of W the parametric rate of convergence can be achieved in

some cases. In contrast, the computation of θ̂2 is more straightforward than the computation of θ̂1 since it does
not require deconvolution estimators, but θ̂2 does not always exist.

5.3. Case without errors

If the covariates are measured without errors, that is Ui = Zi and εi = 0 for i = 1, . . . , n, then the procedure
still works by taking f∗

ε ≡ 1 in the previous formulae. More precisely, in this context Sn,1(θ) becomes

Swe
n,1(θ) =

1
n

n∑
i=1

[
(f2

βW ) � KCn(Ui)
∫ τ

0

η2
γ(t)Yi(t)dt− 2(fβW ) � KCn(Ui)

∫ τ

0

ηγ(t)dNi(t)
]

where KCn(·) = CnK(Cn·), K∗
Cn

(t) = K∗(t/Cn) and the kernel K is as in Section 3. Under the previous
assumptions, easy calculations show that Swe

n,1(θ) converges to Sθ0,g(θ) for all θ ∈ Θ since for any integrable
function Φ we have

n−1
n∑

i=1

Φ � KCn(Ui) = n−1
n∑

i=1

Φ � KCn(Zi)
P−→

n→∞ E
[
(Φ(Z)

]
.

In this context θ̂we
1 = argmin

θ∈Θ
Swe

n,1(θ) is a consistent estimator of θ0. Moreover it is easy to find W such that

conditions (C1)–(C3) hold when f∗
ε ≡ 1. It follows that θ̂we

1 is a
√
n-consistent and asymptotically Gaussian

estimator of θ0. We can analogously define θ̂we
2 and show that it is a

√
n-consistent and asymptotically Gaussian

estimator of θ0.

6. Examples

In this section, we illustrate the asymptotic properties of θ̂1 and θ̂2 for various relative risks. In all of these
examples, K∗(t) = 1I|t|≤1, the baseline function has a nonspecified parametric form and fε satisfies (N1) and
(N2) with 0 ≤ ρ ≤ 2.

The first example considers the Cox model. We show that our estimation procedure, based on a nonparametric
deconvolution method, provides a

√
n-consistent and asymptotically Gaussian estimator of β0. The aim of

this example is to show that we recover the
√
n-consistency in a slightly different model (parametric baseline

function), and using estimators quite different from the ones proposed by [3,23,29]. The other examples show
that our estimation procedure provides consistent estimators, and even sometimes

√
n-consistent estimators for

general parametric hazard functions.

Example 1. Exponential relative risk (Cox model).
Let fβ be of the form fβ(z) = exp(βz) and assume that E(exp(βU)) < ∞ for all β in B. Let W (z) =

exp{−z2/(4δ)} where δ is as in (N2). Then conditions (C1)–(C3) as well as conditions (C4)–(C6) are satisfied.
Hence the estimators θ̂1 and θ̂2 are

√
n-consistent and asymptotically Gaussian estimators of θ0, with the same

asymptotic variance.
One could also choose W ≡ 1 and use the independence between Z and ε to find that E[exp(βZ)] =

E[exp(βU)]/E[exp(βε)]. Consequently, if we choose Φβ,fε,1(U) = exp(2βU)/E[exp(2βε)] and Φβ,fε,2(U) =
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exp(βU)/E[exp(βε)] we get that E[Φβ,fε,1(U)] = E[f2
β(Z)] and also that E[Y (t)Φβ,fε,2(U)] = E[Y (t)fβ(Z)].

It follows that conditions (C4)–(C6) hold and the criterion Sn,2 defined by (5.1) exists. In this case θ̂2 is still
a
√
n-consistent and asymptotically Gaussian estimator of θ0.

Example 2. Excess relative risk model. Let fβ be of the form fβ(z) = 1 + βz with β and g in B and G
such that for Z ∼ g, 1+βZ is nonnegative. For example G could consist of densities having support included in
[0,+∞) and B could be a compact set included in [0,∞), or G could consist of densities having support included
in [−1,+1] and B could be a compact set included in [−1,+1]. Let W (z) = exp{−z2/(4δ)} where δ is as in
(N2). Then conditions (C1)–(C3) as well as conditions (C4)–(C6) are satisfied. Hence the estimators θ̂1 and
θ̂2 are

√
n-consistent and asymptotically Gaussian estimators of θ0, with the same asymptotic variance.

Example 3. Polynomial relative risk 1. Let fβ be of the form fβ(z) = 1+
∑m

k=1 βkz
k with m ≥ 1, and with

β and g in B and G such that fβ(Z) is nonnegative for Z ∼ g. For example G could consist of densities having
support included in [0,+∞) and B could be a compact set included in [0,∞)m, or G could consist of densities
having support included in [−1,+1] and B could be a compact set included in the set {β = (βk)1≤k≤m ∈
R

m such that
∑m

k=1 |βk| ≤ 1}. Let W (z) = exp{−z2/(4δ)} where δ is as in (N2). Then conditions (C1)–
(C3) as well as conditions (C4)–(C6) are satisfied. Hence the estimators θ̂1 and θ̂2 are

√
n-consistent and

asymptotically Gaussian estimators of θ0, with the same asymptotic variance.
One can also choose W ≡ 1, provided that E(|U |m) <∞ and that the kernel K has finite absolute moments

of order m and satisfies
∫
urK(u)du = 0, for r = 1, . . . ,m. With this choice of W , θ̂1 remains a

√
n-consistent

and asymptotically Gaussian estimator of θ0.

Example 4. Cauchy relative risk 1. Consider fβ of the form fβ(z) = 1− β + β/(1 + z2) with β and g in B

and G such that fβ(Z) is nonnegative for Z ∼ g. For example G could consist of all densities and B could be a
compact set included in ]0, 1[ or (−∞, 0[. The relative risk fβ has the regularity of z �→ 1/(1+z2) which satisfies
(R1) with a = 0, d = 1/2 and r = 1. Let W (z) = (1 + z2)4 exp{−z2/(4δ)} where δ is as in (N2). The functions
fβW , f2

βW and their derivatives with respect to β up to order 3 satisfy (R1) with ρ < r = 2 or ρ = r = 2 and
d > δ. Consequently, conditions (C1)–(C3) as well as conditions (C4)–(C6) are satisfied and the estimators θ̂1
and θ̂2 are

√
n-consistent and asymptotically Gaussian estimators of θ0, with the same asymptotic variance.

This example underlines the importance of the choice of smoothing weight function W in the construction
of θ̂1 or θ̂2. Indeed, with W ≡ 1, Theorem 4.1 predicts a much slower rate of convergence. For example, if ε is
a Gaussian random variable and W ≡ 1, the predicted rate is of order exp(−2

√
logn).

Example 5. Laplace relative risk. Consider fβ of the form fβ(z) = 1+βf(z) with f(z) = exp(−|z|/2)−1 and
with β and g in B and G such that fβ(Z) is nonnegative for Z ∼ g. For example G could consist of all densities
and B could be a compact set included in ]0, 1[ or (−∞, 0[. The Fourier transform of z �→ �(z) = exp(−|z|/2)
equals �∗(t) = 4/(1 + 4t2) decays slowly. Hence, if we choose W ≡ 1, the estimator θ̂1 is not

√
n-consistent as

soon as |f∗
ε (u)| ≤ o(|u|−2) with |u| → ∞. A closer look shows that fβ and its derivative with respect to β are

C∞ except at the point z = 0. Therefore, a proper choice of W can smooth out at 0 and make Wfβ , Wf2
β

and their derivatives with respect to β infinitely differentiable functions in z. This choice of W ensures the√
n-consistency of θ̂1 whenever fε satisfies (N2) with 0 < ρ < 1. Even if ρ ≥ 1, the rate of θ̂1 is much faster

with our choice of W than it would be for W ≡ 1. Let us specify the choice of W . Set

ΨA,B,R(z) = exp
(− (z −A)−R(B − z)−R

)
I[A,B](z), (6.1)

where −∞ < A < B < ∞ are fixed and R > 0. According to [12,24], p. 346, Theorem 7.3, |Ψ∗
A,B,R(u)| ≤

c exp(−C|u|R/(R+1)), as |u| → ∞ and c, C are positive constants. We propose to take W equal to Ψ0,100,R or
Ψ−100,0,R or their sum. This choice of W ensures that fβW , f2

βW and their derivatives with respect to β up to
order 3 satisfy (R1) with d > 0 and r = R/(R+ 1) closer to 1 as R comes larger.
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If fε satisfies (N2) with 0 ≤ ρ < 1, we choose R large enough such that r = R/(R + 1) > ρ. Hence,
conditions (C1)–(C3) as well as conditions (C4)–(C6) are satisfied. Consequently, the estimators θ̂1 and θ̂2 are√
n-consistent and asymptotically Gaussian estimators of θ0, with the same asymptotic variance.
If ρ ≥ 1, for this choice of W , the functions Wfβ and Wf2

β and their derivatives with respect to β up to
order 3, satisfy (R1) with r = R/(R+ 1). Hence, according to Table 1,

E ‖ θ̂1 − θ0 ‖2
�2= O(1)

(
logn

) 1−2a−r
ρ exp{−2d(logn/(2δ))r/ρ}.

