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A NEW APPROACH IN MIXED DISTRIBUTIONS
DETECTION (*)

by E. DIDAY et A, SCHROEDER (*)

Abstract. — Our aim is to detect in a given multivariate sample the possible présence oj
sub-samples drawn from probability distributions of some known type.

In the first paragraphe the Dynamic Clusters method is described in the gênerai case of
unspecified kernels. Afterwards, it is applied to the above quoted problem of mixed distributions
détection, taking probability distribution functions as kernels.

As presented hère, the algorithm maximizes a likelihood criterion function.

1. INTRODUCTION

1.1. The Problem

From a multivariate sample, all multidimensional techniques (principal
components, factor analysis, multidimensional scaling, clustering techniques,
hierarchical or not) give a description of the population, that have afterwards
to be interpreted either by further statistical methods (e. g. discrimination, ...)
or by common sensé. These techniques need no probabilistic assumption,
neither necessarily refer to any probabilistic model.

On the other hand, problems and techniques of modelization exist which
try to adapt a stochastic model to a real phenomenon.

Our own purpose consists to detect if a given sample contains sub-samples
which could have been drawn from populations distributed according to a
known family of probability distribution functions.

More precisely, given a sample, we shall try to find if it results from the
"effects" of several stochastic phenomena arising from different distributions.

This problem is the classical Resolution of Mixtures when one can assume
that the overall distribution function—which will be written F (x) — actually
follows the model:

= E PjFj(x% (1)

(*) Reçu janvier 1975, version révisée décembre 1975.
0) I.R.I.A. Rocquencourt.
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76 E. DIDÀY, A. SCHROEDER

— Pj\ a priori probability of thejth distribution;
— Fj (x) : jth distribution function belonging to a known faniily.
In ternis of signal theory, this same problem can be expressed (in the

case: k = 2) as "a model of observation signal consisting of a mixture of two
unknown puise waveforms of some duration T, which occur independently
successively at random with probabilities Pt and P2> imbedded in additive
zero-mean stationary Gaussian noise with u jknown power" [from W. D. Gregg
and J. C. Hancock (1969)].

1.2. Various Approaches

A number of techniques have been proposed to this end. We shall classify
them in two catégories, according to the problem they solve.

Those, that use model (1) in its analytical form, and that estimate the P,
and the unknown parameters on which the Fj depend:

Fj (x) = q> (x, 9y) with 9,. e Rs

unknown, but 9 known.
Those that are first looking for components from a mixture of a given type

in the observed sample, and estimate afterwards the unknown parameters.
The first category techniques are estimation techniques and they only differ

in the type of estimât ors they use: method of moments [Pearson (1894)]
with maximum likelihood estimâtes [Rao (1948), Day (1969)], minimum %2, etc.
Most of them are adapted to Gaussian distributions and often to4he univariate
case; let us note two of them: Rao (1948), spécifie for two classes mixtures;
Battacharya (1967), who gives a graphical method to détermine the number
of classes, but needs a large number of observations to be collected and the
different distributions to be adequately separated; for a gênerai review of
these techniques, see Dorofeyuk (1971).

Day (1969) also deals with two components, that may be multivariate.
Another approach to the estimation problem of model (1) is Cooper and

Cooper's (1964): the unknown parameters are deduced from the moments
of the overall observed distribution.

In order to study the multivariate case, particularly when the number of
components is larger than two, many assumptions have to be made (e. g. Day
assumes that the covariance matrices are equal; from a practical point of
view, Cooper and Cooper study the case of two distributions only drffering
by their means).

The second category techniques include bayesian methods, stochastic
approximation, supervised or non supervised learning,...

The algorithms of approximation type are very different. Most of them
attempt a bayesian approach [Patrick and Hancock (1966), Patrick and
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A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 77

Costello (1970), Patrick (1972), Agrawala (1970)] though giving quite various
techniques. The hypotheses differ from one method to another, but are usually
very restrictive.

This kind of approach enables to formalize the mixed distributions détection
problem in terms of unsupervised learning [Agrawala (1970), Patrick (1972),
Duda and Hart (1973)].

An information theory criterion can also be used for a stochastic approxi-
mation algorithm [Young and Coraluppi (1970)] which is very interesting,
because it is not needed to know a priori the actual number of components
in the mixture; it is however restricted to one-dimensional Gaussian
distributions.

1.3. The Dynamic Clusters Approach

Our own approach may be roughly classified in the second category
techniques. We only want to detect in the population the possible présence
of samples of some known distribution, but we do not make any assumptions
about the global distribution.

However, if the user can make hypotheses on the representativeness of the
population as a sample of a global population and can admit model (1) for
the overall distribution, then our algorithm will give him a solution of the
mixture type, as soon as goodness of fit may be proved.

We shall use an algorithm of the "Dynamic clusters" type {cf. Diday,
[6] to [9]) i. e. an algorithm that detects parallely clusters among the obser-
vations and some typical features for these clusters: the "kernels"; for us
the feature to find will be fitness with a probability density of some known
type.

Our algorithm will be presented in a gênerai form for any density function,
any dimension for the sample space and any number of components.

The only input we need is the form of the probability distribution function
and the number of components. However, we can see that this last hypothesis
is not really restrictive, because the actual number can be found by several
means even if the algorithm has run with another a priori number.

