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Integrals of motion of classical lattice sine-Gordon system 

B. Enriquez and B.L. Feigin 

Abstract. We compute the local integrals of motions of the classical limit of 

the lattice sine-Gordon system, using a geometrical interpretation of the local sine-

Gordon variables. Using an analogous description of the screened local variables, we 

show that these integrals are in involution. We present some remarks on relations 

with the situation at roots of 1 and results on another latticisation (linked to the 

principal subalgebra of SÎ2 rather than the homogeneous one). Finally, we analyze a 

module of "screened semilocal variables77, on which the whole sl-2 acts. 

Introduction. 

In this paper, we analyze the classical limit of a lattice version of the sine-Gordon 

system. It consists of ^-commuting variables set on a line lattice, representing as usual 

densities for the screening charges. 

We first determine expressions for the local integrals of motions of this system. 

For this, we formulate this problem in terms of the cohomology of the action of the 

screening operators on the module generated by a finite number of lattice variables. 

It has been known for some time ([F]) that this is an action of the nilpotent part 

of SÎ2 ; here we interpret the space of lattice variables as an homogeneous space for 

this action. We find that lattice variables are coordinates on the Schubert cells of 

5 X 2 ( C ( ( A - 1 ) ) ) , which are an affine version of the Demazure desingularisation. We 

give explicit formulae for the cocyles and the integrals of motion. 

We then solve the same problem (less explicitly) for an other lattice version of 

sine-Gordon, which can be generalised only to s£n (whereas in our main approach 

the problem can be formulated for arbitrary affine Kac-Moody algebras). 

Coming back to the main setting, we show that the integrals of motion commute 

in Poisson sense. For this, we study their action on the variables on the whole line. 

To this end, we analyze first "screened" variables on the line (that is, the module 

generated by the screening action on the lattice variables); they are endowed with 

an action of the whole algebra SÎ2 (at level zero). We are then able to show that 

the Hamiltonian vector fields generated by the integrals of motion correspond to the 

action of a commutative Lie algebra on a homogeneous space of SÎ2. 

We then study "screened semilocal quantities", containing in addition to the 

variables above "half integrals of motion" (that is, integrals on the half line of densities 

of integrals of motion). We still obtain a homogeneous space of 5^2, equal (up to 

completion) to 5 I / 2 ( C ( ( A - 1 )))/H (where H is the Cartan subgroup). We study the 

Poisson structure of this space; it is connected to the trigonometric r-matrix. This 

study enables us to precise the result on the Hamiltonian vector fields generated by 

the integrals of motion. 

We hope that this group theoretic interpretation will be useful for constructing 

solitonic solutions of this system. 

B.E. : Centre de Mathématiques - URA 169 du CNRS, Ecole Polytechnique 91128 Palaiseau 
B.F. : Landau Inst, for Theor. Physics Kosygina 2, GSP - 1 117940 Moscow V - 334 (Russia) 
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Let us note finally that related lattice approaches to the sine-Gordon systems 
were developed by Izergin and Korepin ([IK1], [IK2]). 

1. Formulation of the problem of integrals of motion. 

Consider a system of variables Xi,yi,i G Ζ , with relations xtXj = qxjXi^yiyj — 

qyjViiXiVj = q~~lyjXi,yiXj = q"lXjy% for ι < j , and x l y l = q^yiXi (we can consider 
this system as obtained from Z{Zj — qzjZi,i < j by posing Xi = z^i^yi = z2i+i)- The 
operators Σ + = Σί£ΖΧί ^η<^ ^~ ~ Y^iezV1 a r e lattice analogues of the screening 
charges of the SÎ2 Toda system. Lattice analogues of local conservation laws are 
quantities ΣίβΖ ' ' ' ·> xi+d), commuting with Σ + and Σ - . We are going to 
determine the classical limits of these conservation laws. 

2 . Cohomological interpretation and classical limit. 

Let us give variables χι and yi the degrees +1 and —1 and. pose [a,6] g = 
ab — qdegade%bba. Then there is an action of the negative part Uqb- of UqsÎ2 on 

C [ s i , y i , Ë + , Ë - ] by Q±(x) = [ E ^ s ] g , £ ( s ) = qde**x (here Σ + = and 

Σ - = j/ i) . The polynomial Ρ will be a density for a conservation law if there 

exist polynomials φ^ such that Q±P = (T — l ) ^ (T is the shift operator). Then 
φ ± will be a 1-cocycle for the action of Uqb- in C[xi, j / j , Σ ^ ] . So the problem of 
quantum conservation laws is equivalent to the computation of cohomology classes 
φ G £ f 1 ( i 7 g 6 + , C [ X J , yj, Σ ^ ] ) , such that φ((^^) are independent of Σ ^ , and of the 
map Τ — 1 in cohomology. 

We will be interested in the classical version of this problem. The classical limits 
of operators Q±/K form an action of 6_ by vector fields 

= Σ«™ (! £+Σ £-Σ = Σ«" (s £)· 
i€Z j>i 3 j>i J iÇZ j>i J j>i 1 

128 

(*) H = 2 

where #j = eTi and y; = e a i . 
Let us suppose that φ^ depend on variables #o, yo, * * * ? xk-> yk ; we can write 

the operators Q± on C[x0, · · ·, y*] ® C[S±, { Σ + , Σ _ } ' , · · ·] as Q± = Q± ® 1 ± \H ® 
m ( ^ ± ) + 1 ® { Σ ± , · } ' , where ra(E-t) is the operator of multiplication by Σ ± , and 
{a , 6} ' = {a , 6} — (dega)(deg 6)a6. Here Q±,H are vector fields on C[xo, * * * > 
given by formulae (*) with summation over i = 0, · · ·, k ; they still form an action of 
6_. 

Lemma.— The polynomials φ± form a cocycle (resp. coboundary) for the action 
of n_ by operators Q± O B C [ X O , , , , Î Vk] ® C [ S ± 7 · · ·], if an only if they form a cocycle 
(resp. coboundary) for the action of n_ by Q± on C[XQ, · · ·, yk]-

Σ 
iez 
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Proof. The coboundary statements are obvious. For the cocycle statements, the 
first implies the second by consideration of terms of type χ ® 1 in the identities. 
That the second statement implies the first is the result of a long but straightforward 
computation. 

• 

Note that the condition that degφ+ = — d e g ^ - = 1 is equivalent to the con
dition that the cocycle φ± can be prolongated to a cocycle of with φ(Η) = a 
constant. 

3. Homogeneous spaces under 6_ 

Recall that the representation of Uqn- in g-commuting variables comes from 

the sequence of morphisms Uqn- (Uqn„.)®2k —>> C[#j , j/i]i=i,...,2A;j where the last 

map is the alternating product of morphisms Uqri- —> C[xi],Q+ f—> Xi,Q- h-> 

1, and Uqri- —> C[yl),Q+ ·—> J/t- Recalling the Hopf algebra isomor

phism Ï7grc_ ~ C[Ar-|_]g, we see that the map Uqn- —» C [ x 2 , y z ] has for classi

cal limit the embedding of C 2 in iV+, (xi,yi) ι-» 1^ ^ 0 ^ ) * ^ccord-

ingly, the classical limit of C[N+]q ~ Uqn- —> C [ X J , j/i]i=i,...,A; is dual to the map 

C 2 A ; —> Λ 7+, (x^yi) h-> Π 1^ ^ 0 M ° r e generally, we have also al

gebra morphisms C[AR4_]G —» C[x\, yi · · · , #JV? J/JV, £;ν+ι] whose classical limit are 

dual to (x1, yi • • • XN+i ) ^ ^ ̂  j ) ( j ΐ ) - ( λ ^ + 1 J ) , etc. These maps 

C —» Λ Γ

+ are Poisson morphisms, in fact the image of (C*)N is dense in a symplec-
tic leaf of N+. Indeed, images of have dimension iV, and images of iV-uples have 
the respective forms 

- for ( x u y i - - - x k , y k ) , y * \ k _) *'λ* + ··· J 

f , , / . λ * + ··· *λ*-ι + . . . \ 

- for ( X l , y u - - - y k ^ x k + 1 ) , + . . . + λ * + . . . J 

- for ( î , i , X 2 , " - y * , s * + i ) , ( ^ λ * + . . . +Afc-i + ...J 

for (yi,X2,--- ,xk,yk), ( * A f c - i + . . . Η / 

(the *' are not zero if the a:j,yj are not zero), whereas the symplectic leaves of N+ 
are the preimages of the f?_-orbits on G/B- by the injection N+ —*• G/B- [here 
G = S ^ C f t A " 1 ) ) ) and iL = π " " 1 ^ ) , where π : ^ ( C p " 1 ] ] ) SL2(C) is 

defined by λ - 1 i-> 0 and £? = | ^ ^ ^ j C SL2(C)], according to Semenov-

Tian-Shansky [STS]. The ^ - -doub le cosets in G are the double classes of affine 
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Weyl group elements, so that the images of ( C * ) ^ by these morphisms are dense in 
B-wB- J w respectively equal to 

( \ ~ k 0 \ / 0 - λ - * - 1 λ (Xk 0 \ / 0 - \ k - l \ 

V ο xk)\xk+l o )'\o \ - k ) \ \ - k + 1 ο )• 
For each of these spaces, the vector fields Q± get identified with the natural transla
tion action of 6_ on B-wB-jB-. 