Example 6. Irregular relative risk. Consider fβ with fβ(z) = 1+β2a− +β1z+β2(z− a)1Iz≥a with β and g
in B and G such that fβ(Z) is nonnegative for Z ∼ g. For example G could consist of all densities with support
included in [0,+∞) and B could be a compact set included in [0,+∞). This relative risk is C∞ except at point
a where it is not differentiable. We suggest to use the smoothing weight function in (6.1) as follows. For R > 0,
let W (z) = Ψa−100,a,R(z). In that way, Wfβ and Wf2

β and their derivatives with respect to β satisfy (R1) with
0 < r = R/(R+ 1) < 1 as close to 1 as needed.

If fε satisfies (N2) with 0 ≤ ρ < 1, then we take R large enough such that r = R/(R + 1) > ρ and thus
conditions (C1)–(C3) as well as conditions (C4)–(C6) are satisfied. Consequently, the estimators θ̂1 and θ̂2 are√
n-consistent and asymptotically Gaussian estimators of θ0, with the same asymptotic variance.
If ρ ≥ 1 in (N2), the functions Wfβ and Wf2

β and their derivatives with respect to β up to order 3, satisfy
(R1) with 0 < r = R/(R+ 1) < 1 as close to 1 as needed. According to Table 1

E ‖ θ̂1 − θ0 ‖2
�2= O(1)

(
logn

) 1−2a−r
ρ exp{−2d(logn/(2δ))r/ρ}.

Comments on Examples 5 and 6.
In these examples, fβW satisfies (R1) with r < 1. Hence θ̂1 is

√
n-consistent provided that fε is ordinary

smooth or super smooth with an exponent ρ < 1. For example, when the ε is Gaussian, it seems impossible
to find W such that (Wfβ)∗/f∗

ε belongs to L1(R). This comes from the fact that for these relative risks, the
least square criterion Sθ0,g(θ) cannot be estimated with the parametric rate of convergence and hence probably
cannot provide a

√
n-consistent estimator of θ0. Nevertheless, even in cases where

√
n-consistency does not

seem achievable, the resulting rate of the risk of θ̂1 is clearly much faster than the predicted logarithmic rate
that we could have with W ≡ 1 (see Tab. 1).

In survival data analysis the relative risks fβ are often of the form fβ(z) = f(βz) (see for instance [31]). Let
us present some examples of this type.

Example 7. Polynomial relative risk 2. Let fβ be of the form f(βz) with f(z) = 1 +
∑m

k=1 akz
k with

known ak’s and with β and g in B and G such that for Z ∼ g, f(βZ) is nonnegative. For example G could
consist of all densities having support included in R

+ and B could be a compact set included in (R+)m. Let
W (z) = exp{−z2/(4δ)} where δ is as in (N2). Then conditions (C1)–(C3) as well as conditions (C4)–(C6) are
satisfied. Hence the estimators θ̂1 and θ̂2 are

√
n-consistent and asymptotically Gaussian estimators of θ0, with

the same asymptotic variance.

Example 8. Cauchy relative risk 2. Consider fβ of the form f(βz) with f(z) = 1/(1+ z2). In this example
G could consist of all densities and B could be a compact set of R

m. Let W (z) = (1 + z2)4 exp{−z2/(4δ)} with
δ as in (N2) or W ≡ 1. With these choices of W , the functions fβW , f2

βW and their derivatives with respect
to β up to order 3 satisfy (R1) with a = 0, d = 1/β and r = 1. According to Table 1, if fε satisfies (N2)
with 0 ≤ ρ < 1, then θ̂1 and θ̂2 are

√
n-consistent and asymptotically Gaussian estimators of θ0, with the same

asymptotic variance. If fε satisfies (N2) with ρ ≥ 1, then θ̂1 is consistent with a rate that depends on β0. Let
us be more precise. The proof of Theorem 4.1 implies that the terms B2

n,j(θ
0) are of order exp(−2Cn/β

0) and
the terms Vn,j(θ0)/n are of order C2α+(1−ρ)+(1−ρ−)

n exp(−2Cn/β
0 + 2δCρ

n)/n, for j = 1, . . . ,m+ p.



ESTIMATION OF THE HAZARD FUNCTION IN A SEMIPARAMETRIC MODEL... 99

Choose C∗
n that provides the best compromise between the squared bias and the variance terms. It is

independent of β0 and is given by

C∗
n =

[
(logn)/(2δ) − (2α+ (1 − ρ)−)/(2δρ) log

(
log n/(2δ)

)]1/ρ

.

This choice yields the rate

ϕ2
n = max

{
n−1, exp

[
− 2
β0

(
logn
2δ

− 2α+ (1 − ρ)−
2δρ

log
(

logn
2δ

))1/ρ
]

(log n)(1−ρ)/ρ} .

In other words, if ρ = 1, then E ‖ θ̂1 − θ0 ‖2
�2= O(1)max

{
n−1, n−1/(β0δ)(logn)2α/(β0δ)

}
and if ρ > 1, then

E ‖ θ̂1 − θ0 ‖2
�2= O(1) exp

[− 2(β0)−1
(
logn/(2δ)

)1/ρ]
.

7. Proofs

From now C denotes any numerical constant and CA indicates that it depends on A. We point out that the
value of C may vary from a line to the other.

7.1. Proof of Theorem 4.1

7.1.1. Consistency

It follows from (A7) and (A8) and the two points:
1- for all θ ∈ Θ, E[Sn,1(θ) − Sθ0,g(θ)]2 = o(1) as n→ ∞, with Sθ0,g(θ) defined in (1.2);
2- if ω(n, ρ) denotes ω(n, ρ) = sup

{|Sn,1(θ)−Sn,1(θ′)| : ‖θ− θ′‖�2 ≤ ρ
}
, there exists ρk going to 0, such that

E[ω(n, ρk)]2 = O(ρ2
k) as n→ ∞ ∀k ∈ N.

Proof of 1- We will break E[Sn,1(θ) − Sθ0,g(θ)]2 into its corresponding bias |E[Sn,1(θ)] − Sθ0,g(θ)|2 and
variance E[{Sn,1(θ)−E[Sn,1(θ)]}2] components and then show each term is asymptotically op(1). For the study
of both terms, we repeatedly use the two following versions of Hölder’s Inequality

|〈ϕ1, ϕ2〉| ≤ ‖ ϕ1 ‖2‖ ϕ2 ‖2, (7.1)
and |〈ϕ1, ϕ2〉| ≤ ‖ ϕ1 ‖∞‖ ϕ2 ‖1 . (7.2)

Study of the bias.
Under Assumptions (A1)–(A5) and using that (Zi, Ui, Ni(s), Di, Yi(s))i=1,··· ,n are independent, the intensity

of the censored process Ni(t) = 1IXi≤t,Di=1 with respect to Ft = σ{Zi, Ui, Ni(s), 1IXi≥s, 0 ≤ s ≤ t ≤ τ, i =
1, · · · , n} is equal to

λi(t, θ0, Zi) = ηγ0(t)Yi(t)fβ0(Zi). (7.3)

We use (7.3) and Lemma 8.1 to write

E
[
Sn,1(θ)

]
=
∫ τ

0

E

[
(f2

βW ) � KCn(Z)η2
γ(t)Y (t) − 2(fβW ) � KCn(Z)ηγ(t)fβ0(Z)ηγ0(t)Y (t)

]
dt,

and hence

E
[
Sn,1(θ)

]− Sθ0,g(θ) =
∫ ∫ τ

0

η2
γ(t)1Ix≥t

〈
fX,Z(x, ·), (f2

βW ) � KCn − f2
βW

〉
dxdt

−2
∫ ∫ τ

0

ηγ0(t)ηγ(t)1Ix≥t

〈
fβ0(·)fX,Z(x, ·), (fβW ) � KCn − fβW

〉
dxdt.



