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Integrals of motion of classical lattice sine-Gordon system 

B. Enriquez and B.L. Feigin 

Abstract. We compute the local integrals of motions of the classical limit of 

the lattice sine-Gordon system, using a geometrical interpretation of the local sine-

Gordon variables. Using an analogous description of the screened local variables, we 

show that these integrals are in involution. We present some remarks on relations 

with the situation at roots of 1 and results on another latticisation (linked to the 

principal subalgebra of SÎ2 rather than the homogeneous one). Finally, we analyze a 

module of "screened semilocal variables77, on which the whole sl-2 acts. 

Introduction. 

In this paper, we analyze the classical limit of a lattice version of the sine-Gordon 

system. It consists of ^-commuting variables set on a line lattice, representing as usual 

densities for the screening charges. 

We first determine expressions for the local integrals of motions of this system. 

For this, we formulate this problem in terms of the cohomology of the action of the 

screening operators on the module generated by a finite number of lattice variables. 

It has been known for some time ([F]) that this is an action of the nilpotent part 

of SÎ2 ; here we interpret the space of lattice variables as an homogeneous space for 

this action. We find that lattice variables are coordinates on the Schubert cells of 

5 X 2 ( C ( ( A - 1 ) ) ) , which are an affine version of the Demazure desingularisation. We 

give explicit formulae for the cocyles and the integrals of motion. 

We then solve the same problem (less explicitly) for an other lattice version of 

sine-Gordon, which can be generalised only to s£n (whereas in our main approach 

the problem can be formulated for arbitrary affine Kac-Moody algebras). 

Coming back to the main setting, we show that the integrals of motion commute 

in Poisson sense. For this, we study their action on the variables on the whole line. 

To this end, we analyze first "screened" variables on the line (that is, the module 

generated by the screening action on the lattice variables); they are endowed with 

an action of the whole algebra SÎ2 (at level zero). We are then able to show that 

the Hamiltonian vector fields generated by the integrals of motion correspond to the 

action of a commutative Lie algebra on a homogeneous space of SÎ2. 

We then study "screened semilocal quantities", containing in addition to the 

variables above "half integrals of motion" (that is, integrals on the half line of densities 

of integrals of motion). We still obtain a homogeneous space of 5^2, equal (up to 

completion) to 5 I / 2 ( C ( ( A - 1 )))/H (where H is the Cartan subgroup). We study the 

Poisson structure of this space; it is connected to the trigonometric r-matrix. This 

study enables us to precise the result on the Hamiltonian vector fields generated by 

the integrals of motion. 

We hope that this group theoretic interpretation will be useful for constructing 

solitonic solutions of this system. 

B.E. : Centre de Mathématiques - URA 169 du CNRS, Ecole Polytechnique 91128 Palaiseau 
B.F. : Landau Inst, for Theor. Physics Kosygina 2, GSP - 1 117940 Moscow V - 334 (Russia) 
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Let us note finally that related lattice approaches to the sine-Gordon systems 
were developed by Izergin and Korepin ([IK1], [IK2]). 

1. Formulation of the problem of integrals of motion. 

Consider a system of variables Xi,yi,i G Ζ , with relations xtXj = qxjXi^yiyj — 

qyjViiXiVj = q~~lyjXi,yiXj = q"lXjy% for ι < j , and x l y l = q^yiXi (we can consider 
this system as obtained from Z{Zj — qzjZi,i < j by posing Xi = z^i^yi = z2i+i)- The 
operators Σ + = Σί£ΖΧί ^η<^ ^~ ~ Y^iezV1 a r e lattice analogues of the screening 
charges of the SÎ2 Toda system. Lattice analogues of local conservation laws are 
quantities ΣίβΖ ' ' ' ·> xi+d), commuting with Σ + and Σ - . We are going to 
determine the classical limits of these conservation laws. 

2 . Cohomological interpretation and classical limit. 

Let us give variables χι and yi the degrees +1 and —1 and. pose [a,6] g = 
ab — qdegade%bba. Then there is an action of the negative part Uqb- of UqsÎ2 on 

C [ s i , y i , Ë + , Ë - ] by Q±(x) = [ E ^ s ] g , £ ( s ) = qde**x (here Σ + = and 

Σ - = j/ i) . The polynomial Ρ will be a density for a conservation law if there 

exist polynomials φ^ such that Q±P = (T — l ) ^ (T is the shift operator). Then 
φ ± will be a 1-cocycle for the action of Uqb- in C[xi, j / j , Σ ^ ] . So the problem of 
quantum conservation laws is equivalent to the computation of cohomology classes 
φ G £ f 1 ( i 7 g 6 + , C [ X J , yj, Σ ^ ] ) , such that φ((^^) are independent of Σ ^ , and of the 
map Τ — 1 in cohomology. 

We will be interested in the classical version of this problem. The classical limits 
of operators Q±/K form an action of 6_ by vector fields 

= Σ«™ (! £+Σ £-Σ = Σ«" (s £)· 
i€Z j>i 3 j>i J iÇZ j>i J j>i 1 

128 

(*) H = 2 

where #j = eTi and y; = e a i . 
Let us suppose that φ^ depend on variables #o, yo, * * * ? xk-> yk ; we can write 

the operators Q± on C[x0, · · ·, y*] ® C[S±, { Σ + , Σ _ } ' , · · ·] as Q± = Q± ® 1 ± \H ® 
m ( ^ ± ) + 1 ® { Σ ± , · } ' , where ra(E-t) is the operator of multiplication by Σ ± , and 
{a , 6} ' = {a , 6} — (dega)(deg 6)a6. Here Q±,H are vector fields on C[xo, * * * > 
given by formulae (*) with summation over i = 0, · · ·, k ; they still form an action of 
6_. 

Lemma.— The polynomials φ± form a cocycle (resp. coboundary) for the action 
of n_ by operators Q± O B C [ X O , , , , Î Vk] ® C [ S ± 7 · · ·], if an only if they form a cocycle 
(resp. coboundary) for the action of n_ by Q± on C[XQ, · · ·, yk]-

Σ 
iez 

d d * 



Proof. The coboundary statements are obvious. For the cocycle statements, the 
first implies the second by consideration of terms of type χ ® 1 in the identities. 
That the second statement implies the first is the result of a long but straightforward 
computation. 

• 

Note that the condition that degφ+ = — d e g ^ - = 1 is equivalent to the con­
dition that the cocycle φ± can be prolongated to a cocycle of with φ(Η) = a 
constant. 