We further identify B-wB-/B- with Β-/Β-ΠΒ™, where B™ = wB^w'1 ; #_Π 

Β™ are respectively the groups of matrices of the form 

(a \ - 2 k ~ l c \ fa \ - 2 k ~ 2 c \ ( a X~xc\ ( a A ^ c A . . ^ Γ Γ Χ _ 1 1 Ί 

\b d ) \ b d ) \ x ~ 2 k b d )\χ-**+Η d J . « . W e C [ [ A ] ] . 

Finally, B-/B- Π Β™ can be identified with the varieties A ^ C ^ A - 1 ] ] ^ - 2 * - 1  

C [ [ λ " 1 ] ] , \-'C[[X-')}/X-2k-2C[[X~%C[[X^)}/X-2k C[[X-% C [ [ A - ] ] / A - 2 ^ 
C [[A 1 ] ] , by associating to ρ,ρ',σ,σ' in these vector spaces the right cosets of 

( θ ΐ ) ' ( θ θ r e s p e c t i v e l y ^ is a section of A e C [ [ A - 1 ] ] - » 

λ ε Ο [ [ Α - 1 ] ] / λ - η Ο [ [ λ - 1 ] ] , ε = 0 or 1). The action of g = ^ λ ^ € S - on these 

affine varieties is then given by the homographie transformations 

ap + c/X , ap' + c/X b + da , b + da' 
bp + d bp'+ d a + ca/X a + ca'/X 

We can make more explicit the maps from (C*)N to XeC [[X]]/XN+eC [[A]] : 

CK 

(xi,yi, - · · ,xk,yk) *-> Ρ = TT- mod λ - 2 * - 1 , where 

/ 1 0 \ / l y i \ / 1 0 \ / l y f c \ / A f c C K \ 
\\xx l ) \ 0 l J " ' \ X x k l ) \ 0 l ) \ B k DkJ' 

(xi,m,- • • Xk+i) "-»• p' = 4 f mod A _ 2 f c _ 2 , where 

M o\ / 1 0 \ (A'K C'K\ 

\XXl l ) ' " \ X x i + 1 l) \B'k D'J • 

(yi,X2,--- ,Xk+i) ^ σ = ^r m o d ^ _ 2 f c

? where 
Ak 

\0 1 V A x f c + 1 i ; \ B k DkJ-
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(νι,Χ2,··' ,Xk,yk) σ' = S f mod λ 2 f c + 1 , where 

νο ι; Λο i;~Ui- DJ-
This defines &_-module injections C[ai] = C[B-/B- Π Β™} °—> C[a?i,j/i] in the 

two first cases, and C[/>;] = C[B-/B- Π 2?™] ^ C ^ " 1 , ? / " 1 ] in the two last (pi — 

Σ^>lP^X~^σ^ = Σζ>0 

4. Computation of cohomologies. 

Let us consider a point &_(£?_ n ß ! ) where the mapping B-/B-DB™ -> ( C * ) N 

is regular and the local ring at this point : it is isomorphic to the coinduced module 

Ub- n-£ty) C. We then have the sequence of maps 

r i L . C f B . / l n f l ! ] ) - tf^C^yf1]) - H\b^(Ub- C)*) 

The last space is isomorphic to Hl(b- Π 6™), by Shapiro's lemma. If we find rep

resentatives for classes in this space by functions in C[B-/B- (Ί B™\ their images 

in H^b-.Clxf^yf1}) will not vanish. Pose sw = 6_/L Π δ ! . Then i f 1 ^ ) = 
/ χ-i q \ 

( θ ^ ' / ^ , θ ^ ; ] ) * . Then /[θ w , 5«, ] is spanned by the classes of the ί J ,0 < 

i < 2k, 2k + l,2fc, 2& — 1 in the four cases we considered, and H1(sw) is spanned by 

the forms ψ{ : #(λ) h-> | r e S o o ^ t r ί ^ j ζ(λ). 

Let us show now how an element of H1(sw) can give a cohomology class in 
Hl(b-, Fnn(B-/Sw)). Let us choose a section σ of the projection B- —* B-/Sw. For 
X e b- and χ G B-/Sw we write (1+ε-Χ")σ(ζ) = σ ( χ ε ) ( 1 + ε θ ( Χ , x)+o(e)), with 5 lin
ear in X with values in sw. Then for c/p G ( s « , / ^ « , , sw])* we pose / χ ( χ ) = ((p,s(X,x)) ; 
it is a 1-cocycle of b- in F\m(B-/Sw). Let us choose for σ the maps / ) , / / i-> 

( 0 1 ) ' ( 0 1 ) a n < ^ σ ' σ ' H~> ^ 5" 1 ) ' ( 1 ) " ^ i e n c o c y c ^ e s correspond

ing to <pi are the maps px(p) = ^ r e s ^ ^ t r ^ J ^ X ^ J (Q, same 

f o r m u l a f o r p ^ / 3 , ( σ ) ^ i r e s o o f t r ( ^ λ

0

^ _ ° ν ) ( - σ l ) ^ ( ^ 0 " 

More explicitly, we have the cocycles fx of 6_ in C\p\ ·,··•, pn], such that PhX-i --

1 , ffX-j = -pi-j ,ftx-k = fix.„> = 0 if k φ i , fc' > 1, and the cocycles gl

x of 

6_ in Ο[σ 0,···,<7 η], such that λ̂_,· = 1 ,g\x-j = σ,_7· ,g%

hX-h = ϋ)χ-»> = 0 if 

fc φ i , k' > 0. 
Remark. The action of fe_ and the cocycles can be expressed as follows, on the 
manifold B-wB- Π iV+ : the action of X € 6_ at the point g G B-wB- Π JV+ is 
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Cxg = g (g lXg)+ ; to express the cocycle corresponding to Xlh(i > 0) we use the 
embedding 1 % G/Β- ; the formula is then fx(g) = r e s ^ t r ^ hg^Xg),X G 
6_. This gives formulas for the cocycles in terms of xl and yl (and not their inverses). 

5. Computation of Τ and I in cohomologies. 

Let φ^(χι, yi, · · ·, Xki Vk) belong to Z 1 (fe_, C[x\, · · · , y&]) ; then we have cocycles 
Τφ and in Zl(b_, C [ z i , · · · ,y*+i]) , defined by ( J ^ / O ^ i r • · ,2/fc+i) = Φ\χ\,' ' ' 

and (Τφ)^(χι, · · ·, j / f c + i ) = φ^(χ2, · · · , y / c+ι ) · is the image of t/> by the 6_-module 
map I : C[x1, · · ·, y*] —• C [#i, · · ·, y n - i ] , ^ ^nî/i- Recall now the maps 

C [ / 9 i , - - - , / 9 2 f e ] C[a;i,---,yfc], C [ / 9 i , · · ·, ^ + 2 ] - » C[z i , · · ·, yk+i}- Then I corre
sponds to the map C[^ i , · · · , /92fc] —• · · · , /02fc+2]> Pi ^ P?:- Indeed, recalling the 
notations of section 3, we have 

Ck Ck+i _ C* yfc+iAifc + (1 + Xk+iyk+i)C1k = 

Dk Dk+1 Dk yk+1Bk + (1 + Xk+m+i)Dk " y A : + 1 ' 

Then g - - g ^ - = p ' p ^ € A - ^ ^ C p " 1 ] ] , since D f e and have respective 

degrees in A7 k and A; + 1. It means that the classes in A _ 1 C [ [ A _ 1 ] ] / A ~ 2 / , : " 1 C [ [ A " 1 ] ] 
of pk and pk+i are the same. We deduce from this that the map I corresponds to 

the map C[B-/B Π BWk] -> C[B-/B Π BWk+1}, wk = J ^ t ^ induced by 

the natural projection, and that it induces in cohomology the map I : H1(sWk) —•> 
- f f 1 ( ^ i t ' f c + i ) coming from the injection θ ^ + χ —> θ ^ . In particular it maps the class of 
p G Z\b-, C[pu · - · , ρ*]) to the class of G Z 1 ^ - , C [ ^ , · - , 

Let us now compute Γ in cohomology. Let us consider the map Τ : C[x\, · · ·, yk] —» 
C[x i , · · · ,yfc+i], £ z , y ; h-> y;+i. It is the composition of the maps Γι : C[xu · · · , yk] -> 
C [ y i , ^ 2 , - " 7 î / A : H - i ] , ^ n ^ ^ a : i + i ,y t - + i , and T 2 : C[yi , z 2 , · · · y*+i] C [ z i , · · ·, y*+i], 

y i χ ι ^ ί · 

Let us define algebra isomorphisms from Ο[σο, · · ·, σ2&] to C[/?i, · · ·, p2k] ® 
C f y r 1 ] by σ = * 0 σ ,λ"* = where ρ = PlX~\ and from 
c b i r ' - t o C k o , - " , ^ 2 f e ] ® C ^ f 1 ] by = ^ - ^ , where p' = ΣΪΓ p\X~l· 
The inverses of these correspond to T\ and T 2 . 