100 M.-L. MARTIN-MAGNIETTE AND M.-L. TAUPIN

If we apply (7.1) we obtain the first bound∣∣E(Sn,1(θ)) − Sθ0,g(θ)
∣∣ ≤

(∫ τ

0

η2
γ(t)dt

)
‖ fX,Z ‖2‖ (f2

βW ) � KCn − (f2
βW ) ‖2

+
(

2
∫ τ

0

ηγ(t)ηγ0(t)dt
)∫

‖ fβ0(·)fX,Z(x, ·) ‖2 dx ‖ (fβW ) � KCn − fβW ‖2 .

Now, Parseval’s formula gives∣∣E(Sn,1(θ)) − Sθ0,g(θ)
∣∣ ≤ (2π)−1

(∫ τ

0

η2
γ(t)dt

)
‖ fX,Z ‖2‖ (f2

βW )∗(K∗
Cn

− 1) ‖2

+(π)−1

(∫ τ

0

ηγ(t)ηγ0(t)dt
)∫

‖ fβ0(·)fX,Z(x, ·) ‖2 dx ‖ (fβW )∗(K∗
Cn

− 1) ‖2

that is ∣∣E(Sn,1(θ)) − Sθ0,g(θ)
∣∣ ≤ Cγ,γ0,fβ0

[ ‖ (f2
βW )∗(K∗

Cn
− 1) ‖2 + ‖ (fβW )∗(K∗

Cn
− 1) ‖2

]
. (7.4)

We apply (7.2), to get that
∣∣E(Sn,1(θ)) − Sθ0,g(θ)

∣∣ is also bounded by

‖ (f2
βW ) � KCn − (f2

βW ) ‖∞
(∫

‖ fX,Z(x, ·) ‖1 dx
)(∫ τ

0

η2
γ(t)dt

)
+ ‖ (fβW ) � KCn − (fβW ) ‖∞

(
2
∫

‖ fβ0(·)fX,Z(x, ·) ‖1 dx
)(∫ τ

0

ηγ(t)ηγ0(t)dt
)

which is also less than

‖ (f2
βW )∗(K∗

Cn
− 1) ‖1

(
(2π)−1 ‖ fX,Z ‖1

)(∫ τ

0

η2
γ(t)dt

)
+ ‖ (fβW )∗(K∗

Cn
− 1) ‖1

(
π−1

∫
‖ fβ0(·)fX,Z(x, ·) ‖1 dx

)(∫ τ

0

ηγ(t)fβ0ηγ0(t)dt
)
.

This implies∣∣E(Sn,1(θ)) − Sθ0,g(θ)
∣∣ ≤ Cγ,γ0,fβ0

[‖ (fβW )∗(K∗
Cn

− 1) ‖1 + ‖ (f2
βW )∗(K∗

Cn
− 1) ‖1

]
. (7.5)

If we combine bounds (7.4) and (7.5) we get∣∣E(Sn,1(θ)) − Sθ0,g(θ)
∣∣ ≤ Cγ,γ0,fβ0

× min
{‖ (fβW )∗(K∗

Cn
− 1) ‖2 + ‖ (f2

βW )∗(K∗
Cn

− 1) ‖2,

‖ (fβW )∗(K∗
Cn

− 1) ‖1 + ‖ (f2
βW )∗(K∗

Cn
− 1) ‖1

}
. (7.6)

Since Wfβ and Wf2
β satisfy (4.3), for all θ ∈ theta, |E Sn,1(θ)) − Sθ0,g(θ)| = 0(1) as n tends to infinity.

Study of the variance. Since we consider independent and identically distributed random variables, we

obtain the variance Var[Sn,1(θ)] = (2 + o(1))n−1(A1 +A2), with

A1 = E
[
(f2

βW ) � Kn,Cn(U)
∫ τ

0

η2
γ(t)Y (t)dt

]2
,

A2 = 4E
[
(fβW ) � Kn,Cn(U)

∫ τ

0

ηγ(t)dN(t)
]2
.
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We apply (7.2) and Lemma 8.1 to obtain that A1 is less than

(∫ τ

0

η2
γ(t)dt

)2 ∫ ∣∣∣〈fX,Z(x, ·) � fε, ((f2
βW ) � Kn,Cn)2

〉∣∣∣dx ≤(∫ τ

0

η2
γ(t)dt

)2 (∫
‖ fX,Z(x, ·) � fε ‖∞ dx

)
‖ (f2

βW ) � Kn,Cn ‖2
2

and hence

A1 ≤ (2π)−1

(∫ τ

0

η2
γ(t)dt

)2

‖ fε ‖∞‖ fX,Z ‖1

∥∥ (f2
βW )∗K∗

Cn

f∗
ε

∥∥2

2
.

We now give a first bound for A2. If we denote ϕ(X,Z) =
∫ τ

0
ηγ(t)dN(t) and apply Lemma 8.1 and (7.2), we

obtain that A2 is bounded by

4
∫ 〈

(ϕ2(x, ·)fX,Z(x, ·)) � fε, ((fβW ) � Kn,Cn)2
〉
dx ≤

4
(∫

‖ (ϕ2(x, ·)fX,Z (x, ·)) � fε ‖∞ dx
)

‖ (fβW ) � Kn,Cn ‖2
2 .

Since
∫ ‖ ϕ2(x, ·)fX,Z(x, ·) ‖1 dx = E

[ ∫ τ

0
ηγ(t)dN(t)

]2
, we get

∫
‖ ϕ2(x, ·)fX,Z(x, ·)) � fε ‖∞ dx ≤‖ fε ‖∞ E

[∫ τ

0

ηγ(t)dN(t)
]2

.

Consequently,

A2 ≤ 4(2π)−1
E

(∫ τ

0

ηγ(t)dN(t)
)2

‖ fε ‖∞
∥∥ (fβW )∗K∗

Cn

f∗
ε

∥∥2

2
,

and Var[Sn,1(θ)] ≤ Cθ0,‖fε‖∞n
−1

[∥∥(fβW )∗
K∗

Cn

f∗
ε

∥∥2

2
+
∥∥(f2

βW )∗
K∗

Cn

f∗
ε

∥∥2

2

]
. (7.7)

We apply (7.2) and obtain that A1 is also less than

(∫ τ

0

η2
γ(t)dt

)2 ∫ ∣∣∣〈fX,Z(x, ·) � fε, ((f2
βW ) � Kn,Cn)2

〉∣∣∣dx ≤(∫ τ

0

η2
γ(t)dt

)2(
‖
∫
fX,Z(x, ·) ‖1 dx

)
‖ (f2

βW ) � Kn,Cn ‖2
∞ .

Similarly, A2 is less than

4
∫ 〈

(ϕ2(x, ·)fX,Z(x, ·)) � fε, ((fβW ) � Kn,Cn)2
〉
dx ≤

4
(∫

‖ (ϕ2(x, ·)fX,Z (x, ·)) � fε ‖1 dx
)

‖ (fβW ) � Kn,Cn ‖2
∞
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where ϕ(X,Z) is still defined by ϕ(X,Z) =
∫ τ

0 ηγ(t)dN(t). Once again, since∫
‖ (ϕ2(x, ·)fX,Z(x, ·)) � fε ‖1 dx = E

(∫ τ

0

ηγ(t)dN(t)
)2

,

Var[Sn,1(θ)] ≤ Cθ0n−1

[∥∥(fβW )∗
K∗

Cn

f∗
ε

∥∥2

1
+
∥∥(f2

βW )∗
K∗

Cn

f∗
ε

∥∥2

1

]
. (7.8)

We combine (7.7) and (7.8) and have

Var[Sn,1(θ)] ≤
Cθ0,‖fε‖∞

n
min

{∥∥(fβW )∗
K∗

Cn

f∗
ε

∥∥2

2
+
∥∥(f2

βW )∗
K∗

Cn

f∗
ε

∥∥2

2
,

∥∥(fβW )∗
K∗

Cn

f∗
ε

∥∥2

1
+
∥∥(f2

βW )∗
K∗

Cn

f∗
ε

∥∥2

1

}
. (7.9)

Since Wfβ, Wf2
β and their derivatives satisfy (4.3), var(Sn,1(θ)) = 0(1) and the same holds for E [Sn,1(θ) −

Sθ0,g(θ)]2.
Proof of 2- By definition Sn,1(θ) − Sn,1(θ′) is equal to

− 2
n

∫ τ

0

[
(fβW ) � Kn,Cn(Ui)ηγ(t) − (fβ′W ) � Kn,Cn(Ui)ηγ′(t)

]
dNi(t)

+
1
n

∫ τ

0

[
(f2

βW ) � Kn,Cn(Ui)η2
γ(t) − (f2

β′W ) � Kn,Cn(Ui)η2
γ′(t)

]
Yi(t)dt.