3. Homogeneous spaces under 6_ 

Recall that the representation of Uqn- in g-commuting variables comes from 

the sequence of morphisms Uqn- (Uqn„.)®2k —>> C[#j , j/i]i=i,...,2A;j where the last 

map is the alternating product of morphisms Uqri- —> C[xi],Q+ f—> Xi,Q- h-> 

1, and Uqri- —> C[yl),Q+ ·—> J/t- Recalling the Hopf algebra isomor­

phism Ï7grc_ ~ C[Ar-|_]g, we see that the map Uqn- —» C [ x 2 , y z ] has for classi­

cal limit the embedding of C 2 in iV+, (xi,yi) ι-» 1^ ^ 0 ^ ) * ^ccord-

ingly, the classical limit of C[N+]q ~ Uqn- —> C [ X J , j/i]i=i,...,A; is dual to the map 

C 2 A ; —> Λ 7+, (x^yi) h-> Π 1^ ^ 0 M ° r e generally, we have also al­

gebra morphisms C[AR4_]G —» C[x\, yi · · · , #JV? J/JV, £;ν+ι] whose classical limit are 

dual to (x1, yi • • • XN+i ) ^ ^ ̂  j ) ( j ΐ ) - ( λ ^ + 1 J ) , etc. These maps 

C —» Λ Γ

+ are Poisson morphisms, in fact the image of (C*)N is dense in a symplec-
tic leaf of N+. Indeed, images of have dimension iV, and images of iV-uples have 
the respective forms 

- for ( x u y i - - - x k , y k ) , y * \ k _) *'λ* + ··· J 

f , , / . λ * + ··· *λ*-ι + . . . \ 

- for ( X l , y u - - - y k ^ x k + 1 ) , + . . . + λ * + . . . J 

- for ( î , i , X 2 , " - y * , s * + i ) , ( ^ λ * + . . . +Afc-i + ...J 

for (yi,X2,--- ,xk,yk), ( * A f c - i + . . . Η / 

(the *' are not zero if the a:j,yj are not zero), whereas the symplectic leaves of N+ 
are the preimages of the f?_-orbits on G/B- by the injection N+ —*• G/B- [here 
G = S ^ C f t A " 1 ) ) ) and iL = π " " 1 ^ ) , where π : ^ ( C p " 1 ] ] ) SL2(C) is 

defined by λ - 1 i-> 0 and £? = | ^ ^ ^ j C SL2(C)], according to Semenov-

Tian-Shansky [STS]. The ^ - -doub le cosets in G are the double classes of affine 
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Weyl group elements, so that the images of ( C * ) ^ by these morphisms are dense in 
B-wB- J w respectively equal to 

( \ ~ k 0 \ / 0 - λ - * - 1 λ (Xk 0 \ / 0 - \ k - l \ 

V ο xk)\xk+l o )'\o \ - k ) \ \ - k + 1 ο )• 
For each of these spaces, the vector fields Q± get identified with the natural transla­
tion action of 6_ on B-wB-jB-. 

We further identify B-wB-/B- with Β-/Β-ΠΒ™, where B™ = wB^w'1 ; #_Π 

Β™ are respectively the groups of matrices of the form 

(a \ - 2 k ~ l c \ fa \ - 2 k ~ 2 c \ ( a X~xc\ ( a A ^ c A . . ^ Γ Γ Χ _ 1 1 Ί 

\b d ) \ b d ) \ x ~ 2 k b d )\χ-**+Η d J . « . W e C [ [ A ] ] . 

Finally, B-/B- Π Β™ can be identified with the varieties A ^ C ^ A - 1 ] ] ^ - 2 * - 1  

C [ [ λ " 1 ] ] , \-'C[[X-')}/X-2k-2C[[X~%C[[X^)}/X-2k C[[X-% C [ [ A - ] ] / A - 2 ^ 
C [[A 1 ] ] , by associating to ρ,ρ',σ,σ' in these vector spaces the right cosets of 

( θ ΐ ) ' ( θ θ r e s p e c t i v e l y ^ is a section of A e C [ [ A - 1 ] ] - » 

λ ε Ο [ [ Α - 1 ] ] / λ - η Ο [ [ λ - 1 ] ] , ε = 0 or 1). The action of g = ^ λ ^ € S - on these 

affine varieties is then given by the homographie transformations 

ap + c/X , ap' + c/X b + da , b + da' 
bp + d bp'+ d a + ca/X a + ca'/X 

We can make more explicit the maps from (C*)N to XeC [[X]]/XN+eC [[A]] : 

CK 

(xi,yi, - · · ,xk,yk) *-> Ρ = TT- mod λ - 2 * - 1 , where 

/ 1 0 \ / l y i \ / 1 0 \ / l y f c \ / A f c C K \ 
\\xx l ) \ 0 l J " ' \ X x k l ) \ 0 l ) \ B k DkJ' 

(xi,m,- • • Xk+i) "-»• p' = 4 f mod A _ 2 f c _ 2 , where 

M o\ / 1 0 \ (A'K C'K\ 

\XXl l ) ' " \ X x i + 1 l) \B'k D'J • 

(yi,X2,--- ,Xk+i) ^ σ = ^r m o d ^ _ 2 f c

? where 
Ak 

\0 1 V A x f c + 1 i ; \ B k DkJ-
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(νι,Χ2,··' ,Xk,yk) σ' = S f mod λ 2 f c + 1 , where 

νο ι; Λο i;~Ui- DJ-
This defines &_-module injections C[ai] = C[B-/B- Π Β™} °—> C[a?i,j/i] in the 

two first cases, and C[/>;] = C[B-/B- Π 2?™] ^ C ^ " 1 , ? / " 1 ] in the two last (pi — 

Σ^>lP^X~^σ^ = Σζ>0 

4. Computation of cohomologies. 

Let us consider a point &_(£?_ n ß ! ) where the mapping B-/B-DB™ -> ( C * ) N 

is regular and the local ring at this point : it is isomorphic to the coinduced module 

Ub- n-£ty) C. We then have the sequence of maps 

r i L . C f B . / l n f l ! ] ) - tf^C^yf1]) - H\b^(Ub- C)*) 

The last space is isomorphic to Hl(b- Π 6™), by Shapiro's lemma. If we find rep­

resentatives for classes in this space by functions in C[B-/B- (Ί B™\ their images 

in H^b-.Clxf^yf1}) will not vanish. Pose sw = 6_/L Π δ ! . Then i f 1 ^ ) = 
/ χ-i q \ 

( θ ^ ' / ^ , θ ^ ; ] ) * . Then /[θ w , 5«, ] is spanned by the classes of the ί J ,0 < 

i < 2k, 2k + l,2fc, 2& — 1 in the four cases we considered, and H1(sw) is spanned by 

the forms ψ{ : #(λ) h-> | r e S o o ^ t r ί ^ j ζ(λ). 