Τ\' and Tf

2 are n_-module morphisms if on C[/?i, · · ·, / 92A; ]®C[y ]

- 1 ] , e A _ n _ 1 , h\~n, 
f\~n act respectively as the vector fields 

^ ,2yi ^— + 2 > , - > ( > PiPk-iH 

(in the last expression we set po — y i ) , and on C[ao, · · · , (J2fc] ® Cfx^" 1 ] , by 

Σ ν—ν d _ d d 

k>-2 ^ 1 9σ*+"+ι kf^i d a ^ k d a « 
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if k1 φ i , k" > i + 1 , km > 0. 
Let us compute the classes of T[~x(fl) and T^""1 (</*). The mapping /Z" 1(6_,Fun 

(B-/Sw)) J ï 1 ^ " ' ) is defined as follows ([G]) : to the cocycle ( X ^ < ^ x ) G 

Z1(b-,F\in(B-/Sw)), we associate the form X G θ™ H-> <px(e5 w ) . This operation is 
impossible here because e £ u ' corresponds to σο = · · · = 02k — 0 in the first case, and 
p[ = · · · = = 0 in the second, where the function y\ = σ^"1 (resp. = p{~1) 

is not defined. So we will use evaluation at another point of B-/Sw. Let b- G Β- ; 
the stabilizer of b-Sw is δ _ 5 η ΐ \ and the natural map Hx(b-,FvLn(B-/Sw)) -> 
H^b-S1^!1) is ( X ^ ψχ) ·-> € δ - ^ δ ΐ 1 H-> <px(bSw)) ; finally we have the 
natural map 

ff1(6_,Fun(É_/Sw)) - # V M * ~ y>x) - (X V ? 6 _ X 6 - 1 ( 6 _ 5 U ' ) ) . 

For T i - 1 ( / f ) , we choose J J , α ^ 0. Then 

1 3 3 

(Jh\~i — 1 ->9e\-i - ^ - J ' f f e A - ' ' - 1 — X l i9h\-k' —9P\-k" ~ 9 f\-k>" — 0 

where in the two first expressions we set σ_ι = χχ. 
Then we have maps of cohomologies fZ" 1(6_,C [pi, · · ·, P2k]) H1 (&_, C 

[pu---,P2k}GC [y-1]) ^ Hl(b-,C [ σ 0 , · · · , < 7 2 * ] ) and C [ σ 0 , · · ·, a2k}) -> 

ί Γ : ι ( δ - Χ [ σ 0 , · · · , σ 2 λ . ] ® C[x^]) -?-> ^ ( δ - , Ο ^ Ί , · · · , ^ ^ ] ) , where the two first 

maps associate to the cocycle φ in Hom(6_, C[pi, • • ·, /92λ-]) or Hom(6_, Ο(σο , · · · , <τ"2fc])» 
the cocycle ψ defined by >ri > \ ~ l ) = ^ ( e A - 1 ) <g) 1,<^(/) = <£>(/) ® 1· 

The image by ~ o f f* G Z x ( & _ , C[pi , · · • , P2fc]) is the cocycle such that f%

hX-i — 

1 , f}x-3 = -Pi-j , / } λ - = - ' ί / ι , / ; λ - , » = /L-*'» = ί ' λ - . ' = 0 if V φ ι , k' > 

0 , k" > i ; the image by ~ of g1 G Z 1 ( 6 _ , Ο[σο, · - ·, 02fc]) is the cocycle y 2 , such that 

= δ n i - 2βσΐ-η, <Ph_(\-ne\b-i
 =

 σ ^ ~ η > (λ~" f)b~1 ~ ~ Ρ °i-n> 

So T 2 maps the class of g2 to the class of — f \ 
In conclusion we see that in cohomology, Τ — I is equal to zero. It means 

that for each k, we have k integrals of motion corresponding to polynomials in 

= —o^n-fi — a2pi-η-ι (posing again po — y1 = σλ ) . We are only interested in 
(pb (\-nh}b-i(b-Sw) and it is —<52n. So T\ maps the class of fl to the class of — g\ 

For T'2-\g% we choose 6_ = (\ β),βφΟ. Then ¥ > M V - „ Ä ) b - i = 



We can repeat the reasoning for the other algebras C[y1

 1 , · · · , yk etc., and 
obtain for cohomologies of the diagram of algebras 

cbr1] -7 - · · · e t a " 1 , q y - 1 , - - - , ^ ] —, 
the diagram 

2k 2k+l 

ch - l * . . . 0 c A 2 7 i 0 c n 
i = 0 ?—0 

2k 2 fc+l 

C/i —* ··· 0 m —•> 0 CAVi 

i=0 z-0 Let us denote the space of integrals of motion in x1

 1 , · · ·, yk

 1 by IM(x^ 1 , · · · , yk

 1 ) : 
it is the subspace of C f z ^ 1 , · · · ,y^" 1 ]/Im(T — 1) of classes of polynomials Ρ whose 

Poisson brackets with Σ)*=1 ẑ?X)t=i Ï/* a r e
 'm I m ( ^ "~ 1)· Let us remark also that 

the part Ch of the cohomology corresponds to a trivial cocycle φ^ = 0, φ° = 1. We 
summarize our results : 

Proposition.— The spaces IM (a?^ 1, ·· · , y ^ ) , IM (x^1, · · ·, £Jj~£2)> IMÇy^1, 
• · ·, ) , IM{y^1, · · ·, ) a r e graded linear spaces of respective dimensions 2{k — 

1), 2fc - 1,2(fc - 1), 2k - 1. Setting IM{x~l, · · ·, y " 1 ) - 2 φ 2 C J ^ " 1 , · · ·, y " 1 ) , etc., 

the identity and the translation induce maps between the spaces IM(x~[l, · · ·, yk

l)7 

IM{x^1, · · · ,χ^+ι)) e^ c-> analogous to (**). 
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6. Expression of the integrals of motion. 

Let us consider the cocycle X2k+1h G ΐΓ 1 (δ_ , C f x ^ 1 , · · · , x ^ J ) . By the map 

C [ # f · · · iX^lil — C[p[, · · · ,P2A?+i] ( s e c t - 3), Λ 2 ^ 4 " 1 ^ is identified with the class of 

/ 2 A ; + 1 . Consider now the map Ti : C[x^· · ·,x^i] ~* C f y ^ 1 , · · · , # ^ _ J ; 9 ] , y i ^ 
rcj-j-i, yi-f-i. The class of the cocycle Tif2k+1 G Ζ 1 ( δ - , Cfyj" 1 , · · · , #£+ 2 ] ) ' defined by 

( T i / 2 f c + 1 ) ( Q ± ) = T i ( / 2 * + 1 ( Q ± ) ) coincides with the class of -g2k+\ ~ 
Let us write Tif2k+1 + </2*+1 - dtp. By the identification of C [ y ~ \ · · · , : c " | 2 ] 

with C[<7q, · · ·, tf^fc+iL w e s e e w e should have Ch\~^ — ^êj^k+i-, £e\-
i(P — 

<Τ2ΐζ+ι-%ι£/\-*φ — — ( ~ ) 2 A : + i - i - The third equality gives us equations satisfied by 

φ ( ^ σ 0 + σ 1 λ " 1 ·.. l)j = ^ σ ° ' σ ΐ ΐ , , , ) : Ä = - ( J W i - i - Write now σ 0 + 

σ ι λ - ι + . . . = exp (1ησ0 + Σι>ι We have Σα>ο f ^ f f e = ^ ( w i t h & = 

1ησ 0 ) , so Σα>ο σ ΐ -«Ι^" = and | ^ = ( J ) « - * . We thus obtain = - f 2 * + i and 
check that the two first equations on φ are satisfied. 

Consider now the map T2 : C fy f 1 , · · · , x^^l ^ [ x f 1 , · · · , £ ^ + 2 ] , # t , y ï i - » 

Xi,yi. The class of the cocycle T 2 # 2 A : + 1 G Ζ 1 ( δ - , C f x ^ 1 , · · · , £&+ 2]) defined 
by ( T 2 £ 2 * + 1 ) ( Q ± ) = T2(g2k+1(Q±)) coincides with the class of _ / 2 * + i . Let us 
write T2g2k+1 + f2k+1 = άφ. After the identification of C[x~l, · · ·, x~_J2] with 
C[/>i, · · · , / 0 2 * + 3 ] , we obtain the conditions on φ, C h X - j φ = 2Sji2h+i,£e\-^ = ( ^ ) 2 f c + i -