Under Assumption (A16), we get E(|Sn,1(θ) − Sn,1(θ′)|2) = 0(ρ2
k). �

7.1.2. Rate of convergence

Denote by S(1)
n,1(θ) and S(2)

n,1(θ) the first and second derivatives of Sn,1(θ) with respect to θ. We use classical
Taylor expansion and the consistency of θ̂1 to get 0 = S

(1)
n,1(θ̂1) = S

(1)
n,1(θ

0) + S
(2)
n,1(θ

0)(θ̂1 − θ0) + Rn(θ̂1 − θ0),
with Rn defined by

Rn =
∫ 1

0

[S(2)
n,1(θ

0 + s(θ̂1 − θ0)) − S
(2)
n,1(θ

0)]ds. (7.10)

This implies

θ̂1 − θ0 = −[S(2)
n,1(θ

0) +Rn]−1S
(1)
n,1(θ

0). (7.11)

Consequently, we have to verify the four following points

i) E
[(
S

(1)
n,1(θ

0)) − S
(1)
θ0,g(θ

0)
)(
S

(1)
n,1(θ

0)) − S
(1)
θ0,g(θ

0)
)�] = O[ϕnϕ

�
n ], with ϕn defined in Theorem 4.1.

ii) E
[
S

(2)
n,1(θ

0) − S
(2)
θ0,g(θ

0)
]2 = o(1).

iii) Rn defined in (7.10) satisfies E(‖ Rn ‖2
�2) = o(1) as n→ ∞.

iv) E‖θ̂1 − θ0‖2
�2 ≤ Cm,pE

[
(S(1)

n,1(θ
0))�S(1)

n,1(θ
0)
]

+ o(ϕ2
n).

The rate of convergence of θ̂1 is thus given by the order of S(1)
n,1(θ

0).



ESTIMATION OF THE HAZARD FUNCTION IN A SEMIPARAMETRIC MODEL... 103

Proof of i)

Once again we decompose E
[(
S

(1)
n,1(θ

0))−S(1)
θ0,g(θ

0)
)(
S

(1)
n,1(θ

0))−S(1)
θ0,g(θ

0)
)�] in its bias and variance components

and study the order of each component. To be specific, we first show that for j = 1, . . .m∣∣E(∂Sn,1(θ)/(∂βj) |θ=θ0

)∣∣2 ≤ Cθ0 × min
q=1,2

{∥∥(f (1)
β0,jW )∗(K∗

Cn
− 1)

∥∥2

q
+
∥∥(f (1)

β0,jfβ0W )∗(K∗
Cn

− 1)
∥∥2

q

}
, (7.12)

and for j = 1, . . . p∣∣E(∂Sn,1(θ)/(∂γj) |θ=θ0

)∣∣2 ≤ Cθ0 × min
q=1,2

{∥∥(fβ0W )∗(K∗
Cn

− 1)
∥∥2

q
+
∥∥(f2

β0W )∗(K∗
Cn

− 1)
∥∥2

q

}
. (7.13)

Secondly, we will show that for j = 1, . . . ,m

Var(∂Sn,1(θ)/(∂βj) |θ=θ0) ≤ Cθ0,j

[
min
q=1,2

∥∥(f2
β0W )∗

K∗
Cn

f∗
ε

∥∥2

q
+ min

q=1,2

∥∥(f2
β0W )∗

K∗
Cn

f∗
ε

∥∥2

q

+ min
q=1,2

∥∥(f (1)
β0,jW )∗

K∗
Cn

f∗
ε

∥∥2

q
+ min

q=1,2

∥∥(fβ0W )∗
K∗

Cn

f∗
ε

∥∥2

q

]
. (7.14)

Study of the bias. By definition S(1)
n,1(θ

0) is equal to

2
n

n∑
i=1

⎛⎜⎝ −
∫ τ

0

(f (1)
β0 W ) � Kn,Cn(Ui)ηγ0(t)dNi(t) +

∫ τ

0

(fβ0f
(1)
β0 W ) � Kn,Cn(Ui)η2

γ0(t)Yi(t)dt

−
∫ τ

0

(fβ0W ) � Kn,Cn(Ui)η
(1)
γ0 (t)dNi(t) +

∫ τ

0

(f2
β0W ) � Kn,Cn(Ui)ηγ0(t)η(1)

γ0 (t)Yi(t)dt

⎞⎟⎠ .

Easy calculations give that E(∂Sn,1(θ)/∂β)θ=θ0 equals

−2E

[∫ τ

0

(f (1)
β0 W ) � Kn,Cn(U1)ηγ0(t)dN1(t)

]
+ 2E

[∫ τ

0

(fβ0f
(1)
β0 W ) � Kn,Cn(U1)η2

γ0(t)Y1(t)dt
]
.

Hence, Lemma 8.1 implies

E
(
∂Sn,1(θ)/(∂β) |θ=θ0

)
= −2E

[
fβ0(Z1)(f

(1)
β0 W ) � KCn(Z1)

∫ τ

0

η2
γ0(t)Y1(t)dt

]
+2E

[
(fβ0f

(1)
β0 W ) � KCn(Z1)

∫ τ

0

η2
γ0(t)Y1(t)dt

]
.

Since ∂Sθ0,g(θ)/(∂β) |θ=θ0 is equal to

−2E

[
fβ0(Z1)(f

(1)
β0 W )(Z1)

∫ τ

0

η2
γ0(t)Y1(t)dt

]
+ 2E

[
(fβ0f

(1)
β0 W )(Z1)

∫ τ

0

η2
γ0(t)Y1(t)dt

]
= 0,

we get E
(
∂Sn,1(θ)/∂β|θ=θ0

)
= E

(
∂Sn,1(θ)/∂β|θ=θ0

)− ∂Sθ0,g(θ)/(∂β) |θ=θ0 which also equals

− 2
∫ 〈

fβ0(·)fX,Z(x, ·), [(f (1)
β0 W ) � KCn − (f (1)

β0 W )]
〉∫ τ

0

η2
γ0(t)1Ix≥tdt dx

+ 2
∫ 〈

fX,Z(x, ·), [(fβ0f
(1)
β0 W ) � KCn − (fβ0f

(1)
β0 W )]

〉∫ τ

0

η2
γ0(t)1Ix≥tdt dx.
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Similarly, Lemma 8.1 implies

E
(
∂Sn,1(θ)/(∂γ) |θ=θ0

)
= −2E

[
fβ0(Z1)(fβ0W ) � KCn(Z1)

∫ τ

0

η
(1)
γ0 (t)ηγ0(t)Y1(t)dt

]
+2E

[
(f2

β0W ) � KCn(Z1)
∫ τ

0

η
(1)
γ0 (t)ηγ0(t)Y1(t)dt

]
.

We use that ∂Sθ0,g(θ)/(∂γ) |θ=θ0 equals

−2E

[
fβ0(Z1)(fβ0W )(Z1)

∫ τ

0

η
(1)
γ0 ηγ0(t)Y1(t)dt

]
+ 2E

[
(f2

β0W )(Z1)
∫ τ

0

η
(1)
γ0 (t)ηγ0(t)Y1(t)dt

]
= 0,

we obtain E
(
∂Sn,1(θ)/(∂γ) |θ=θ0

)
= E

(
∂Sn,1(θ)/∂γ |θ=θ0

)− ∂Sθ0,g(θ)/(∂γ) |θ=θ0 equals

−2
∫ 〈

fβ0(·)fX,Z(x, ·), [(fβ0W ) � KCn − (fβ0W )]
〉 ∫ τ

0

η
(1)
γ0 (t)ηγ0(t)1Ix≥tdt dx

+2
∫ 〈

fX,Z(x, ·), [(f2
β0W ) � KCn − (f2

β0W )]
〉 ∫ τ

0

η
(1)
γ0 (t)ηγ0(t)1Ix≥tdt dx.