Let us show now how an element of H1(sw) can give a cohomology class in 
Hl(b-, Fnn(B-/Sw)). Let us choose a section σ of the projection B- —* B-/Sw. For 
X e b- and χ G B-/Sw we write (1+ε-Χ")σ(ζ) = σ ( χ ε ) ( 1 + ε θ ( Χ , x)+o(e)), with 5 lin­
ear in X with values in sw. Then for c/p G ( s « , / ^ « , , sw])* we pose / χ ( χ ) = ((p,s(X,x)) ; 
it is a 1-cocycle of b- in F\m(B-/Sw). Let us choose for σ the maps / ) , / / i-> 

( 0 1 ) ' ( 0 1 ) a n < ^ σ ' σ ' H~> ^ 5" 1 ) ' ( 1 ) " ^ i e n c o c y c ^ e s correspond­

ing to <pi are the maps px(p) = ^ r e s ^ ^ t r ^ J ^ X ^ J (Q, same 

f o r m u l a f o r p ^ / 3 , ( σ ) ^ i r e s o o f t r ( ^ λ

0

^ _ ° ν ) ( - σ l ) ^ ( ^ 0 " 

More explicitly, we have the cocycles fx of 6_ in C\p\ ·,··•, pn], such that PhX-i --

1 , ffX-j = -pi-j ,ftx-k = fix.„> = 0 if k φ i , fc' > 1, and the cocycles gl

x of 

6_ in Ο[σ 0,···,<7 η], such that λ̂_,· = 1 ,g\x-j = σ,_7· ,g%

hX-h = ϋ)χ-»> = 0 if 

fc φ i , k' > 0. 
Remark. The action of fe_ and the cocycles can be expressed as follows, on the 
manifold B-wB- Π iV+ : the action of X € 6_ at the point g G B-wB- Π JV+ is 
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Cxg = g (g lXg)+ ; to express the cocycle corresponding to Xlh(i > 0) we use the 
embedding 1 % G/Β- ; the formula is then fx(g) = r e s ^ t r ^ hg^Xg),X G 
6_. This gives formulas for the cocycles in terms of xl and yl (and not their inverses). 

5. Computation of Τ and I in cohomologies. 

Let φ^(χι, yi, · · ·, Xki Vk) belong to Z 1 (fe_, C[x\, · · · , y&]) ; then we have cocycles 
Τφ and in Zl(b_, C [ z i , · · · ,y*+i]) , defined by ( J ^ / O ^ i r • · ,2/fc+i) = Φ\χ\,' ' ' 

and (Τφ)^(χι, · · ·, j / f c + i ) = φ^(χ2, · · · , y / c+ι ) · is the image of t/> by the 6_-module 
map I : C[x1, · · ·, y*] —• C [#i, · · ·, y n - i ] , ^ ^nî/i- Recall now the maps 

C [ / 9 i , - - - , / 9 2 f e ] C[a;i,---,yfc], C [ / 9 i , · · ·, ^ + 2 ] - » C[z i , · · ·, yk+i}- Then I corre­
sponds to the map C[^ i , · · · , /92fc] —• · · · , /02fc+2]> Pi ^ P?:- Indeed, recalling the 
notations of section 3, we have 

Ck Ck+i _ C* yfc+iAifc + (1 + Xk+iyk+i)C1k = 

Dk Dk+1 Dk yk+1Bk + (1 + Xk+m+i)Dk " y A : + 1 ' 

Then g - - g ^ - = p ' p ^ € A - ^ ^ C p " 1 ] ] , since D f e and have respective 

degrees in A7 k and A; + 1. It means that the classes in A _ 1 C [ [ A _ 1 ] ] / A ~ 2 / , : " 1 C [ [ A " 1 ] ] 
of pk and pk+i are the same. We deduce from this that the map I corresponds to 

the map C[B-/B Π BWk] -> C[B-/B Π BWk+1}, wk = J ^ t ^ induced by 

the natural projection, and that it induces in cohomology the map I : H1(sWk) —•> 
- f f 1 ( ^ i t ' f c + i ) coming from the injection θ ^ + χ —> θ ^ . In particular it maps the class of 
p G Z\b-, C[pu · - · , ρ*]) to the class of G Z 1 ^ - , C [ ^ , · - , 

Let us now compute Γ in cohomology. Let us consider the map Τ : C[x\, · · ·, yk] —» 
C[x i , · · · ,yfc+i], £ z , y ; h-> y;+i. It is the composition of the maps Γι : C[xu · · · , yk] -> 
C [ y i , ^ 2 , - " 7 î / A : H - i ] , ^ n ^ ^ a : i + i ,y t - + i , and T 2 : C[yi , z 2 , · · · y*+i] C [ z i , · · ·, y*+i], 

y i χ ι ^ ί · 

Let us define algebra isomorphisms from Ο[σο, · · ·, σ2&] to C[/?i, · · ·, p2k] ® 
C f y r 1 ] by σ = * 0 σ ,λ"* = where ρ = PlX~\ and from 
c b i r ' - t o C k o , - " , ^ 2 f e ] ® C ^ f 1 ] by = ^ - ^ , where p' = ΣΪΓ p\X~l· 
The inverses of these correspond to T\ and T 2 . 

Τ\' and Tf

2 are n_-module morphisms if on C[/?i, · · ·, / 92A; ]®C[y ]

- 1 ] , e A _ n _ 1 , h\~n, 
f\~n act respectively as the vector fields 

^ ,2yi ^— + 2 > , - > ( > PiPk-iH 

(in the last expression we set po — y i ) , and on C[ao, · · · , (J2fc] ® Cfx^" 1 ] , by 

Σ ν—ν d _ d d 

k>-2 ^ 1 9σ*+"+ι kf^i d a ^ k d a « 
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if k1 φ i , k" > i + 1 , km > 0. 
Let us compute the classes of T[~x(fl) and T^""1 (</*). The mapping /Z" 1(6_,Fun 

(B-/Sw)) J ï 1 ^ " ' ) is defined as follows ([G]) : to the cocycle ( X ^ < ^ x ) G 

Z1(b-,F\in(B-/Sw)), we associate the form X G θ™ H-> <px(e5 w ) . This operation is 
impossible here because e £ u ' corresponds to σο = · · · = 02k — 0 in the first case, and 
p[ = · · · = = 0 in the second, where the function y\ = σ^"1 (resp. = p{~1) 

is not defined. So we will use evaluation at another point of B-/Sw. Let b- G Β- ; 
the stabilizer of b-Sw is δ _ 5 η ΐ \ and the natural map Hx(b-,FvLn(B-/Sw)) -> 
H^b-S1^!1) is ( X ^ ψχ) ·-> € δ - ^ δ ΐ 1 H-> <px(bSw)) ; finally we have the 
natural map 

ff1(6_,Fun(É_/Sw)) - # V M * ~ y>x) - (X V ? 6 _ X 6 - 1 ( 6 _ 5 U ' ) ) . 