£/\-*Φ = ~/>2fc+i-». Posing φ(ρι,ρ2,-') = ^ 1 + t h e s e c o n d 

condition is translated into ^ — (^)2k+i-%-

Let us write ριΧ~λ + ρ2λ~2 + · · · = exp ( Ι η λ - 1 + lnpi + Σα>ι Va^~a)^ then 

Σ . > ο £ g f = > 770 = l n P l ) , so Ea>oPi-°j£ =
 and"Sl = ( ί ) « - * · 

We thus obtain ?/> = 772fc+i, a n d check that the other conditions on φ are satisfied. 
We have finally T2T1f2k+1 + T2g2k+1 = d ( - T 2 6 * + i ) , and T 2 f l f 2 * + 1 + / 2 * + 1 = 

d(*/2*+i), so that T / 2 * + 1 - / 2 f c + 1 = d ( - T 2 6 * + i - *72*+ι). Ή & Η - ι + 7 ? 2 * + 1 is the 
conserved density corresponding to cocycle X2kJrlh, it is expressed in terms of X{ and 

yi as the coefficient of λ - 2 * - 1 in the expansion o f l n ^ . Similarly, we can show 

that the conserved densities representing the class hX2kJrl are proportional to 

r e s ^ ^ λ 2 ^ 1 η | ± ί - , or r e s A = 0 o ^ λ 2 * + Η η ^ , 

and the conserved densities representing the class /j.A2A; are proportional to 

r e s A = o o — λ - Μ η τ - ^ - , or r e s A = 0 o — A 2 / C l n - ^ , 

in the notations of sect. 3. 
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Theorem.— The conserved density of classical lattice sine-Gordon representing 
the class of hXk is proportional to the coefficient of X"k in the expansion of 

ln(Xx1/Xx1 + 1/yi + • · · + 1/XXN) + ln(î/i/yi + l / ^ : 2 4 f I/Î/ΛΓ) 

with Ν > 2(n + 1) (we use notations of continued fractions); this coefficient becomes 
independent of Ν in this region. 

So these classes can also be represented increasing the indices of · · ·, e.g. 

h \ 2 k + 1 is also represented by r e S o o ^ λ 2 * + 1 1 η | ^ , fc' > fc, etc. The first inte

grals of motion are Σ ^ ^ ) - 1
 + ( y ^ + i ) " 1 and E ^ y ^ n - i ) ~ 3 + i^hi)'1 + 

E i C y ^ f + i î / i + i ) " 1 + K ^ i + i ) " " 1 -

Remark. Assume that these integrals of motions (here denoted by 1^) admit quan

tizations Ik- Consider the case where q is as primitive n-th root qo of 1, q£ — 1. 

Then it is natural (assuming commutativity of Jfc's) to compute tr (Π&>ο ^k*) ! ^ e 

trace is taken in the module C[xllyi]/(xf = Xi,yf = YJ). This trace is a function of 
X j , Yt, and (recalling the Poisson structure of the center of an algebra depending on 
a parameter) we will have, 

= lim - J — tr[(J2 xi)1 + ( ? - * > ) • rest, Π C l = °î 

the second equality relies on Y^Xi = (]C#i)n
 ^ o r ? = and the third is because 

the trace of a commutator vanishes. The same reasoning can be applied to show that 

{J2 Yi, MllfcX) ^kk} a ^ s o v a n i s h e s . Note that t r ( f ] A : > 0 l£k
 ) has the form ΣΙ=ι Σ«=ι 

Σΰ<·.·<ζ m ? , s ( z i ) ' * ' m<s,s(is), the mfk being polynomials in Y2 and P(z) denot
ing the polynomial P , translated by z, with the tensors X ) * e

= 1 · - ® r a ^ s totally 
symmetric. The commutation of t r ( J ] f c > 0 with ]T\ X z and ^ z Y{ imposes that 
the mfs are densities of the classical integrals of motion Ir

k{Xll Y"2-); substracting then 
to t r ( f j f c > 0 Ifrk) an appropriate polynomial in Ik

£(X{, Y 2 ) , we obtain an expression of 

the form ΣίΖι Σ«=ι Σΐ1<·..<ΐί ™?,e(ji) "/ · Ό**)> commuting to ^ X , and ^ 8 Yl. 
By induction we see that t r ( f j f c > 0 I%k) is a polynomial in the classical integrals of 
motion i f (Xi,Yi). 
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7. A n other lattice version of the sine-Gordon sys t em. 

An other way to discretise the sine-Gordon system is the following : we consider 
a system of variables xfX(i G Ζ ) on the line, with xtXj — qxjXl,i < j , and define the 
screening actions to be Q± = xf1, - } q . 

Classical limit of these operators are the vector fields Q±(l) — i ^ e ± ^ ( ^ + 
2 Σ , > , of") ( w p o s e = c i < ) - P o s e H ( Q ! = 2 Σ 4> and [Q+(2i + l ) , Q _ ( l ) j = 
i7(2z + 2), [Ui-2iKQ±i I >; = ± 2 Q ± ( 2 i + l ) . This is an action of 6_ on C [ a ^ \ · · ·, x*1}. 

Denote still by Q±(2i+1), H(2i) the action of the above operators on C[x^, · · ·, xf1] 
and by Q± (2i + 1), H{2i) their action on C[x^, · · ·, xf1}. Then we have the formu
las : 

Q+(2n + 1) = eT° — + eTo(H(0) + ••• + H{2n)) + ( Q + ( l ) + · · · + Q+(2n + 1)) 
UTQ 

- e

2 - ° ( Q _ ( l ) + . . . + Q _ ( 2 n - l ) ) , 

g_(2n + 1) = - e " T ° — - e - r o ( # ( 0 ) + · · · + # ( 2 n ) ) 
C t o 

- e - 2 r o ( Q + ( l ) + · · · + Q+(2n - 1)) + ( Q _ ( l ) + · · · + Q_(2n + 1)) 

ff (2n) - 2 — + (2i?(0) + · · - + 2 # ( 2 n - 2) + H(2n)) , 
aro 

- 2 e r ° ( Q _ ( l ) + - · · + Q_(2n - 1)) + 2 e " r o ( Q + ( l ) + • · · + Q+(2n + 1)) . 

This allows to showT that the values at the point xj = · • = χ at = 1 of these vector 
fields are given by 

2=0 k=i v } K 

<rw = | > ( 2 ! + ι ) „ 1 = 1 λ 2 · + ' = Σ ( 1 + Λ)2ί

(;'_"Λ

(

2

1

)ΓΛ)""' t t · 

oo 

Q - ( A ) = £ Q-(2i + l ) l x i = i \ 2 t + 1 = -Q+(X) • 

These vector fields span the tangent space a t a ? i = - - - = xjv = l ; the stabilizer of 
their action is the subalgebra of 6+ 

aN = a + (l-\)Nb++s , 

where a — φ C/V(e + Xf) is the principal commutative subalgebra, and 
i>0 

3 = Θ C[t'(l + t)N(ft + h-^) + - t)N(-ft + h+e-)} (here t2 = λ) . 
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We have [α, s] e_ 5 , [s, θ] C (1 — λ)Νη+Πα, and we can see that ajv/[ajv, <XJV] is spanned 
by the classes of A*(e + λ / ) , i = 0, · · ·, Ν - 1. 

We have a map J3"1(&+, C f x ^ 1 , · · · , a;^ 1]) —> H1(a^^ since by Shapiro's lemma, 
we have an isomorphism H1(b+,C[[xi — 1 , - - - , £ J V — 1]]) 2 ^ Η1 (aw). The injection 
C f x ^ 1 , · · · , x^1) Cf^^ 1 , · · ·, ^ ^ j ] , x% is a morphism of fe+-modules and 
induces the natural map i ï 1 ( a i v ) —> üT^ajv+i) in cohomology. 

Let us now compute the injection Γ : 0[χ^χ, · · · , z ^ 1 ] —» C f x ^ 1 , · · · , χ ^ ] , χ τ  

Xi in cohomology. The image of the cocycle φ will be defined by (Τφ)((^±) = 
T($(Q±)). By the above formulas for Q±, H, we then have 

( I Y ) ( Q + ( 2 n + 1)) = χ0[φ(Η(0)) + •••+ ψ(Η(2η))] + [V>(Q+(1)) + · · · 

+ i)(Q+(2n + 1)] - [4iQ-(l)) + ••• + tl>(Q-{2n - 1))] 

(2ψ)(<?-(2η + 1)) = -xa1 [Φ(Β(0)) + ••• + ψ(Η(2η))} + [ ^ ( Q _ ( l ) ) + · · · 

+ tf>(Q_(2n + 1))] - MQ+(l)) + ••• + φ(<2+{2η - 1))] 

(Τφ)(Η(2η)) = [2^(iJ(0)) + · · · + 2V>(#(2n - 1)) + ψ{Η(2η))] - ty(Q-(l)) + ' · · 

+ V(Q-(2n - 1))] + 2[V>(<2+(1) + · · · + V>(Q+(2n + 1))] . 

We then compute 

(7ty)(Q+(2n + i) + Q-(2n + 1)) = ^ ( Q + ( 2 n + 1)) + φ(<3-(2η - 1)) . 

It means that Τ and I are equal in cohomology. So we will have, denoting by 
IM{x\, · · ·, XN) the integrals of motion which can be expressed as P(xi+i, · · *, Χ{+Ν) 
[Ρ is a formal series in x\ — 1, · · ·, χ Ν — 1] -

Proposition.— 
N-l 

1) IM(x\, · · ·, XN) is a graded linear space, isomorphic to Η (αΝ ) = Θ CXl(e + 
2 = 0 

2) The natural map IM(x\, · · · , XN) IM(x\, · · · , Z J V + I ) commutes with the nat
ura] injection of the corresponding graded spaces. 