Hence we obtain that for j = 1, . . . ,m (1/2)E
(
∂Sn,1(θ)/∂βj |θ=θ0

)
is less than

‖ (f (1)
β0,jW ) � KCn − (f (1)

β0,jW ) ‖2

(∫
‖ fβ0(·)fX,Z(x, ·) ‖2 dx

)(∫ τ

0

η2
γ0(t)dt

)
+
∥∥(f (1)

β0,jfβ0W ) � KCn − (f (1)
β0,jfβ0W )

∥∥
2

(∫
‖ fX,Z(x, ·) ‖2 dx

)(∫ τ

0

η2
γ0(t)dt

)
≤ ∥∥(f (1)

β0,jW )∗(K∗
Cn

− 1)
∥∥

2

(
(2π)−1

∫
‖ fβ0(·)fX,Z(x, ·) ‖2 dx

)(∫ τ

0

η2
γ0(t)dt

)
+
∥∥(f (1)

β0,jfβ0W )∗(K∗
Cn

− 1)
∥∥

2

(
(2π)−1

∫
‖ fX,Z(x, ·) ‖2 dx

)(∫ τ

0

η2
γ0(t)dt

)
.

Similarly, (1/2)E
(
∂Sn,1(θ)/∂γj |θ=θ0

)
is less than

‖ (fβ0W )∗(K∗
Cn

− 1) ‖2

(
(2π)−1

∫
‖ fβ0(·)fX,Z(x, ·) ‖2 dx

)(∫ τ

0

∣∣η(1)
γ0,j(t)

∣∣ηγ0(t)dt
)

+ ‖ (f2
β0W )∗(K∗

Cn
− 1) ‖2

(
(2π)−1

∫
‖ fX,Z(x, ·) ‖2 dx

)(∫ τ

0

∣∣η(1)
γ0,j(t)

∣∣ηγ0(t)dt
)
.

Consequently,∣∣E(∂Sn,1(θ)/(∂βj) |θ=θ0

)− (
∂Sθ0,g(θ)/(∂βj) |θ=θ0

)∣∣ ≤
Cθ0

[∥∥(f (1)
β0,jW )∗(K∗

Cn
− 1)

∥∥
2

+
∥∥(f (1)

β0,jfβ0W )∗(K∗
Cn

− 1)
∥∥

2

]
, (7.15)

and∣∣E(∂Sn,1(θ)/(∂γj) |θ=θ0

)− (
∂Sθ0,g(θ)/(∂γj) |θ=θ0

)∣∣ ≤
Cθ0

[∥∥(fβ0W )∗(K∗
Cn

− 1)
∥∥

2
+
∥∥(f2

β0W )∗(K∗
Cn

− 1)
∥∥

2

]
. (7.16)



ESTIMATION OF THE HAZARD FUNCTION IN A SEMIPARAMETRIC MODEL... 105

We can also write that (1/2)E
(
∂Sn,1(θ)/∂βj |θ=θ0

)
is bounded by

‖ (f (1)
β0,jW ) � KCn − (f (1)

β0,jW ) ‖∞
(∫

‖ fβ0(·)fX,Z(x, ·) ‖1 dx
)(∫ τ

0

η2
γ0(t)dt

)
+
∥∥(f (1)

β0,jfβ0W ) � KCn − (f (1)
β0,jfβ0W )

∥∥
∞

(∫
‖ fX,Z(x, ·) ‖1 dx

)(∫ τ

0

η2
γ0(t)dt

)
which is less than

∥∥(f (1)
β0,jW )∗(K∗

Cn
− 1)

∥∥
1

(
(2π)−1

∫
‖ fβ0(·)fX,Z(x, ·) ‖1 dx

)(∫ τ

0

η2
γ0(t)dt

)
+
∥∥(f (1)

β0,jfβ0W )∗(K∗
Cn

− 1)
∥∥

1

(
(2π)−1

∫
‖ fX,Z(x, ·) ‖1 dx

)(∫ τ

0

η2
γ0(t)dt

)
.

Similarly, (1/2)
∣∣E(∂Sn,1(θ)/∂γj |θ=θ0

)∣∣ is bounded by

‖ (fβ0W )∗(K∗
Cn

− 1) ‖1

(
(2π)−1

∫
‖ fβ0(·)fX,Z(x, ·) ‖1 dx

) (∫ τ

0

∣∣η(1)
γ0,j(t)

∣∣ηγ0(t)dt
)

+ ‖ (f2
β0W )∗(K∗

Cn
− 1) ‖1

(
(2π)−1

∫
‖ fX,Z(x, ·) ‖1 dx

)(∫ τ

0

∣∣η(1)
γ0,j(t)

∣∣ηγ0(t)dt
)
.

Consequently,∣∣E(∂Sn,1(θ)/(∂βj) |θ=θ0

)− (
∂Sθ0,g(θ)/(∂βj) |θ=θ0

)∣∣ ≤
Cθ0

[∥∥(f (1)
β0,jW )∗(K∗

Cn
− 1)

∥∥
1

+
∥∥(f (1)

β0,jfβ0W )∗(K∗
Cn

− 1)
∥∥

1

]
, (7.17)

and ∣∣E(∂Sn,1(θ)/(∂γj) |θ=θ0

)− (
∂Sθ0,g(θ)/(∂γj) |θ=θ0

∣∣ ≤
Cθ0,j

[∥∥(fβ0W )∗(K∗
Cn

− 1)
∥∥

1
+
∥∥(f2

β0W )∗(K∗
Cn

− 1)
∥∥

1

]
. (7.18)

We combine (7.15), (7.16), (7.17) and (7.18) to obtain (7.12) and (7.13).

Study of the variance. We proceed as in the proof of the consistency and write Var(∂Sn,1(θ)/(∂βj) |θ=θ0) =
(8 + o(1))n−1[V1,j + V2,j ], with

V1,j = E

[
(f (1)

β0,jfβ0W )�Kn,Cn(U1)
∫ τ

0

η2
γ0(t)Y1(t)dt

]2

and V2,j = E

[
(f (1)

β0,jW ) � Kn,Cn(U1)
∫ τ

0

ηγ0(t)dN1(t)
]2

.

Similarly, Var(∂Sn,1(θ)/(∂γj)) = (8 + o(1))n−1[V3,j + V4,j ], with

V3,j = E

[
(f2

β0W ) � Kn,Cn(U1)
∫ τ

0

η
(1)
γ0,j(t)ηγ0(t)Y1(t)dt

]2

and V4,j = E

[
(fβ0W ) � Kn,Cn(U1)

∫ τ

0

η
(1)
γ0,j(t)dN1(t)

]2

.
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Lemma 8.1 implies that

V1,j ≤
(∫ τ

0

η2
γ0(t)dt

)2 ∫ ∣∣〈fX,Z(x, ·) � fε,
(
(f (1)

β0,jfβ0W ) � Kn,Cn

)2 〉∣∣dx
and V3,j ≤

(∫ τ

0

η
(1)
γ0,j(t)ηγ0(t)dt

)2 ∫ ∣∣〈fX,Z(x, ·) � fε,
(
(f2

β0W ) � Kn,Cn

)2〉∣∣dx.
We apply inequalities (7.1) and (7.2) and obtain

V1,j ≤
(∫ τ

0

η2
γ0(t)dt

)2

max(‖ fε ‖∞, 1) min
q=1,2

∥∥(f (1)
β0,jfβ0W )∗

K∗
Cn

f∗
ε

∥∥2

q
, (7.19)

and V3,j ≤
(∫ τ

0

η
(1)
γ0,j(t)ηγ0(t)dt

)2

max(‖ fε ‖∞, 1) min
q=1,2

∥∥(f2
β0W )∗

K∗
Cn

f∗
ε

∥∥2

q
. (7.20)

Now, we apply Lemma 8.1 and have

V2,j ≤
∫ ∣∣〈ϕ2

2(x, ·)fX,Z (x, ·) � fε,
(
(f (1)

β0,jW ) � Kn,Cn

)2〉∣∣dx
and V4,j ≤

∫ ∣∣〈ϕ2
4,j(x, ·)fX,Z(x, ·) � fε,

(
(fβ0W ) � Kn,Cn

)2〉∣∣dx,
where ϕ2(X,Z) =

∫ τ

0 ηγ0(t)dN(t) and ϕ4,j(X,Z) =
∫ τ

0 η
(1)
γ0,j(t)dN(t). We apply inequalities (7.1) and (7.2) to

get

V2,j ≤ E

(∫ τ

0

ηγ0(t)dN(t)
)2

max(‖ fε ‖∞, 1) min
q=1,2

∥∥(f (1)
β0,jW )∗

K∗
Cn

f∗
ε

∥∥2

q
, (7.21)

and V4,j ≤ E

(∫ τ

0

η
(1)
γ0,j(t)dN(t)

)2

max(‖ fε ‖∞, 1) min
q=1,2

∥∥(fβ0W )∗
K∗

Cn

f∗
ε

∥∥2

q
. (7.22)

The bound (7.14) follows by combining the bounds (7.19), (7.20), (7.21) and (7.22) on the Vk,j ’s for k = 1, . . . , 4.