For T i - 1 ( / f ) , we choose J J , α ^ 0. Then 

1 3 3 

(Jh\~i — 1 ->9e\-i - ^ - J ' f f e A - ' ' - 1 — X l i9h\-k' —9P\-k" ~ 9 f\-k>" — 0 

where in the two first expressions we set σ_ι = χχ. 
Then we have maps of cohomologies fZ" 1(6_,C [pi, · · ·, P2k]) H1 (&_, C 

[pu---,P2k}GC [y-1]) ^ Hl(b-,C [ σ 0 , · · · , < 7 2 * ] ) and C [ σ 0 , · · ·, a2k}) -> 

ί Γ : ι ( δ - Χ [ σ 0 , · · · , σ 2 λ . ] ® C[x^]) -?-> ^ ( δ - , Ο ^ Ί , · · · , ^ ^ ] ) , where the two first 

maps associate to the cocycle φ in Hom(6_, C[pi, • • ·, /92λ-]) or Hom(6_, Ο(σο , · · · , <τ"2fc])» 
the cocycle ψ defined by >ri > \ ~ l ) = ^ ( e A - 1 ) <g) 1,<^(/) = <£>(/) ® 1· 

The image by ~ o f f* G Z x ( & _ , C[pi , · · • , P2fc]) is the cocycle such that f%

hX-i — 

1 , f}x-3 = -Pi-j , / } λ - = - ' ί / ι , / ; λ - , » = /L-*'» = ί ' λ - . ' = 0 if V φ ι , k' > 

0 , k" > i ; the image by ~ of g1 G Z 1 ( 6 _ , Ο[σο, · - ·, 02fc]) is the cocycle y 2 , such that 

= δ n i - 2βσΐ-η, <Ph_(\-ne\b-i
 =

 σ ^ ~ η > (λ~" f)b~1 ~ ~ Ρ °i-n> 

So T 2 maps the class of g2 to the class of — f \ 
In conclusion we see that in cohomology, Τ — I is equal to zero. It means 

that for each k, we have k integrals of motion corresponding to polynomials in 

= —o^n-fi — a2pi-η-ι (posing again po — y1 = σλ ) . We are only interested in 
(pb (\-nh}b-i(b-Sw) and it is —<52n. So T\ maps the class of fl to the class of — g\ 

For T'2-\g% we choose 6_ = (\ β),βφΟ. Then ¥ > M V - „ Ä ) b - i = 



We can repeat the reasoning for the other algebras C[y1

 1 , · · · , yk etc., and 
obtain for cohomologies of the diagram of algebras 

cbr1] -7 - · · · e t a " 1 , q y - 1 , - - - , ^ ] —, 
the diagram 

2k 2k+l 

ch - l * . . . 0 c A 2 7 i 0 c n 
i = 0 ?—0 

2k 2 fc+l 

C/i —* ··· 0 m —•> 0 CAVi 

i=0 z-0 Let us denote the space of integrals of motion in x1

 1 , · · ·, yk

 1 by IM(x^ 1 , · · · , yk

 1 ) : 
it is the subspace of C f z ^ 1 , · · · ,y^" 1 ]/Im(T — 1) of classes of polynomials Ρ whose 

Poisson brackets with Σ)*=1 ẑ?X)t=i Ï/* a r e
 'm I m ( ^ "~ 1)· Let us remark also that 

the part Ch of the cohomology corresponds to a trivial cocycle φ^ = 0, φ° = 1. We 
summarize our results : 

Proposition.— The spaces IM (a?^ 1, ·· · , y ^ ) , IM (x^1, · · ·, £Jj~£2)> IMÇy^1, 
• · ·, ) , IM{y^1, · · ·, ) a r e graded linear spaces of respective dimensions 2{k — 

1), 2fc - 1,2(fc - 1), 2k - 1. Setting IM{x~l, · · ·, y " 1 ) - 2 φ 2 C J ^ " 1 , · · ·, y " 1 ) , etc., 

the identity and the translation induce maps between the spaces IM(x~[l, · · ·, yk

l)7 

IM{x^1, · · · ,χ^+ι)) e^ c-> analogous to (**). 
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6. Expression of the integrals of motion. 

Let us consider the cocycle X2k+1h G ΐΓ 1 (δ_ , C f x ^ 1 , · · · , x ^ J ) . By the map 

C [ # f · · · iX^lil — C[p[, · · · ,P2A?+i] ( s e c t - 3), Λ 2 ^ 4 " 1 ^ is identified with the class of 

/ 2 A ; + 1 . Consider now the map Ti : C[x^· · ·,x^i] ~* C f y ^ 1 , · · · , # ^ _ J ; 9 ] , y i ^ 
rcj-j-i, yi-f-i. The class of the cocycle Tif2k+1 G Ζ 1 ( δ - , Cfyj" 1 , · · · , #£+ 2 ] ) ' defined by 

( T i / 2 f c + 1 ) ( Q ± ) = T i ( / 2 * + 1 ( Q ± ) ) coincides with the class of -g2k+\ ~ 
Let us write Tif2k+1 + </2*+1 - dtp. By the identification of C [ y ~ \ · · · , : c " | 2 ] 

with C[<7q, · · ·, tf^fc+iL w e s e e w e should have Ch\~^ — ^êj^k+i-, £e\-
i(P — 

<Τ2ΐζ+ι-%ι£/\-*φ — — ( ~ ) 2 A : + i - i - The third equality gives us equations satisfied by 

φ ( ^ σ 0 + σ 1 λ " 1 ·.. l)j = ^ σ ° ' σ ΐ ΐ , , , ) : Ä = - ( J W i - i - Write now σ 0 + 

σ ι λ - ι + . . . = exp (1ησ0 + Σι>ι We have Σα>ο f ^ f f e = ^ ( w i t h & = 

1ησ 0 ) , so Σα>ο σ ΐ -«Ι^" = and | ^ = ( J ) « - * . We thus obtain = - f 2 * + i and 
check that the two first equations on φ are satisfied. 