In other words, we have a "new" integral of motion for each N. 
Note that by inductive limit the space of all polynomials in x\: · · · , X J V , · · · gets 

identified with Fun (JV+/A) and we can hope to describe the action of the integrals of 
motion on this space in a way analogous to [FF]. We can also hope that the elements 
of I M ( x \ a r e equivalent to the Faddeev - Volkov integrals of motion ([FV]). 
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8. A geometric interpretation of the screened local quantities. 

Let us denote by Σ+ and Σ ~ the quantities Σί>ο xi-> Σ ί>ο Vi ! the action of n_ 
on the Poisson algebra generated by them, CfS"1", Σ ~ , · · ·] can be naturally prolonged 
to an action of s£2((X))^ on the following way : as n_-module, C [ S + , Σ ~ , · · ·] can be 
identified with C[iV+], endowed with the dressing action ; this action is compatible 
with the left action of n_, by the mapping iV + —> G/B- ; since this mapping is a 
dense embedding, the left action of # = si<i((A)) defines an action of g on JV+. Let 
<9+,cL be the operators on C [ S + , Σ - , · · ·], corresponding to the generators of n + . 
Then 9+ and oL are derivations, and we have for example δε(Σε ) = δ£ε>, ε ,ε ' = + 
or —. 

We can now define the action of g on C[x{J j / j , Σ + , Σ~~, · · -]d<i<o = C[%iiyi]d<i<o® 
0 [ Σ + , Σ ~ , · · ·] by { E ^ , - } ' for the η-part, and 1 0 d± the ra+-part. Recalling that 
{ Σ ± , · } ' is expressed as Q± 0 1 ± \H 0 ra(£±) + 1 0 { Σ ± , · } ' [sect. 2], we see that 
these formulae indeed define an action of £ on Ο ^ , ΐ , , - , Σ + , Σ " 

Let us interpret this algebra as a function algebra on a homogeneous space of 
g. We have C[xi,yt]d<i<o 0 0 [ Σ + , Σ ~ , · · · ] ~ C [ £ _ / i ? _ Γ) Β™ χ JV+], for a certain 
Weyl group element w ; on B-/B- Π i ? ^ x iV+, the action of n+ is given by the 
product (0, right translation), and the action of 6_ is given by the vector fields 
Q± 0 1 ± \H 0 m ( Ë ± ) + 1 0 { Σ ± , · } ' . Consider the mapping B-/B- Γ) Β™ χ ΛΓ+ —* 
G/ lL Π 2?™, Π JB™),ra+) ^ n+6_(iL Π B™\ and let us show that it is 

^-equivariant. For the part it is clear. The action of Q± G b- on the right is 
n+(n+1 Q±n+)+b- + n+(n+1Q±n+)ob- + n+(n+1 Q±n+)-b- where indices + , 0, and 
— are the projections on the components of g = n+ + C/i + n_. But, (n+1Q±n+)- = 
Q±, and ( n + 1 Q + n + ) 0 = &of, ( n ^ 1 Q - n _ ) 0 = c i | , with n+ = exp(6 0 e(0) + c i / ( l ) + 
+ · · ·) , and 6o and ci are respectively identified with Σ+ and Σ _ by C[E+, Σ _ , · · ·] ~ 
C[iV_j_] ; this proves the claimed equivariance. 

Let us concentrate now on the identification of these spaces as Poisson manifolds. 
The identification C [ Ë + , Σ~~, · · ·] ~ C[iV+] is also an isomorphism of Poisson algebras. 
Let us identify now the Poisson structure on B-jΒ-ΠΒ™, given by C[B-/B-C\BW] — 
C[xi, yi]-d<i<o- Recall that the map C[iV+] —> C[x{,yi] is a Poisson map, and so 
the map from ( C * ) 2 r f to iV_|_ Π (B-wB-) [symplectic leaf of iV+] is Poisson. Let us 
consider now the map JV+ Π (B-wB-) —» B-/B- Π Β™. The group B- acts in a 
Lie-Poisson way on both sides ; it means that on the right side the Poisson structure 
is the structure such that the projection B- —» B-/B- Π Β™ is Poisson [such a 
structure exists since if sw = L Π δϋ, 6(sw) C sw Π plus some left-invariant 
bivector. To compute this bivector, we remark that the two maps 

η (B-wB-) -> B-wB- -> iL/iL η Β™ 

should also be Poisson, where on the two first spaces the Poisson structures are given 
by the embeddings in JV+ and G respectively. So it is enough to compare the Poisson 
structures at w in the second space, and at e(B- Π Β™) in the third one. Denoting 
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by r the element of A2g representing the trigonometric r-matrix, we find that second 
bivector is r — wrw~1. It means that the Poisson structure on B-/B- Π B'f is such 
that its embedding in G/B- Π Β™, with structure rL — (luriv"1 ) R [exponents L and 
R mean left and right action of A 2 y ] , is Poisson. 

Finally, note that the Poisson structure on B-/B- Π Β™ χ iV+ corresponding 
to that on C[x-Z, y;, Σ + , · · ·] is such that the projections on each factor are Poisson, 
and { / , g} = (cleg / ) (deg y ) / y , if / and g come respectively from the first and second 
factor. On the other hand, the map Β- χ λτ+ —> G , ι—• η+δ_, is Poisson, if 
G has the Poisson structure rL — ( u ; r i o _ 1 ) ß , and Β- χ iV+ has the Poisson structure 
such that first projection on composed with embedding in G, with Poisson 
structure rL — (wrw-1 ) β , is Poisson, as wTell as the second projection on N+ with 
usual Poisson structure, and functions coming from different factors have the same 
brackets as previously. (G is here the product N+ x the factors of this product 
being completed in the topologies of C[[A]], resp. C [ [ A - 1 ] ] ; it is not a group but has 
actions of y by left and right translations.) 

To summarize, we have : 

Proposition.— The morphisms of Poisson algebras C[Ë±, · · ·] C[x z , yz-, Σ ^ , ···]—> 
C[xt,yi]7 (the latter mapping is obtained by factorizing the Poisson ideal generated 
by Σ + and Σ~~) are respectively y- and rî--equivariant and are dual to the map
pings of Poisson manifolds B-/B- Π Β™ ^ G/B- Π B™ -> G/B-, where the second 
manifold has Poisson structure rL — (wrw~1)R and the third has Poisson structure 
rL (where r G A 2 y is the trigonometric r-matrix). The morphism of Poisson alge
bras C[xi, yi] —> C[xi, j/i, Σ ^ , · · ·], defined by Xi,yi Xi,yi, is dual to the projection 
G/B- η Β™ -> N+\G/B- η Β™ ^ Β-/Β- Π Β™. 

Let us now determine to which operations of homogeneous spaces correspond the 
natural embeddings of algebras of screened local quantities. Let α < β < j be three 
points or the line ; then the embedding C[x%, y%, Σ ± , · · -]β<ί<Ί C[xi,yi, Σ ± , · · ·}α<ί<Ί  

corresponds to the natural projection G/B- Π Β™ —> G/B- Π Β™ (here Σ + = 

Σ ι > Ί χ ί , ς _ = Σί>Ίνί)- L e t u s p ° s e n o w ^ + = Σί>βχί> Σ - = Σΐ>βνΐ> a n d 

let us consider the embedding C[xi, yi, Σ ± , · · -]a<i<ß —> C[;r z, y 2 , Σ ± , · · · ] α < ; < 7 . It 
corresponds to the mapping JV+ χ C 2 ^ 7 ~ a _ f l ) —• iV + χ C 2 ^ ~ a + 1 ) , (ζ*, y;, rc+) *-> 

( ^ , y i , n + n K (J ?ί ) ( λ*. ι))· The identifications of C 2 ^ ~ * + 1 ) a n d C 2 ^ — + ] 

with B-/B- Π 5 ϋ 7 _ α and iL / iL Π ΒΖβ~α are ( ^ , y 2 ) ^ class of 6_, such that 

^i^j ^ b-w1-ßB- [resp. same formula writh β replaced by 

a] , so the mapping iV_+_ χ C 2 ^ ~ a + 1 ) -> G/B- Π i L 7 - " is ( n + , £ 7 ; , y / ) H+ class of 

n+ ΠΓ=Ύ 1^ ^ 0 Τ ) ^ 7 - α · This proves that the initial embedding corre

sponds to the mapping G/B- Π iL 7"* -> G/B- Π Β™β'α, class of y ^ class of 

gwß-1. 
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The algebra C[^vy 2 - , Σ > 0 , ' • ·]*<ο is the union of algebras C[xl,yl, Σ > 0 , · · • ] _ A r < i < 0 , 
which is the function algebra on the projective limit of · · · —> G/B- Π B™N —» · · · —» 
G/B-. This projective limit is G / f S 1 -> 2?)_ [where (S1 —> £?)_ is the group corre
sponding to the Lie algebra (S1 -> δ)_ = C [ [ A - 1 ] ] ® 6]. The Poisson structure on this 
space is then rL — ( ir^rw^} ) / l > . where w^riu^- is the r-matrix corresponding to the 
Manin triple ( £ , ( S l η) Θ (S1 -> C ^ + ^ S 1 -> n_) Θ ( S 1 -> C/z)_) in notations 
generalizing the previous one. 