Proof of ii)

By definition of Sn,1, S
(2)
n,1(θ

0) =
∂2Sn,1(θ0)

∂θ2
=

(
(S(2)

n,1)1,1 (S(2)
n,1)1,2

(S(2)
n,1)

�
1,2 (S(2)

n,1)2,2

)
, with

(S(2)
n,1)1,2 = − 2

n

n∑
i=1

(f (1)
β0 W ) � Kn,Cn(Ui)

∫ τ

0

(η(1)
γ0 (t))�dNi(t)

+
1
n

n∑
i=1

(
f

(1)
β0 fβ0W

)
� Kn,Cn(Ui)

∫ τ

0

(η(1)
γ0 (t))�ηγ0(t)Yi(t)dt,

(S(2)
n,1)1,1 = − 2

n

n∑
i=1

(f (2)
β0 W ) � Kn,Cn(Ui)

∫ τ

0

ηγ0(t)dNi(t)

+
1
n

n∑
i=1

(
∂2(f2

βW )
∂β2

|θ=θ0

)
� Kn,Cn(Ui)

∫ τ

0

η2
γ0(t)Yi(t)dt
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and

(S(2)
n,1)2,2(θ) = − 2

n

n∑
i=1

(fβ0W ) � Kn,Cn(Ui)
∫ τ

0

η
(2)
γ0 (t)dNi(t)

+
1
n

n∑
i=1

(f2
β0W ) � Kn,Cn(Ui)

∫ τ

0

(
∂2η2

γ(t)
∂γ2

|θ=θ0

)
Yi(t)dt.

Under (R1), for Cn satisfying (4.3), E[S(2)
n,1(θ

0) − S
(2)
θ0,g(θ

0)]2 = o(1) and ii) is proved.

Proof of iii)

The proof of iii) follows by using the smoothness of β �→Wfβ and β �→Wf2
β up to order 3, the smoothness of

γ �→ ηγ and γ �→ η2
γ and by using the consistency of θ̂1.

Proof of iv)

Let us introduce the random event En = ∩j,kEn,j,k, where

En,j,k =
{
ω such that

∣∣∂2Sθ0,g(θ)
∂θj∂θk

− ∂2Sn,1(θ, ω)
∂θj∂θk

+ (Rn)j,k(ω)
∣∣
θ=θ0 ≤ 1

2
∂2Sθ0,g(θ)
∂θj∂θk

|θ=θ0

}
.

Now, we decompose E‖θ̂1 − θ0‖2
�2 on the event En and its complementary event in the following way

E‖θ̂1 − θ0‖2
�2 = E[‖θ̂1 − θ0‖2

�21IEn ] + E[‖θ̂1 − θ0‖2
�21IEc

n
].

We use that θ̂1 and θ0 belong both to a compact set and get

E‖θ̂1 − θ0‖2
�2 ≤ E[‖θ̂1 − θ0‖2

�21IEn ] + 2 sup
θ∈Θ

‖θ‖2
�2P(Ec

n).

Hence, the main part of the proof lies in proving that

E‖θ̂1 − θ01IEn‖2
�2 ≤ Cm,p,θ0E

[
(S(1)

n,1(θ
0))�S(1)

n,1(θ
0)
]

and P(Ec
n) = o(ϕ2

n). (7.23)

We use (7.10) and (7.11) to write

E[‖θ̂1 − θ0‖2
�21IEn ] ≤ E

[
(S(1)

n,1(θ
0))�[(S(2)

n,1(θ
0) +Rn)−1]�(S(2)

n,1(θ
0) +Rn)−1S

(1)
n,1(θ

0)1IEn

]
≤ Cm,p sup

j,k

∣∣∣∂2Sθ0,g(θ)
∂θj∂θk

|θ=θ0

∣∣∣−2

E

[
(S(1)

n,1(θ
0))�S(1)

n,1(θ
0)
]
.

It thus remains to show that P(Ec
n) = o(ϕ2

n). We start by writing that P(Ec
n) ≤ ∑m+p

j=1

∑m+p
k=1 P(Ec

n,j,k), and
then apply Markov’s inequality for q > 2, to obtain

P(Ec
n,j,k) ≤

(∣∣1
2
∂2Sθ0,g(θ)
∂θj∂θk

|θ=θ0

∣∣q)−1

E

[∣∣∣(∂2(Sθ0,g(θ) − Sn,1(θ))
∂θj∂θk

|θ=θ0

)
+ (Rn)j,k

∣∣∣q] .
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Since |a+ b|q ≤ 2q−1(|a|q + |b|q),
(∣∣0.5 ∂2Sθ0,g(θ)/(∂θj∂θk) |θ=θ0

∣∣q)P(Ec
n,j,k) is less than

2q−1
∣∣∣ (∂2Sθ0,g(θ)

∂θj∂θk
|θ=θ0

)
− E

[(
∂2Sn,1(θ)
∂θj∂θk

|θ=θ0

)] ∣∣∣q
+22q−2

E

[∣∣E(∂2Sn,1(θ)
∂θj∂θk

|θ=θ0

)
−
(
∂2Sn,1(θ)
∂θj∂θk

|θ=θ0

) ∣∣q]+ 22q−2
E|(Rn)j,k|q.

Now, we apply Rosenthal’s inequality (see Rosenthal (1970), Petrov (1995)) to the sum of variables

∂2Sn,1(θ)/(∂θj∂θk) |θ=θ0 − E
[(
∂2Sn,1(θ)/(∂θj∂θk) |θ=θ0

)]
:= n−1

n∑
i=1

Wn,i,j,k

and write

E

[∣∣n−1
n∑

i=1

Wn,i,j,k

∣∣q] ≤ Cq

[
n1−r

E|Wn,1,j,k|q + n−q/2
E

q/2|Wn,1,j,k|2
]
.

Take q = 4 to get

E

[∣∣∂2Sn,1(θ)
∂θj∂θk

|θ=θ0 − E
(∂2Sn,1(θ)
∂θj∂θk

|θ=θ0

)∣∣4] ≤ C4

[
n−3

E|Wn,1,j,k|4 + n−2
E

2|Wn,1,j,k|2
]
.

Therefore under the conditions ensuring that

E

[
∂2Sθ0,g(θ)
∂θjθk

|θ=θ0 − ∂2Sn,1(θ)
θjθk

|θ=θ0

]2

= o(1),

we have

E

[
∂2Sθ0,g(θ)
∂θjθk

|θ=θ0 − ∂2Sn,1(θ)
θjθk

|θ=θ0

]4

= O(ϕ4
n) = o(ϕ2

n).

Now, we use the definition of Rn and the smoothness properties of the derivatives of (Wfβ) and (Wf2
β) with

respect to β, up to order 3 and get E((Rn)4j,k) = o(‖θ̂1−θ0‖4
�2). Thus P(Ec

n) = o(ϕ2
n)+o(E[‖θ̂1−θ0‖4

�2 ]) = o(ϕ2
n),

and (7.23) is proved. �

7.2. Proof of Theorem 4.2: asymptotic normality

Theorem 4.1, its proof, and conditions (C1)–(C3) imply that Vn,j(θ0) = O(1) and the asymptotic normality
of θ̂1 follows if we verify that

√
n S

(1)
n,1(θ

0) L−→
n→∞ N (0,Σ1), with Σ1 defined in Theorem 4.2.