Consider now the map T2 : C fy f 1 , · · · , x^^l ^ [ x f 1 , · · · , £ ^ + 2 ] , # t , y ï i - » 

Xi,yi. The class of the cocycle T 2 # 2 A : + 1 G Ζ 1 ( δ - , C f x ^ 1 , · · · , £&+ 2]) defined 
by ( T 2 £ 2 * + 1 ) ( Q ± ) = T2(g2k+1(Q±)) coincides with the class of _ / 2 * + i . Let us 
write T2g2k+1 + f2k+1 = άφ. After the identification of C[x~l, · · ·, x~_J2] with 
C[/>i, · · · , / 0 2 * + 3 ] , we obtain the conditions on φ, C h X - j φ = 2Sji2h+i,£e\-^ = ( ^ ) 2 f c + i -

£/\-*Φ = ~/>2fc+i-». Posing φ(ρι,ρ2,-') = ^ 1 + t h e s e c o n d 

condition is translated into ^ — (^)2k+i-%-

Let us write ριΧ~λ + ρ2λ~2 + · · · = exp ( Ι η λ - 1 + lnpi + Σα>ι Va^~a)^ then 

Σ . > ο £ g f = > 770 = l n P l ) , so Ea>oPi-°j£ =
 and"Sl = ( ί ) « - * · 

We thus obtain ?/> = 772fc+i, a n d check that the other conditions on φ are satisfied. 
We have finally T2T1f2k+1 + T2g2k+1 = d ( - T 2 6 * + i ) , and T 2 f l f 2 * + 1 + / 2 * + 1 = 

d(*/2*+i), so that T / 2 * + 1 - / 2 f c + 1 = d ( - T 2 6 * + i - *72*+ι). Ή & Η - ι + 7 ? 2 * + 1 is the 
conserved density corresponding to cocycle X2kJrlh, it is expressed in terms of X{ and 

yi as the coefficient of λ - 2 * - 1 in the expansion o f l n ^ . Similarly, we can show 

that the conserved densities representing the class hX2kJrl are proportional to 

r e s ^ ^ λ 2 ^ 1 η | ± ί - , or r e s A = 0 o ^ λ 2 * + Η η ^ , 

and the conserved densities representing the class /j.A2A; are proportional to 

r e s A = o o — λ - Μ η τ - ^ - , or r e s A = 0 o — A 2 / C l n - ^ , 

in the notations of sect. 3. 
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Theorem.— The conserved density of classical lattice sine-Gordon representing 
the class of hXk is proportional to the coefficient of X"k in the expansion of 

ln(Xx1/Xx1 + 1/yi + • · · + 1/XXN) + ln(î/i/yi + l / ^ : 2 4 f I/Î/ΛΓ) 

with Ν > 2(n + 1) (we use notations of continued fractions); this coefficient becomes 
independent of Ν in this region. 

So these classes can also be represented increasing the indices of · · ·, e.g. 

h \ 2 k + 1 is also represented by r e S o o ^ λ 2 * + 1 1 η | ^ , fc' > fc, etc. The first inte­

grals of motion are Σ ^ ^ ) - 1
 + ( y ^ + i ) " 1 and E ^ y ^ n - i ) ~ 3 + i^hi)'1 + 

E i C y ^ f + i î / i + i ) " 1 + K ^ i + i ) " " 1 -

Remark. Assume that these integrals of motions (here denoted by 1^) admit quan­

tizations Ik- Consider the case where q is as primitive n-th root qo of 1, q£ — 1. 

Then it is natural (assuming commutativity of Jfc's) to compute tr (Π&>ο ^k*) ! ^ e 

trace is taken in the module C[xllyi]/(xf = Xi,yf = YJ). This trace is a function of 
X j , Yt, and (recalling the Poisson structure of the center of an algebra depending on 
a parameter) we will have, 

= lim - J — tr[(J2 xi)1 + ( ? - * > ) • rest, Π C l = °î 

the second equality relies on Y^Xi = (]C#i)n
 ^ o r ? = and the third is because 

the trace of a commutator vanishes. The same reasoning can be applied to show that 

{J2 Yi, MllfcX) ^kk} a ^ s o v a n i s h e s . Note that t r ( f ] A : > 0 l£k
 ) has the form ΣΙ=ι Σ«=ι 

Σΰ<·.·<ζ m ? , s ( z i ) ' * ' m<s,s(is), the mfk being polynomials in Y2 and P(z) denot­
ing the polynomial P , translated by z, with the tensors X ) * e

= 1 · - ® r a ^ s totally 
symmetric. The commutation of t r ( J ] f c > 0 with ]T\ X z and ^ z Y{ imposes that 
the mfs are densities of the classical integrals of motion Ir

k{Xll Y"2-); substracting then 
to t r ( f j f c > 0 Ifrk) an appropriate polynomial in Ik

£(X{, Y 2 ) , we obtain an expression of 

the form ΣίΖι Σ«=ι Σΐ1<·..<ΐί ™?,e(ji) "/ · Ό**)> commuting to ^ X , and ^ 8 Yl. 
By induction we see that t r ( f j f c > 0 I%k) is a polynomial in the classical integrals of 
motion i f (Xi,Yi). 
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7. A n other lattice version of the sine-Gordon sys t em. 

An other way to discretise the sine-Gordon system is the following : we consider 
a system of variables xfX(i G Ζ ) on the line, with xtXj — qxjXl,i < j , and define the 
screening actions to be Q± = xf1, - } q . 

Classical limit of these operators are the vector fields Q±(l) — i ^ e ± ^ ( ^ + 
2 Σ , > , of") ( w p o s e = c i < ) - P o s e H ( Q ! = 2 Σ 4> and [Q+(2i + l ) , Q _ ( l ) j = 
i7(2z + 2), [Ui-2iKQ±i I >; = ± 2 Q ± ( 2 i + l ) . This is an action of 6_ on C [ a ^ \ · · ·, x*1}. 