Then the embedding C[xl,yî, Σ > 0 , · · -]i<0 ^ C[;r?;, y;, Σ > Ν , · - · ] 2 < λ γ corresponds 
to the projection G/(S1 !?)_ —> G/(S1 —> class (y) H-> class (givx). This pro
jection can be viewed as the composition G / ( S 1 —> J5)_ — G / w ^ ^ S 1 —* B)-WN —> 
G/(S1 —> J B ) - , where the first map is class(y) i—> class^ww) and the second is the 
natural projection. Note that the Poisson structure on the second space, induced by 
the first map, is rL — (w^j1(w<x>rw^)w]sf)R = rL — (w^rw^ ) R . 

We obtain : 

Proposition.— The inductive limit of algebras C [ Z J , y2-, Σ > ^ , · · -]i<jv? 1 S identified 
with functions on G/iS1 —> with Poisson structure rL — (iVc^rw^)11, and 

action of screening operators given by left translations by &+. The inductive limit 
of algebras C[xl, yi]i<N Is identified with functions on B-/ÎS1 —> H)- ; Poisson 
structure and injection of this algebra in the latter are given by 

G/{Sl -> H)- -> NAG/iS1 -> ^ / ( S 1 -> . 

This is because (S1 —•> = Π]γ( ιο^ 1 (5 1 —> B)-.WN) [here i f is the Cartan 
subgroup of B). 

9. Commutativity and geometric interpretation of the integrals of motion. 

We are now able to give a geometrical description of the Hamiltonian vector 
fields generated by the integrals found in 6. The action of these vector fields on 
l imC[ ; r n yl, S > i Y , · · -\I<N corresponds to vector fields on G/(SL —> commut

ing with the left action of 6+. Let us show that the vector field generated by 
integral Ik (let us denote it Vik) also commutes with the left action of 6_. In
deed, [ν^,όλι-] should commute with { Σ ± , · } ' . Pose X^ — \Vik,d±\. We compute 
Xjjr.(polynomials in Xi^yi) — 0. We deduce that X^ vanishes on the smallest subal-
gebra of lim C[x 2 , y^, Σ^^γ, · · - ] i < j v containing the polynomials in Xi,y%, and which is 
{ Σ ± , · } ' stable ; this algebra is the full algebra, and X^ = 0. So, vector fields Vik 

can only be given by right translations by elements of (S1 —> C / i ) + [Ch = Lie(if)] . 
In particular, we see that these vector fields commute, and so the integrals of section 
6 are in involution. 

Remark also that the integral of motion corresponding to h\n (n > 0) involves η 
dots on the line and so should map Fun (G/w'^1(S1 —> B)-WN) to Fun (G/{w^Wn)'1  

( S 1 —> B)-WNWU), it means that it corresponds to the right action of a linear 
combination of elements h\k, 1 < k < n. 

We conclude : 
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Proposition.— By the identifications of last proposition, the Hamiltonian vector 
held corresponding to the integral I(hXn) found in 6, acts on lim C[xt, yz, Σ > Λ Γ , · · -]i<N 

and on C[xi,yi]i£z a s the right action of a linear combination of elements hXk, 1 < 
k < n, on G/i^S1 —> H)- and on N^.\G/(S1 --» H)-, respectively. In particular, 
these integrals are in involution. 

Let us give an explicit form for these vector fields. The identification of C [ x z , y;] 2>i 
with C [ 5 _ / ( S ' 1 —* B)-] associates to the point (xi^yi) the class of the matrix 

^ 0 l ) ' w ^ ^ ~ V ^ ^ i + l /y i + l / ^ x 2 + · · ·. Let us describe now the maps 

B-l(Sl -> B) B-/w~l{Sl -> -> -* B) whose composition is 

dual to the embedding C[yo, j/i]i>i ^ C[x ; , y;];>i. The second map is the nat

ural projection, and the first is constructed as follows : to the class of ^ J ^ ^ we 

associate the double class of such that ^J ^ wi G JV+fe-u^^S 1 —» B)-Wi* 

w i t h u , 1 = ( ° - λ

ο

α ) . We have ^ ( I ï ) ( ( l } < 0 Î ) -

J5)_. At the next step, we multiply by wo = ( ^ 0 ^ ) ' ^ * n c e ( ^ i ) w ° ^ 

(o ï) (o ^ j < 0 ) ( 5 l ^ w e o b t a i n 

1 4 2 

1 Ρ 
0 1 

1 0 N 

^ 1 
Pi y 

1 -i-
0 1 

1 (i)<o 
,° 1 

where ρ = p±\ 1 + · · ·, σ = σο + σι λ 1 · · · = (^ )<ο , and indexes < 0 or < 0 mean to 
take only < 0 (resp. < 0) powers of A. 

Iterating this procedure we obtain for variables (a;_^v,y_jv, · · •) the equality 

fl l / \ x - N + l/y-N---\ f \ ~ N 0 \ _ / 1 0 \ f l y - N \ fl y 0 \ 
\o ι ) \ o xN)-\xx.N I ; V ° 1 7 " V ° i ; 

^ 1 l/λχ! + l/yi + · · - ̂  d e m e n t o f ( 5 l _̂  ßW0)_ 
Writing the element of (S1 —> Bw°)- on the right side ^ 1 )̂ (^0 a" 1 ^ ' W 6 ^ n < ^ 

that the first columns of this matrix and of X~N ^ J l/Xxi + l /y i ^ ^ 1 yo ^ 

I I ? I " · ί i Μ χ 1 ? I coincide. We deduce that 

6 - - [ (yo + l/Xxo + l /y i + · · · + 1/XX-N) + (1/λ*ι + l/yi + · · - ) ] " 1 · 

In conclusion, we have : 



Proposition.— The identification of C[x?-, yi]%^z with C [ ß _ / ( 5 1 —> H)-] asso
ciates to the point (xi,yi), the class of the matrix 

= (l l / \ X l + l / y 1 + . . . \ f 1 

" V° 1 / \-[(yo + 1/λχ 0 + ΐ Μ + ···) + (1/Xxi + l / y i + · · · ) ] 

T i e vector iîeids given by the integrals of sect. 6 are combinations of the flows 

dnb- =(b-XnhbZ1)-b-,n>0 

[b- is the class of b- in B-j{Sl -> #)_]. 

Note that the change of origin point is performed by the sequence of maps 

&_ e -> ^ G/(Sl -+ H)- -> N+XG/iS1 <-> B./iS1 -> 

(w\ has to be replaced by WQ at the next step). Since wo and wi commute with 
h\n,n > 0, these maps commute with the flows, as we could expect. 

Observe that expanding b- in powers of A - 1 , we obtain functions concentrated 
near the origin ; as the power of A - 1 increases these functions involve more variables. 
This reminds the continuous case, where these functions are differential polynomi
als at the origin, whose degree increases with the power of A - 1 . Note also that 
the equations obtained have some features of the non-linear Schrödinger equation 
(intervention of the homogeneous subalgebra). 

10 Semilocal quantities 

The variables treated above where localised near the origin ; the group elements 
of N^.\G/(S1 —> H)- can be understood as a discrete version of the "monodromy 
at the origin". To explain this expression recall the situation in continuous case. We 
have the dressing identity ([DS]) 

oo 

d + Λ + <j>h = n(d + Λ + ]P w t-A"*)n"' 1, 
2 = 0 

φ = φ(χ), Ui = ui(x) are differential polynomials in φ, η = n(x) a matrix of N- with 
coefficients differential polynomials in φ. The monodromy between α and b has the 

form nae"b α ^ Λ + Σ ΐ = 0 Ia

 U t A n^1. When 6 — a > 0 and A —> + o o the asymptotic ex

pansion of this is | e ^ ~ a ^ v ^ n a ( l + ^ ) e ^ i = o L U l A n^1. For a — 6, this is identified 

with nahn~l, i.e. with the class of na in N+/A. 
As was shown in [E], the element of N+/A obtained in this way corresponds to 

the one provided by the construction of [FF1]. * 

* Let us remark that a result of [FF2] follows from this: the fact that the n-th 
KdV flow corresponds to the right action of a_ n = A n ( e + A / ) , indeed, it is shown 
in [DS] that this flow is dn(naA) = (naa-nn~1)-naA. 
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We have also monodromy variables living on the two half lines, M*^ ~ (1 + 

^ΜΣΖοΓ-οο^)^1 and ~ η β (1 + ^ ) e x p ( E ~ o Γ ^ - ) ; ^ us 

show how the equivalent variables = ?^ f texp(± Σ^ο 1^°° ui^~l )· c a n ^ β obtained 
in terms of screening action. 

Let us note that the vector fields Q± = e ^ ^ j / ^ β ± 2 φ , ·} act on the algebras 
C[<i>^(a), / ± O C Uj\. We have then the pairings 

Un+ x C [ / ° ( a ) , / « i ] -»· C [ ^ ( i ) ( a ) , / w f] -> C 

Ja Ja 

(Τ, Ρ ) ^ (ΤΡ)(</>, </>',···,/ U i ) » (ΤΡ)(φ = 0, = 0, · · ·, / Μ ί = 0) 
«/α «/ « 

inducing mappings C[</>^(a), ft°° Ui] —> C[7V_]. 