Let Hn,i, Ĥn,i, Gn,i, and Ĝn,i be the processes defined for all t ∈ [0, τ ] by

Ĥn,i(s) =

( −2√
n
(f (1)

β0 W ) � Kn,Cn(Ui)ηγ0(s)
−2√

n
− (fβ0W ) � Kn,Cn(Ui)η

(1)
γ0 (s)

)
, Hn,i(s) =

(−2√
n
(f (1)

β0 W )(Zi)ηγ0(s)
−2√

n
(fβ0W )(Zi)η

(1)
γ0 (s)

)
,

Ĝn,i(s) =

(
2√
n
(fβ0f

(1)
β0 W ) � Kn,Cn(Ui)η2

γ0(s)
2√
n
(f2

β0W ) � Kn,Cn(Ui)η
(1)
γ0 (s)ηγ0(s)

)
, Gn,i(s) =

(
2√
n
(fβ0f

(1)
β0 W )(Zi)η2

γ0(s)
2√
n
(f2

β0W )(Zi)η
(1)
γ0 (s)ηγ0(s)

)
.
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Since λi(t, θ0, Zi) defined in (7.3) is the intensity of the process Ni(t) with respect to the filtration Ft, the
associated compensator of the process N(t) is Λi(t) =

∫ t

0 λi(s, θ0, Zi)ds and the process Mi(t) = Ni(t) −
Λi(t, θ0, Zi) is a local square integrable martingale. Consequently, we get

√
n S

(1)
n,1(θ

0) =
n∑

i=1

∫ τ

0

Ĥn,i(s)dNi(s) +
n∑

i=1

∫ τ

0

Ĝn,i(s)Yi(s)ds = A1 +A2 +A3 +A4

with

A1 =
n∑

i=1

∫ τ

0

Hn,i(s)dMi(s), A2 =
n∑

i=1

∫ τ

0

[Ĥn,i(s) −Hn,i(s)]dMi(s),

A3 =
n∑

i=1

∫ τ

0

[Ĥn,i(s) −Hn,i(s)]dΛi(s, θ0, Zi) and A4 =
n∑

i=1

∫ τ

0

[Ĝn,i(s) −Gn,i(s)]Yi(s)ds.

Study of A1

The term A1 is a linear combination of stochastic integrals of locally bounded and predictable processes, Hn,i,
with respect to finite variation and local square integrable martingales, Mi(·). Consequently, E(A1) = 0.
Denoting by 〈M〉 the predictable variation process of M , we have to satisfy the two following conditions for all
t in [0, τ ] (see [2] p. 68):

L1)
∑n

i=1

∫ t

0
Hn,i(s)(Hn,i(s))�d〈Mi〉(s) P−→

n→∞ Σ̃2
1(t), with Σ̃2

1(t) a positive covariance matrix defined by

Σ̃2
1(t) = 4E

⎡⎣∫ t

0

(
(f (1)

β0 W )(Zi)ηγ0(s)
(fβ0W )(Zi)η

(1)
γ0 (s)

)(
(f (1)

β0 W )(Zi)ηγ0(s)
(fβ0W )(Zi)η

(1)
γ0 (s)

)�

ηγ0(s)Yi(s)ds

⎤⎦.
L2) For all ε > 0,

∑n
i=1

∫ t

0 Hn,i(s)(Hn,i(s))�1I‖Hn,i(s)‖�2≥ε d〈Mi〉(s) = op(1).
Proof of L1). Since 〈Mi〉(·) = Λi(·, θ0, Zi) with Λi(s, θ0, Zi) defined in (7.3), we have to prove that for all
t ∈ [0, τ ],

n∑
i=1

∫ t

0

Hn,i(s)(Hn,i(s))�Yi(s)fβ0(Zi)ηγ0(s)ds P−→
n→∞ Σ̃2

1(t).

We apply the following Lemma, which is a straightforward consequence of the fact that the set of functions
It = {x �→ 1Ix≥t} is a P-Glivenko Cantelli class (see [38]).

Lemma 7.1. For j = 1, · · · ,m

sup0≤t≤τ

∣∣ 1
n

n∑
i=1

Yi(t)fβ0,j(Zi)(f
(1)
β0,jW )(Zi) − E[Y (t)fβ0(Z)(f (1)

β0,jW )(Z)]
∣∣ a.s.−→

n→∞ 0,

sup0≤t≤τ

∣∣ 1
n

n∑
i=1

Yi(t)(f2
β0W )(Zi) − E[Y (t)(f2

β0W )(Z)]
∣∣ a.s.−→

n→∞ 0

sup0≤t≤τ

∣∣ 1
n

n∑
i=1

Yi(t)fβ0(Zi)|(f (1)
β0,jW )(Zi)|3 − E[Y (t)fβ0(Z)|(f (1)

β0,jW )(Z)|3]∣∣ a.s.−→
n→∞ 0,

and sup0≤t≤τ

∣∣ 1
n

n∑
i=1

Yi(t)|(fβ0W )(Zi)|3 − E[Y (t)|(fβ0W )(Z)|3]∣∣ a.s.−→
n→∞ 0.
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Thus L1) is verified.
Proof of L2). We have to verify that for all j = 1, . . . ,m

1
n

E

[
n∑

i=1

∫ t

0

(
(f (1)

β0,jW )(Zi)ηγ0(s)
)21I|(f(1)

β0,j
W )(Zi)ηγ0 (s)|≥ε

√
n
fβ0(Zi)ηγ0(s)Yi(s)ds

]
= o(1)

and that for all j = 1, . . . , p

1
n

E

[
n∑

i=1

∫ t

0

(
(f2

β0W )(Zi)η
(1)
γ0,j(s)

)21I|(f2
β0W )(Zi)η

(1)
γ0,j

(s)|≥ε
√

n
fβ0(Zi)ηγ0(s)Yi(s)ds

]
= o(1).

This is a straightforward consequence of Lemma 7.2 by writing that for j = 1, . . . ,m

1
n

E

[
n∑

i=1

∫ t

0

(
(f (1)

β0,jW )(Zi)ηγ0(s)
)21I|(f(1)

β0,j
W )(Zi)ηγ0(s)|≥ε

√
n
fβ0(Zi)ηγ0(s)Yi(s)ds

]
≤

1
n
√
nε

E

[
n∑

i=1

∫ t

0

|(f (1)
β0,jW )(Zi)ηγ0(s)|3fβ0(Zi)ηγ0(s)Yi(s)ds

]
= o(1)

and for j = 1, . . . , p

1
n

E

[
n∑

i=1

∫ t

0

(
(f2

β0W )(Zi)(η
(1)
γ0,j(s)

)21I|(f2
β0W )(Zi)η

(1)
γ0,j

(s)|≥ε
√

n
fβ0(Zi)ηγ0(s)Yi(s)ds

]
≤

1
εn

√
n

E

[
n∑

i=1

∫ t

0

|(f2
β0W )(Zi)|3|η(1)

γ0,j(s)|3fβ0(Zi)ηγ0(s)Yi(s)ds

]
= o(1).

Thus L2) is verified.

Study of A2

Since E(A2) = 0, we use the following lemma and conclude that A2 = op(1).

Lemma 7.2. Under (N2) and (R1), for Cn satisfying (4.3) then for j = 1, . . . ,m

sup
0≤t≤τ

∣∣ 1
n

n∑
i=1

Yi(t)fβ0(Zi)(f
(1)
β0,jW ) � Kn,Cn(Ui) − E[Y (t)fβ0(Z)(f (1)

β0,jW )(Z)]
∣∣ a.s.−→

n→∞ 0,

and sup
0≤t≤τ

∣∣ 1
n

n∑
i=1

Yi(t)fβ0(Zi)(fβ0W ) � Kn,Cn(Ui) − E[Y (t)(f2
β0W )(Z)]

∣∣ a.s.−→
n→∞ 0.

Study of A3

The term A3 can be viewed as triangular arrays of row-wise independent centered random, by writing
A3 =

∑n
i=1 Vn,i + E(A3), with

∑n
i=1 Vn,i = A3 − E(A3). Consequently, the asymptotic normality follows if we

verify that
v-a)

∑n
i=1 E[(Vn,i)2] −→

n→∞ Σ2
3;

v-b) E(A3) = op(1);
v-c) for all ε > 0,

∑n
i=1 E[(Vn,i)21I‖Vn,i‖�2≥ε] −→

n→∞ 0 (Lindeberg condition).



ESTIMATION OF THE HAZARD FUNCTION IN A SEMIPARAMETRIC MODEL... 111

By definition, A3 is equal to

− 2√
n

n∑
i=1

∫ τ

0

(
(f (1)

β0 W ) � Kn,Cn(Ui) − (f (1)
β0 W )(Zi)ηγ0(s)

(fβ0W ) � Kn,Cn(Ui) − (fβ0W )(Zi)η
(1)
γ0 (s)

)
Yi(s)fβ0(Zi)ηγ0(s)ds.

Let us start with the study of the variance (v-a). Under (C1)–(C3)

Var

[
− 2√

n

n∑
i=1

∫ τ

0

(f (1)
β0 W ) � Kn,Cn(Ui) − (f (1)

β0 W )(Zi)ηγ0(s)Yi(s)fβ0(Zi)ηγ0(s)ds

]
= O(1),

and

Var

[
− 2√

n

n∑
i=1

∫ τ

0

(f (1)
β0 W ) � Kn,Cn(Ui) − (fβ0W )(Zi)η

(1)
γ0 (s)Yi(s)fβ0(Zi)ηγ0(s)ds

]
= O(1).