Denote still by Q±(2i+1), H(2i) the action of the above operators on C[x^, · · ·, xf1] 
and by Q± (2i + 1), H{2i) their action on C[x^, · · ·, xf1}. Then we have the formu­
las : 

Q+(2n + 1) = eT° — + eTo(H(0) + ••• + H{2n)) + ( Q + ( l ) + · · · + Q+(2n + 1)) 
UTQ 

- e

2 - ° ( Q _ ( l ) + . . . + Q _ ( 2 n - l ) ) , 

g_(2n + 1) = - e " T ° — - e - r o ( # ( 0 ) + · · · + # ( 2 n ) ) 
C t o 

- e - 2 r o ( Q + ( l ) + · · · + Q+(2n - 1)) + ( Q _ ( l ) + · · · + Q_(2n + 1)) 

ff (2n) - 2 — + (2i?(0) + · · - + 2 # ( 2 n - 2) + H(2n)) , 
aro 

- 2 e r ° ( Q _ ( l ) + - · · + Q_(2n - 1)) + 2 e " r o ( Q + ( l ) + • · · + Q+(2n + 1)) . 

This allows to showT that the values at the point xj = · • = χ at = 1 of these vector 
fields are given by 

2=0 k=i v } K 

<rw = | > ( 2 ! + ι ) „ 1 = 1 λ 2 · + ' = Σ ( 1 + Λ)2ί

(;'_"Λ

(

2

1

)ΓΛ)""' t t · 

oo 

Q - ( A ) = £ Q-(2i + l ) l x i = i \ 2 t + 1 = -Q+(X) • 

These vector fields span the tangent space a t a ? i = - - - = xjv = l ; the stabilizer of 
their action is the subalgebra of 6+ 

aN = a + (l-\)Nb++s , 

where a — φ C/V(e + Xf) is the principal commutative subalgebra, and 
i>0 

3 = Θ C[t'(l + t)N(ft + h-^) + - t)N(-ft + h+e-)} (here t2 = λ) . 
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We have [α, s] e_ 5 , [s, θ] C (1 — λ)Νη+Πα, and we can see that ajv/[ajv, <XJV] is spanned 
by the classes of A*(e + λ / ) , i = 0, · · ·, Ν - 1. 

We have a map J3"1(&+, C f x ^ 1 , · · · , a;^ 1]) —> H1(a^^ since by Shapiro's lemma, 
we have an isomorphism H1(b+,C[[xi — 1 , - - - , £ J V — 1]]) 2 ^ Η1 (aw). The injection 
C f x ^ 1 , · · · , x^1) Cf^^ 1 , · · ·, ^ ^ j ] , x% is a morphism of fe+-modules and 
induces the natural map i ï 1 ( a i v ) —> üT^ajv+i) in cohomology. 

Let us now compute the injection Γ : 0[χ^χ, · · · , z ^ 1 ] —» C f x ^ 1 , · · · , χ ^ ] , χ τ  

Xi in cohomology. The image of the cocycle φ will be defined by (Τφ)((^±) = 
T($(Q±)). By the above formulas for Q±, H, we then have 

( I Y ) ( Q + ( 2 n + 1)) = χ0[φ(Η(0)) + •••+ ψ(Η(2η))] + [V>(Q+(1)) + · · · 

+ i)(Q+(2n + 1)] - [4iQ-(l)) + ••• + tl>(Q-{2n - 1))] 

(2ψ)(<?-(2η + 1)) = -xa1 [Φ(Β(0)) + ••• + ψ(Η(2η))} + [ ^ ( Q _ ( l ) ) + · · · 

+ tf>(Q_(2n + 1))] - MQ+(l)) + ••• + φ(<2+{2η - 1))] 

(Τφ)(Η(2η)) = [2^(iJ(0)) + · · · + 2V>(#(2n - 1)) + ψ{Η(2η))] - ty(Q-(l)) + ' · · 

+ V(Q-(2n - 1))] + 2[V>(<2+(1) + · · · + V>(Q+(2n + 1))] . 

We then compute 

(7ty)(Q+(2n + i) + Q-(2n + 1)) = ^ ( Q + ( 2 n + 1)) + φ(<3-(2η - 1)) . 

It means that Τ and I are equal in cohomology. So we will have, denoting by 
IM{x\, · · ·, XN) the integrals of motion which can be expressed as P(xi+i, · · *, Χ{+Ν) 
[Ρ is a formal series in x\ — 1, · · ·, χ Ν — 1] -

Proposition.— 
N-l 

1) IM(x\, · · ·, XN) is a graded linear space, isomorphic to Η (αΝ ) = Θ CXl(e + 
2 = 0 

2) The natural map IM(x\, · · · , XN) IM(x\, · · · , Z J V + I ) commutes with the nat­
ura] injection of the corresponding graded spaces. 

In other words, we have a "new" integral of motion for each N. 
Note that by inductive limit the space of all polynomials in x\: · · · , X J V , · · · gets 

identified with Fun (JV+/A) and we can hope to describe the action of the integrals of 
motion on this space in a way analogous to [FF]. We can also hope that the elements 
of I M ( x \ a r e equivalent to the Faddeev - Volkov integrals of motion ([FV]). 
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8. A geometric interpretation of the screened local quantities. 

Let us denote by Σ+ and Σ ~ the quantities Σί>ο xi-> Σ ί>ο Vi ! the action of n_ 
on the Poisson algebra generated by them, CfS"1", Σ ~ , · · ·] can be naturally prolonged 
to an action of s£2((X))^ on the following way : as n_-module, C [ S + , Σ ~ , · · ·] can be 
identified with C[iV+], endowed with the dressing action ; this action is compatible 
with the left action of n_, by the mapping iV + —> G/B- ; since this mapping is a 
dense embedding, the left action of # = si<i((A)) defines an action of g on JV+. Let 
<9+,cL be the operators on C [ S + , Σ - , · · ·], corresponding to the generators of n + . 
Then 9+ and oL are derivations, and we have for example δε(Σε ) = δ£ε>, ε ,ε ' = + 
or —. 