Proposition.— These mappings are isomorphisms; the projections (φ(ι\α), ft°° ui) >—> 
(φ(ι\α)) correspond to the natural projection iV_ —» N-/A ; the actions of inte
grals of motions correspond to the restriction to N- of the right action of a + on 
B+\G<^N-. 

Proof. Let no = Q j ) ' n i = = ( o ~l ) ; for Z = ° ' 1 ? l e t Μ ± ( λ ) ' ϊ « ' = ^ M Î ( A ) . 

Then Μ 0 ^ ( λ ) (resp. Μ ^ ( λ ) ) is a differential polynomial in —φ1 + </>2 (resp. φ1 + </>2) 

and so the action of (resp. Q _ ) on it is trivial. So, ( 3 + M ^ ( A ) = — ̂  jj^ M ^ ( A ) , 

Q-M±{\) = ^ M ± ( A ) . This shows that the image in 5 L 2 ( C [ 7 V „ ] ® C ( ( A - 1 ) ) ) 

of M ^ ( A ) is the canonical matrix of elements of C[iV_] 0 C ( ( A - 1 ) ) . This proves the 
surjectivity; for the injectivity, we see that elements φ^\α), and ft°° U{ can be ob
tained by combinations of the coefficients of \ l in matrix elements of M ^ ( A ) . The 
last part follows again from the form of the flows on the dressing operator, shown in 
[DS] ; dnMt = {naa-nn-')+Mt = (M^a-^M^J+M^. 

The lattice versions of the modules 0[φ(ι\α), Ja °° ut] are C[;r z, y z , Σ =̂Γι 
it will be more convenient to analyze first C[x{, Σ^Γι ^'(^)? { Σ + , Σ " } , · · ·] 
(Ii(k) is the fc-th conserved density obtained in 6, beginning at point Xk). We de
fine an action of y on this algebra as follows: the action on variables x^ yt, Σ ^ , · · · 
is unchanged; writing Q±li(0) = (T - 1 ) / * we set Q±(Y^™1 hity) = ~ft a n d 

Q±(Ek=o W) = fina!Jy 0 ± ( Σ £ £ /.•(*)) = #(ΣίΓο W) = Ο. By the idem 
tification C[a;2, y;];>i Cr: C[B-/(Sl —> ! ? _ ) _ ] , and /·" are respectively identified 

with the functions of the class of ^ 0 and — pt [ρ — Σι>ι Pi^~1]- Since the 

embedding of C[x 2 , y 2 ] 2 >o in C[xi, yi, Σ ^ , · · -]içz is the natural map C [ B _ / ( 5 1 —> 
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£ ? - ) - ] —> C [ G / ( 5 1 —• H)-], these functions in turn correspond to the functions of 

the class of /?+ ^ J ΐ ) ( σ 1 ) ' ° a n d ~ p l ( n + G a n d ° G C [ [ A _ 1 ^ ) ' 

Let us consider now the y-module C[G/H] (the action is by left translations). 

Write elements of G under the form n + i^j (jo ~A^) -^I P,® £ 

λ - ^ λ - 1 ] ] , σ G C P " 1 ] ] , n + G N+. 

Then if α = Σ ί> ι
 a2̂ ~~S the a; are ίϊ_|_-invariant, £ β λ - ι α ί = 0 and CFA = —p. 

So we can extend the identification C[:r2-,y2-, Σ ^ , · · ·] ~ C [ G / ( 5 1 —> -ff)-] to 
oo 

C [ x i î î / i , Ê ± , - - - , J ] j j ( f c ) ] ~ C [ G / f r ] 
fc=l 

by ΣΓ=α W » « i . a n d t o s ± , · · ·, Σ^°°ο * ( * ) ] - C[G/B], by Σ , Τ ο -

—cii. The subrings C[x z ,y ? ; , ^ ( ^ ) ] being the intersections of the kernels of 
and d- are then identified to C[N+\G/H]. 

The elements of 5,-L2( C[a^j, y2*, X̂^̂̂  /»(Ä:)] ® C ( ( A - 1 ) ) ) , corresponding to the 
element δ_(λ) of SL2(C [N+\G/H] <g> C ( ( A ~ r ) ) ) (provided by £ _ -> JV+\G) are 
then 

Vo 1 yl V-[(yo + i / A x 0 + ···) + ( 1 / λ ^ ι · · · ) ] - 1 V " 

and 

A ι/λ̂  + 1 / ^ + ..Λ / "ι ο ν - Σ , , ^ ^ Σ κ ο ^ ^ 
VO 1 ; V-[(yo + l/Axo + ·· ·) + (1 /λ^ · · · ) ] - 1 1 / " 

Recalling the identities 
._i γ - r 1/XXI + L/YI + · · · 1/yi + 1/As 2 + · · • 

-p(LA L7^)) = îTÂ̂  ïtj; 
2>1 * > 1 7 / J 

and 

e x P ( - Σ λ " 1 Σ Ji(*» = i/yo + i /Axj + · · · ι/λχ0+/ΐ/»ο + ··· 1/y-i + 1/XX0+ --•"' 
? > 1 /c>0 

we obtain the form of these matrices in terms of variables Xi and y2-. 
Let us study now the homogeneous spaces interpretation of lattice translation. 

From the equalities 

(i ï)(i î)G - ) ( ° T ) - Q î X î - V ) -
Α - α ( 1 + α&) \ / α λ ί " 1 0 λ 

Λ ο 1 Λ 0 * / ( β λ ) / 
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and 

c M ;)CÎ)(ÎÏ)-(Î m ^ y 
( 1 θ \ f-l/(bt) ο \ 
\-b(l + ab) l) \ Ο -bt) ' 

with a G A ^ C p " 1 ] ] , b G C p " 1 ] ] and ί G C [ [ A " 1 ] ] X , follows that right multi
plication by affine Weyl group elements in N+\G/H transform the above matrices 
into the matrices with shifted arguments Xj and yi. This refines the result obtained 
previously about translations. 

Let us describe now the elements of SL2(C[xl,yi, Σ^^ο Ιΐ(^)·> · · -]®C((A, A " 1 ))) 
corresponding to the element g(X) of SL2(C[G/H] ® C((A, A - 1 ) ) ) provided by the 
projection G —> G/H. The projection GjH G/(Sl —> H)- sends it to 

Λ (ι - y A ( i o W i ι/λχ!-.Λ / ι o \ 
.11 Vo ι )\-Xxi ο J \ o ι A - t î / ο · · · ] - 1 ι J 
l = CO ^ ' ^ / x / v ' 

according to 8, and the projection G/H —> N+\G/H to 

Ιο ι Α - b o · · · ] - 1 ι Γ " 

[(J 1 / A a ; ^ + ^ _ ^ o ^ _ j _ i ^ e x p ( - ^ i > i A - , Ä E j f c < o J « ' ( f c ) ) ' r e s P - ] - S o t h e s e 

matrices are 

n ( ; ? ) U , s)-G 1 / Α Ί - · ) ( - Ι*- - · ] - ϊ ) Α ' λ " , Λ Σ - " ( " 

and 

π ( j T)U, !)·(ί 1 / A r 1 ( - , ; , . 
7 =-(-CO X 

Let us pass to the Poisson structures on G/H and N+\G/H induced by these 
mappings. Note first that # acts in a Lie-Poisson way not only on C[xt,yi, Σ ^ , · · ·], 
but also on C[xt, y z , · · ·, Σ / ^ ο ^ W ] . R e c a ^ that this means that X{f,g} = 
ΣΧ{1)ίΧ{2)9 + {Xf,g} + {f,Xg} for Χ G g, f\g in this function algebra, with 
8X = ]Γ) X^ ® X^ the cobracket of g. We can check it replacing Σ^ο ^i(^) by 
(1 — T ± A / ) ^i(fc) and letting Ν to ± o o , using that Γ is a ^-module map. 

We thus obtain that the Poisson structure on G/H is of the form rL — r,R\ 
moreover, the projection on G/(S1 —> H)- with structure rL — (iv^ric^})11 is Poisson, 
so r1 = Woovw^ + r 0 , r 0 G ( S 1 -> Λ y. 
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The space N+\G/H has a Poisson structure corresponding to the identification 
± 0 0 ^ 

of its function algebra with C[xi, y;, Σ ! it is such that the projection G/H 
k=0 

N+\G/Ή is Poisson, so it is given by the bivector — r l R . The right multiplication by 

W2 = y^-i ^ is an automorphism of this Poisson manifold, since it corresponds 

to the translation X{ i-> Xi+i,y% >—> j / i+ i . So we have r '^ 2 = r ' , and so ro G ( S 1 —> 
Λ ( 5 1 —> /ι). 