It follows that v-a) is verified.
We now come to the bias term and write that E(A3) is equal to

−2
√
n

⎛⎝ E

[(
(f (1)

β0 W ) � Kn,Cn(U) − (f (1)
β0 W )(Z)

)
fβ0(Zi)

∫ τ

0
η2

γ0(s)Y (s)ds
]

E

[(
(fβ0W ) � Kn,Cn(Ui) − (fβ0W )(Zi)

)
fβ0(Zi)

∫ τ

0 η
(1)
γ0 (s)ηγ0(s)Y (s)ds

]⎞⎠ .

Lemma 8.1 implies

E(A3) = −2
√
n

⎛⎝ E

[(
(f (1)

β0 W ) � KCn(Z) − (f (1)
β0 W )(Z)

)
fβ0(Z)

∫ τ

0
Y (s)η2

γ0(s)ds
]

E

[(
(fβ0W ) � KCn(Z) − (fβ0W )(Z)

)
fβ0(Z)

∫ τ

0 Y (s)η(1)
γ0 (s)ηγ0(s)ds

]⎞⎠
that is E(A3) is equal to

−2
√
n

(∫ 〈
(f (1)

β0 W ) � KCn(z) − (f (1)
β0 W )(z), fβ0(z)fX,Z(x, z)

〉( ∫ τ

0
1Ix≥s η

2
γ0(s)ds

)
dx∫ 〈

(fβ0W ) � KCn(z) − (fβ0W )(z), fβ0(z)
〉( ∫ τ

0
1Ix≥sη

(1)
γ0 (s)ηγ0(s)ds

)
dx

)
.

For j = 1, . . . ,m

∣∣ ∫ 〈
(f (1)

β0,jW ) � KCn(z) − (f (1)
β0,jW )(z), fβ0(z)fX,Z(x, z)

〉(∫ τ

0

1Ix≥sη
2
γ0(s)ds

)
dx
∣∣

is less than (∫ τ

0

η2
γ0(s)ds

)∫ ∣∣〈(f (1)
β0,jW ) � KCn(z) − (f (1)

β0,jW )(z), fβ0(z)fX,Z(x, z)
〉∣∣dx.

We apply (7.1) and get that it is also less than(∫ τ

0

η2
γ0(s)ds

)
min

{∫
‖(f (1)

β0,jW ) � KCn − (f (1)
β0,jW )‖2‖fβ0(·)fX,Z(x, ·)‖2dx,∫

‖(f (1)
β0,jW ) � KCn − (f (1)

β0,jW )‖∞‖fβ0(·)fX,Z(x, ·)‖1dx
}
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which is less than

(2π)−1

(∫ τ

0

η2
γ0(s)ds

)
min

{
‖(f (1)

β0,jW )∗(K∗
Cn

− 1)‖2

∫
‖fβ0(·)fX,Z(x, ·)‖2dx,

‖(f (1)
β0,jW )∗(K∗

Cn
− 1)‖∞

∫
‖fβ0(·)fX,Z(x, ·)‖1dx

}
.

Similarly, we obtain that for j = 1, . . . , p

∣∣ ∫ 〈
(fβ0W ) � KCn(z) − (fβ0W )(z), fβ0(z)

〉(∫ τ

0

1Ix≥sη
(1)
γ0 (s)ηγ0(s)ds

)
dx
∣∣

is less than

(2π)−1

(∫ τ

0

|ηγ0(s)η(1)
γ0,j(s)|ds

)
min

{
‖(fβ0W )∗(K∗

Cn
− 1)‖2

∫
‖fβ0(·)fX,Z(x, ·)‖2dx,

‖(fβ0W )∗(K∗
Cn

− 1)‖∞
∫

‖fβ0(·)fX,Z(x, ·)‖1dx
}
.

Consequently, under (R1), E(A3) = O(
√
nC

−a+(1−r)/2+(1−r)−/2 exp(−dCr
n)

n ). Under (C1)–(C3), Var(A3) = O(1)
and hence Cn can be chosen such that E(A3) = o(1) and v-b) is verified.

In order to verify v-c) (Lindeberg condition) we write that for j = 1, . . . ,m

1
n

E

[
n∑

i=1

∫ t

0

(
(f (1)

β0,jW ) � Kn,Cn(Ui)ηγ0(s)
)21I|(f(1)

β0,j
W )�Kn,Cn (Ui)ηγ0(s)|≥ε

√
n
fβ0(Zi)ηγ0(s)Yi(s)ds

]
≤

1
n
√
nε

E

[
n∑

i=1

∫ t

0

|(f (1)
β0,jW ) � Kn,Cn(Ui)ηγ0(s)|3fβ0(Zi)ηγ0(s)Yi(s)ds

]
= o(1)

and for j = 1, . . . , p

1
n

E

[
n∑

i=1

∫ t

0

(
(f2

β0W ) � Kn,Cn(Ui)η
(1)
γ0,j(s)

)21I|(f2
β0W )�Kn,Cn (Ui)η

(1)
γ0,j

(s)|≥ε
√

n
fβ0(Zi)ηγ0(s)Yi(s)ds

]
≤

1
εn

√
n

E

[
n∑

i=1

∫ t

0

|(f2
β0W ) � Kn,Cn(Ui)|3|η(1)

γ0,j(s)|3fβ0(Zi)ηγ0(s)Yi(s)ds

]
= o(1).

Study of A4

The study of A4, quite similar to the study of A3 is omitted. �

7.3. Proof of Corollary 4.1

For the proof of Corollary 4.1, we apply Lemma 8.2 to the bias bounds (7.12) and (7.13) and obtain∣∣E(∂Sn,1(θ)/(∂βj) |θ=θ0

)∣∣2 = O
(
C−2a+1−r+(1−r)−

n exp(−2dCr
n)
)
,

and
∣∣E(∂Sn,1(θ)/(∂γj) |θ=θ0

)∣∣2 = O
(
C−2a+1−r+(1−r)−

n exp(−2dCr
n)
)
.

We apply Lemma 8.2 to the variance bounds (7.19), (7.20), (7.21), (7.22) and get

Var
(
∂Sn,1(θ)/(∂γj)

)
= O

(
C2(α−a)+1−ρ+(1−ρ)−

n exp(−2dCr
n + 2δCρ

n))/n
)
.
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The end of the proof follows by choosing Cn, that provides the best trade-off between the squared bias and the
variance. We refer to Butucea and Taupin [6] for details on a such trade-off.

7.4. Proof of Theorem 5.1

The proof of Theorem 5.1, which is quite classical, is omitted.

8. Appendix

Lemma 8.1. Let ϕ be such that E(|ϕ(X,Z)|) < ∞ and let Φ such that E(|Φ(U)|) < ∞. Under assumptions
(A5) and (A4), then E[ϕ(X,Z)Φ � Kn,Cn(U)] = E[ϕ(X,Z)Φ � KCn(Z)],

and E [ϕ(X,Z)Φ � Kn,Cn(U)]2 =
∫ 〈(

ϕ2(x, ·)fX,Z(x, ·)) � fε, (Φ � Kn,Cn)2
〉
dx.

Proof of Lemma 8.1. We apply Parseval’s formula and write

E [ϕ(X,Z)Φ � Kn,Cn(U)] = (2π)−1

∫∫
ϕ(x, z)fX,Z(x, z)

∫
Φ∗(y)K∗

Cn
(y)e−iyzdy dxdz

=
∫∫

ϕ(x, z)Φ � KCn(z)fX,Z(x, z) dxdz.

Similarly, E [ϕ(X,Z)Φ � Kn,Cn(U)]2 =
∫ 〈

(ϕ2(x, ·)fX,Z(x, ·)) � fε, (Φ � Kn,Cn)2
〉
dx. �

Lemma 8.2. For ν, λ and ρ nonnegative numbers, then∫
|u|≥Cn

|u|−a exp(−d|u|r)du ≤ 1
C(a, d, r)

C−a+1−r
n exp{−dCr

n}. (8.1)

Furthermore, if fε satisfies (N2), then∫
|u|≤Cn

|u|−a exp(−d|u|r)
|f∗

ε (u)| du ≤ 1
C(α, δ, ρ, a, d, r)C(fε)

max[1, C(α−a+1−ρ)
n exp{−dCr

n + δCρ
n}].
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