We can now define the action of g on C[x{J j / j , Σ + , Σ~~, · · -]d<i<o = C[%iiyi]d<i<o® 
0 [ Σ + , Σ ~ , · · ·] by { E ^ , - } ' for the η-part, and 1 0 d± the ra+-part. Recalling that 
{ Σ ± , · } ' is expressed as Q± 0 1 ± \H 0 ra(£±) + 1 0 { Σ ± , · } ' [sect. 2], we see that 
these formulae indeed define an action of £ on Ο ^ , ΐ , , - , Σ + , Σ " 

Let us interpret this algebra as a function algebra on a homogeneous space of 
g. We have C[xi,yt]d<i<o 0 0 [ Σ + , Σ ~ , · · · ] ~ C [ £ _ / i ? _ Γ) Β™ χ JV+], for a certain 
Weyl group element w ; on B-/B- Π i ? ^ x iV+, the action of n+ is given by the 
product (0, right translation), and the action of 6_ is given by the vector fields 
Q± 0 1 ± \H 0 m ( Ë ± ) + 1 0 { Σ ± , · } ' . Consider the mapping B-/B- Γ) Β™ χ ΛΓ+ —* 
G/ lL Π 2?™, Π JB™),ra+) ^ n+6_(iL Π B™\ and let us show that it is 

^-equivariant. For the part it is clear. The action of Q± G b- on the right is 
n+(n+1 Q±n+)+b- + n+(n+1Q±n+)ob- + n+(n+1 Q±n+)-b- where indices + , 0, and 
— are the projections on the components of g = n+ + C/i + n_. But, (n+1Q±n+)- = 
Q±, and ( n + 1 Q + n + ) 0 = &of, ( n ^ 1 Q - n _ ) 0 = c i | , with n+ = exp(6 0 e(0) + c i / ( l ) + 
+ · · ·) , and 6o and ci are respectively identified with Σ+ and Σ _ by C[E+, Σ _ , · · ·] ~ 
C[iV_j_] ; this proves the claimed equivariance. 

Let us concentrate now on the identification of these spaces as Poisson manifolds. 
The identification C [ Ë + , Σ~~, · · ·] ~ C[iV+] is also an isomorphism of Poisson algebras. 
Let us identify now the Poisson structure on B-jΒ-ΠΒ™, given by C[B-/B-C\BW] — 
C[xi, yi]-d<i<o- Recall that the map C[iV+] —> C[x{,yi] is a Poisson map, and so 
the map from ( C * ) 2 r f to iV_|_ Π (B-wB-) [symplectic leaf of iV+] is Poisson. Let us 
consider now the map JV+ Π (B-wB-) —» B-/B- Π Β™. The group B- acts in a 
Lie-Poisson way on both sides ; it means that on the right side the Poisson structure 
is the structure such that the projection B- —» B-/B- Π Β™ is Poisson [such a 
structure exists since if sw = L Π δϋ, 6(sw) C sw Π plus some left-invariant 
bivector. To compute this bivector, we remark that the two maps 

η (B-wB-) -> B-wB- -> iL/iL η Β™ 

should also be Poisson, where on the two first spaces the Poisson structures are given 
by the embeddings in JV+ and G respectively. So it is enough to compare the Poisson 
structures at w in the second space, and at e(B- Π Β™) in the third one. Denoting 
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by r the element of A2g representing the trigonometric r-matrix, we find that second 
bivector is r — wrw~1. It means that the Poisson structure on B-/B- Π B'f is such 
that its embedding in G/B- Π Β™, with structure rL — (luriv"1 ) R [exponents L and 
R mean left and right action of A 2 y ] , is Poisson. 

Finally, note that the Poisson structure on B-/B- Π Β™ χ iV+ corresponding 
to that on C[x-Z, y;, Σ + , · · ·] is such that the projections on each factor are Poisson, 
and { / , g} = (cleg / ) (deg y ) / y , if / and g come respectively from the first and second 
factor. On the other hand, the map Β- χ λτ+ —> G , ι—• η+δ_, is Poisson, if 
G has the Poisson structure rL — ( u ; r i o _ 1 ) ß , and Β- χ iV+ has the Poisson structure 
such that first projection on composed with embedding in G, with Poisson 
structure rL — (wrw-1 ) β , is Poisson, as wTell as the second projection on N+ with 
usual Poisson structure, and functions coming from different factors have the same 
brackets as previously. (G is here the product N+ x the factors of this product 
being completed in the topologies of C[[A]], resp. C [ [ A - 1 ] ] ; it is not a group but has 
actions of y by left and right translations.) 

To summarize, we have : 

Proposition.— The morphisms of Poisson algebras C[Ë±, · · ·] C[x z , yz-, Σ ^ , ···]—> 
C[xt,yi]7 (the latter mapping is obtained by factorizing the Poisson ideal generated 
by Σ + and Σ~~) are respectively y- and rî--equivariant and are dual to the map­
pings of Poisson manifolds B-/B- Π Β™ ^ G/B- Π B™ -> G/B-, where the second 
manifold has Poisson structure rL — (wrw~1)R and the third has Poisson structure 
rL (where r G A 2 y is the trigonometric r-matrix). The morphism of Poisson alge­
bras C[xi, yi] —> C[xi, j/i, Σ ^ , · · ·], defined by Xi,yi Xi,yi, is dual to the projection 
G/B- η Β™ -> N+\G/B- η Β™ ^ Β-/Β- Π Β™. 

Let us now determine to which operations of homogeneous spaces correspond the 
natural embeddings of algebras of screened local quantities. Let α < β < j be three 
points or the line ; then the embedding C[x%, y%, Σ ± , · · -]β<ί<Ί C[xi,yi, Σ ± , · · ·}α<ί<Ί  

corresponds to the natural projection G/B- Π Β™ —> G/B- Π Β™ (here Σ + = 

Σ ι > Ί χ ί , ς _ = Σί>Ίνί)- L e t u s p ° s e n o w ^ + = Σί>βχί> Σ - = Σΐ>βνΐ> a n d 

let us consider the embedding C[xi, yi, Σ ± , · · -]a<i<ß —> C[;r z, y 2 , Σ ± , · · · ] α < ; < 7 . It 
corresponds to the mapping JV+ χ C 2 ^ 7 ~ a _ f l ) —• iV + χ C 2 ^ ~ a + 1 ) , (ζ*, y;, rc+) *-> 

( ^ , y i , n + n K (J ?ί ) ( λ*. ι))· The identifications of C 2 ^ ~ * + 1 ) a n d C 2 ^ — + ] 

with B-/B- Π 5 ϋ 7 _ α and iL / iL Π ΒΖβ~α are ( ^ , y 2 ) ^ class of 6_, such that 

^i^j ^ b-w1-ßB- [resp. same formula writh β replaced by 

a] , so the mapping iV_+_ χ C 2 ^ ~ a + 1 ) -> G/B- Π i L 7 - " is ( n + , £ 7 ; , y / ) H+ class of 

n+ ΠΓ=Ύ 1^ ^ 0 Τ ) ^ 7 - α · This proves that the initial embedding corre­

sponds to the mapping G/B- Π iL 7"* -> G/B- Π Β™β'α, class of y ^ class of 

gwß-1. 
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The algebra C[^vy 2 - , Σ > 0 , ' • ·]*<ο is the union of algebras C[xl,yl, Σ > 0 , · · • ] _ A r < i < 0 , 
which is the function algebra on the projective limit of · · · —> G/B- Π B™N —» · · · —» 
G/B-. This projective limit is G / f S 1 -> 2?)_ [where (S1 —> £?)_ is the group corre­
sponding to the Lie algebra (S1 -> δ)_ = C [ [ A - 1 ] ] ® 6]. The Poisson structure on this 
space is then rL — ( ir^rw^} ) / l > . where w^riu^- is the r-matrix corresponding to the 
Manin triple ( £ , ( S l η) Θ (S1 -> C ^ + ^ S 1 -> n_) Θ ( S 1 -> C/z)_) in notations 
generalizing the previous one. 