Let us show now that r 0 G ( S 1 -> Λ)+ Λ (S1 h)-. Write the element 

of SL2(C[xi,yi,Y^k>0 Ii(k)] 0 C ( ( A - 1 ) ) ) under the form 6_ = ^ ^ ; then 

c? = exp(— Σ X~l Σ liU1))' The Poisson brackets {Ii(k)7 are polynomials 

in x~l ,y~l without constant terms (since the Ii(k) themselves are polynomials in 
a;" 1 ,?/ ," 1 ) . So we should have {d(A), ά(μ)}^{=δί0 — 0· On the other hand, if χ G ra+, 
R(x)b- = (b-xbZ1)-b- vanishes at the origin of B-. So the value of rf at the origin 
is the projection of r 0 in Λ 2 ( 5 1 —> along (S1 —> /ι)_ Λ ( S 1 —> Writing this 
projection Σν^β^ια Λ we find {<i(A),<i(^)}origin = Σναβλαf1^ ! so this projection 
is zero. 

Let us try now to determine ro. Elements of G/H being written gH — n+n-H, 

with n_ = ^ ^ ^ and n+ = ^ ^ C ^ ° ^ ^ we should have {6χ, d} — άρ

α, {c0,d} = 0 by the identifications 61 = - Σ + , c 0 = - Σ " andd = e ^ ; > i
 Λ

 Sfc>i 7 ' ( f c ) 

(because on ^2k>1 Ii(k), the Poisson brackets with b\ and Co coincide with the actions 

of Q±). After computations 

rL(bi ®d) = 0 , 

( J] eA* <g> / A " 1 - /λ* <g> eA- J ' j (^ ® d) = -X^bd2, 

( ^ Λλ*" <g> Λλ _ < - hX-' <g> h\i ] (δι ®d) = - 2 A " 1 M 2 

\ i > 0 / 

and 

r L ( c 0 ® d) = c , 

^ eA* <g> fX-{ - fXl ® eX'^j ( c 0 ® d) = k 2 , 

( Σ hV <g> hX~l - hX'i <g> hXl j ( c 0 ® <i) = 2acd , 
\ t > 0 / 
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so 

r L _ j ® fX~l - fXl ® eX~l) - ^ J2(hy ® hX~l ~ hX~l ® hX^ ) 
W z " i > 0 / 

give the right brackets {61, d] and {co,d}. 
Let us show that this structure is the only possible on G/H : we know that any 

other structure differs from this one by the addition of some AR, with A G (S1 —» 
h)+ Λ (S1 —» On the other hand, functions of n+ should commute with (i in for 
the structure defined by A because we have { & Ι , < ^ } Α = { C O , G ? } A = 0 and the Poisson 
algebra generated by 61 and Co is the set of functions of n+. But 

(^2 AijhXl <g> Ημ3)Κ(η+ <g> d) = ] P Aijn+(n-h\lrCl)+ß3 ά(μ) , 
i > 0 , j < 0 

so for any j , ^ A j j ( n _ / i À t n I 1 ) + = 0, so A = 0. 

Let us consider again y = rc+ I 1 J \ σ ] J e - 1 ^ * > ο . It u?0 = 

1 4 8 

0 - A - 1 

A 0 
1 0 

σ ' 1 
1 ρ' 
0 1 — y \ 1 hSi . , . 

e ^ * > i , with nl|_ = η_μ 

i - y o 
0 1 

and σ ' = - l / j / 0 + 1 / λ ζ 0 + 1/y-i , · ··,/>' = [λ*ι + l/yi + '" + (1/yo + 1/As 0 · · -)]" 1· 

If δ — Σΐ>ι <^A~\ £>e\-1à — — λ _ 1 σ ' , = 0. On the other hand if Ii(k) is the 

integral of motion obtained in 6, ending at y^, we have Q-(J2k<o M^O) = 0 a n < ^ 

ζ?+(Σ*;<ο ^ ( ^ ) ) — which is identified with σ 2 _ ι . This allows to identify δ with 

— Σί>ι Σ ^ > ο -^'(^) i n ^he case of the module generated by Y2k>o ^ ( ^ ) ? a n c ^ w i t h 

Σ ΐ > ι ΣΑ:<Ο î*(k) in the other case. So, gw0e Σ , · > ι λ h ï l

 = n ' + ^ ^ ^ ^ 

.e Z^i>i l^k<o 1 — g'. L e t us determine the Poisson brackets of gf. 

The Poisson bracket { / ; , y } is a right translation ya2-, a z G ( 5 1 —* h)+ [we 

know from sect. 9 that it has the form {Ii,g} = g(al + (Si —> h)-), and the brackets 

{ 0 ® , 0 e ~ £ i > i / < A ~ , Ä } h ^ ^ ^ ^ ) - ) ® A - V 7 ) ß ; 

the action of g on {g ® ; ye ^ 1 > X " } is again Poisson-Lie, so the vectors of 

(S1 —> h)- are constant ; repeating the reasoning above, we see that the bivector 

has no (S1 —> h)- ® (S1 —» components, and { / 2 , y } = y ^ . ] Then the Poisson 
— \~* hi-

brackets for gwo are given by rL — ( t ü o ^ o o ^ ^ 1 ) Ä ? a n ( l o n 9w®e i - 1 * by 

rL - (woWoorw^w'1)11 - Ε ΐ >ι ( λ " ζ / ? · ® α· ~ αί ® Α " 2 / ι ) β . 

Let us determine now the Poisson brackets of g9 using the writing g' — nf ( ^f ^ ̂  · 

1 P' 
0 1 

- V x-'h'y ïi(k) „ , 1 + · · · c'0 + · · · ' 

λδΐ + · · · ι + · · · , and 1 oN 

σ' 1 



This shows (since w^rw^ is ioo-invariant) that ai = —h\l. 

Theorem.— For eacii point of the lattice, there is a natural 'g-equivariant map
ping of the manifold with coordinates (x t-, yi, Σ ^ , · · · , Σ * ~ ο -^'(&)) t° G/H ; the 

mapping corresponding to X i is (a:<, y,-, · · ·) •-• Π ) = + ο ο ( J ^ ) ί _ \ χ . J J ' 
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1 p' 
0 1 f : Σ . - ^ λ ' ^ Σ ^ ο 7 · ^ ) = ( ° < l \ Then ä} = -Q+(a) = A " V ' ä = 

λ - 1 δ, and {4, ä} = -Q-(ä) = 0. But 

r L ( c o ® ä ) = 0, 

ί Σ eXl ® ΪΧ~1 - f y ® e X ~ l ) (c'o ® «) = ™2 , 

and 

r L (6 i <g) α) = Α - 1 6 

ί Σ e X * ® fx~* - Α' ® e X ~ l ) (b'i ® α) = - A ~ W 
Wz / 

^ /ζλ' (χ) h\-{ - h\-% ® hX^j (b[ <g> α) = 2A- 1äfeJ 

so 
r L - (woWoorwJwQ1)11 - X~lh ® a{ - α< <g> λ - ί / ι ) β 

i > 0 

= r L - J ] ( e A ! ® / À - i - / A ' <g> e A ~ i ) Ä - - ^ Γ ^ ' ® Λ Λ ~ ' ~ Λ Λ _ < ® U < ) * 

2 g Z i>0 

r ι Pi 

{0 l ' ι oN 
6 Σ ; > ! Λ λ _ · Σ . > ο ( . < ο ) ± I i ^ k \ for point y i it is (Χι,ιΜ, •••)>-+ Π } = + ο ο 

1 0 
—XXJ 1 0 1 ι oN 1 Ρ'Λ 

β Σ . · > ι Α λ ~ ' Σ , < ο ( . > ο ) / <(*) > w i i i j p. = i/\Xi+ 

1/yH , σ 2 = —[ï/i-i + 1/λχί_ι \-(ï/Xxt + l/yi • · ·)] *, ρ\ = [Xxi+1 + l/yi+1-\ h 
( l / y ; + 1/Xxi; + · · · ) ] _ 1 > σ ί = — l / y « + 1/Χχί + 1/yi-i · · ·· These mappings are Poisson 
if we endow G/H with the structure rL — (w^rw^-)11 [resp. rL — (w-oorwZl^)11], 
where r is the trigonometric r-matrix of g and superscripts L and R denote the bivec-
tor held generated by left and right action of a given element. The Hamiltonian flow 
generated by the i-th integral of motion Σ ^ € Ζ ^ (^ ) corresponds by this mapping to 

r \ 
7ιλ« ® Αλ - * - h\-> ® λ 2 (c(, ® α) = - 2 c â 2 , 

W o / 



right translation by — h\l. The sine-Gordon flow corresponds to left translation by 
e + A / . 

The passage from the mapping corresponding to point xt to yt (resp. from y?; 
to Xi+i is realised by right multiplication by the affine Weyl group element wo (resp. 
w 1 ) . 

Here w-oorwZio corresponds to the Manin triple (y, (S1 —> Ch)+ Θ (S1 —> 
n.),(S1 ~ > C / i ) _ ® ( 5 1 - > n ) ) . 

It is possible to define, at the matrix level "higher sine-Gordon flows" by the 
left translations by other elements of the principal subalgebra, e\l + / / V + 1 (i > 1), 
commuting to the sine-Gordon and the "mKdV" ones (generated by the integrals of 
motion). We can think that these flows correspond to some differential equations on 
variables Xk and y&, which would become more and more non-local as i increases. 
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