Then the embedding C[xl,yî, Σ > 0 , · · -]i<0 ^ C[;r?;, y;, Σ > Ν , · - · ] 2 < λ γ corresponds 
to the projection G/(S1 !?)_ —> G/(S1 —> class (y) H-> class (givx). This pro­
jection can be viewed as the composition G / ( S 1 —> J5)_ — G / w ^ ^ S 1 —* B)-WN —> 
G/(S1 —> J B ) - , where the first map is class(y) i—> class^ww) and the second is the 
natural projection. Note that the Poisson structure on the second space, induced by 
the first map, is rL — (w^j1(w<x>rw^)w]sf)R = rL — (w^rw^ ) R . 

We obtain : 

Proposition.— The inductive limit of algebras C [ Z J , y2-, Σ > ^ , · · -]i<jv? 1 S identified 
with functions on G/iS1 —> with Poisson structure rL — (iVc^rw^)11, and 

action of screening operators given by left translations by &+. The inductive limit 
of algebras C[xl, yi]i<N Is identified with functions on B-/ÎS1 —> H)- ; Poisson 
structure and injection of this algebra in the latter are given by 

G/{Sl -> H)- -> NAG/iS1 -> ^ / ( S 1 -> . 

This is because (S1 —•> = Π]γ( ιο^ 1 (5 1 —> B)-.WN) [here i f is the Cartan 
subgroup of B). 

9. Commutativity and geometric interpretation of the integrals of motion. 

We are now able to give a geometrical description of the Hamiltonian vector 
fields generated by the integrals found in 6. The action of these vector fields on 
l imC[ ; r n yl, S > i Y , · · -\I<N corresponds to vector fields on G/(SL —> commut­

ing with the left action of 6+. Let us show that the vector field generated by 
integral Ik (let us denote it Vik) also commutes with the left action of 6_. In­
deed, [ν^,όλι-] should commute with { Σ ± , · } ' . Pose X^ — \Vik,d±\. We compute 
Xjjr.(polynomials in Xi^yi) — 0. We deduce that X^ vanishes on the smallest subal-
gebra of lim C[x 2 , y^, Σ^^γ, · · - ] i < j v containing the polynomials in Xi,y%, and which is 
{ Σ ± , · } ' stable ; this algebra is the full algebra, and X^ = 0. So, vector fields Vik 

can only be given by right translations by elements of (S1 —> C / i ) + [Ch = Lie(if)] . 
In particular, we see that these vector fields commute, and so the integrals of section 
6 are in involution. 

Remark also that the integral of motion corresponding to h\n (n > 0) involves η 
dots on the line and so should map Fun (G/w'^1(S1 —> B)-WN) to Fun (G/{w^Wn)'1  

( S 1 —> B)-WNWU), it means that it corresponds to the right action of a linear 
combination of elements h\k, 1 < k < n. 

We conclude : 
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Proposition.— By the identifications of last proposition, the Hamiltonian vector 
held corresponding to the integral I(hXn) found in 6, acts on lim C[xt, yz, Σ > Λ Γ , · · -]i<N 

and on C[xi,yi]i£z a s the right action of a linear combination of elements hXk, 1 < 
k < n, on G/i^S1 —> H)- and on N^.\G/(S1 --» H)-, respectively. In particular, 
these integrals are in involution. 

Let us give an explicit form for these vector fields. The identification of C [ x z , y;] 2>i 
with C [ 5 _ / ( S ' 1 —* B)-] associates to the point (xi^yi) the class of the matrix 

^ 0 l ) ' w ^ ^ ~ V ^ ^ i + l /y i + l / ^ x 2 + · · ·. Let us describe now the maps 

B-l(Sl -> B) B-/w~l{Sl -> -> -* B) whose composition is 

dual to the embedding C[yo, j/i]i>i ^ C[x ; , y;];>i. The second map is the nat­

ural projection, and the first is constructed as follows : to the class of ^ J ^ ^ we 

associate the double class of such that ^J ^ wi G JV+fe-u^^S 1 —» B)-Wi* 

w i t h u , 1 = ( ° - λ

ο

α ) . We have ^ ( I ï ) ( ( l } < 0 Î ) -

J5)_. At the next step, we multiply by wo = ( ^ 0 ^ ) ' ^ * n c e ( ^ i ) w ° ^ 

(o ï) (o ^ j < 0 ) ( 5 l ^ w e o b t a i n 
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1 Ρ 
0 1 

1 0 N 

^ 1 
Pi y 

1 -i-
0 1 

1 (i)<o 
,° 1 

where ρ = p±\ 1 + · · ·, σ = σο + σι λ 1 · · · = (^ )<ο , and indexes < 0 or < 0 mean to 
take only < 0 (resp. < 0) powers of A. 

Iterating this procedure we obtain for variables (a;_^v,y_jv, · · •) the equality 

fl l / \ x - N + l/y-N---\ f \ ~ N 0 \ _ / 1 0 \ f l y - N \ fl y 0 \ 
\o ι ) \ o xN)-\xx.N I ; V ° 1 7 " V ° i ; 

^ 1 l/λχ! + l/yi + · · - ̂  d e m e n t o f ( 5 l _̂  ßW0)_ 
Writing the element of (S1 —> Bw°)- on the right side ^ 1 )̂ (^0 a" 1 ^ ' W 6 ^ n < ^ 

that the first columns of this matrix and of X~N ^ J l/Xxi + l /y i ^ ^ 1 yo ^ 

I I ? I " · ί i Μ χ 1 ? I coincide. We deduce that 

6 - - [ (yo + l/Xxo + l /y i + · · · + 1/XX-N) + (1/λ*ι + l/yi + · · - ) ] " 1 · 

In conclusion, we have : 