D. C. algorithm has been thoroughly studied in E. Diday ([6] to [9]) in
two particular cases: when the kernels are linear manifolds (in factor analysis),
and when they are subsets of the population, in non-hierarchical clustering;
in that case, the algorithm belongs to the class of methods such as Isodata
(Hall and Bail, 1965), fc-means (MacQueen, 1967), itérative relocation
(Wishart, 1971).

In the first part of the paper, we shall recall the D. C. (Dynamic Clusters)
algorithm in the gênerai case —for any set of kernels —and its convergence
properties. Afterwards, the problem will be formalized in précise terms
and D. C. applied to it.

juin 1976.



78 E. DIDAY, A. SCHROEDER

Several practical remarks will then be made, essentially' concerning the
number of components. Afterwards, the particular case of mixed gaussian
distributions will be developped, as it brings interesting results from a geome-
trical viewpoint. We shall then conclude with several examples.

2. THE DYNAMIC CLUSTERS ALGORITHM

2.1. Notation

— Let E be any finite subset of Rq;

— Pk: the set of all partitions of E into k classes; the éléments of Pk will
be called: /:-partitions.

PePk o P = (Pt, . . . , P f c ) ;

— L: a set that will be called the space of "kernels". These kernels will
be associated with subsets of E, as a characterization of these subsets depending
on the application of the algorithm;

— Lk: the set of all A>tuples of L:

LeLk o L=(XUX29 ...,kk) where XteL, Vie]fc]

(if]fc] = { 1, 2, . . . , f c } ) .

The D. C. algorithm solves the following problem: To find a couple (P9 L)
where P e Pk and LeL,k that minimizes some criterion function, which will be
denoted W: LfcxPfc—• R+ . Many problems can be written in these terms as
long as any choice is possible for the kernels and the criterion function.

The gênerai idea of the algorithm is then quite simple: It consists in deducing
from any element of hk an element of P k , and from this element of Pk an
element in Lfc, so that the values of the criterion function on successive
couples (L, P) decrease. To be précise, we shall need some more notation :

.D: £ x L - + R + ,

(xyX)^D(x,X)

will express a "distance" between an observation and a kernel.

.R: L x ] f c ] x P k - R + ,

will give a measure of the goodness of fit of kernel X with the ith element Pt

of the A:-partition P.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 79

The way to associate a ^-partition with a £-tuple of kernels will then be
given by the following function :

•ƒ: L*-P*>

where :

P£ = {xe£/Z)(x, ^) ̂  D(x, X,), V/e]/c]}.

(In case of equality, x will be assigned to the lower index class.)
P( is therefore built with ail éléments of E that are "nearer" (in D sensé)

to Xt than to any other kernel of L.
Reciprocally, to associate a £;-tuple of kernels to a Ai-partition, we shall

introducé the function g:

where, V / e ]/:], X4 is given by :

R(Xi9 i9 P) = minR(\, î, P).
U L

In other words, .among ail possible kernels, Xt is chosen as the nearest
(in terms of R) to Pt. [If this définition leads to several L, one has to define a
unique choice, so that, for any P e Pfc, g (P) is a well determined element
o f L j .

The criterion to nxinimize will be defined as :

. W: LfcxPft->R+,

v = (L,P) => W(v)= X H(A,,i,P).

The problem is now an optimization problem:

Minimize W(v) for ail i;eLkxPk. (2)

2.2. The Algorithm

The D. C. algorithm is based on two séquences:

- (O, inL f c xP k , i . e . un = (L<"
- andW„= W(vn)eR\

juin 1976.



8 0 E. DIDAY, A. SCHROEDER

Let P(0>, be any initial /^-partition (it can either be drawn at random,
or chosen) and L(0) = g (P(0)) -+ v0 = (L<0), P(0)). The séquence (v„) is then
defined recursively:

w»+i = (£ ("+ 1 \ P<»+D) is deduced from v„ by: P<"+1> =/(L ( n )) and

We shall show that — under certain constraints-the séquence un = ^
decreases. As it is ? séquence in R+, it converges, and we shall see (th. 2)
that its limit is attained :

A couple v* = (L*, JP*) such as W{v*) = w* will be called a LOCAL
OPTIMUM for the problem.

A couple (Z,*, P*) will be called a GLOBAL OPTIMUM if :

W(v*) S W(v) for all veLkxPk.

For a u* given by the algorithm, this inequality only holds for v in a part
of Lfc x Pfc, this is why it is called a "local" optimum. For further information
on this optimality, see Diday [9].

We shall see now how (u„) decreases.
— proofs of the results are given for self-consistency but are not necessary

to understand the following sections. —

DÉFINITION 1: A function R : Lx]fc] xP^-> R+ is said SEMI-SQUARE,
if:

(1) VLeL,, W(gof(L)Jogof(L))S W(gof(L)J(L))

(The sign ° is used to dénote the composition of functionS).

(1) can be written equivalently :

(1') V P e/XL*), W(g (P), ƒ o g (P)) S W(g (P), P).

THEOREM 1: If R is semi-square, the séquence (un) decreases and therefore
converges.

Proof: We shall prove the following inequality:

un+1^un, Vu,

in two steps:

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 81

and

b) W(&\ P(/I+1)) g W{&\ P{n)) = un,

a) u n + 1 = £ M + 1 \ * + l>
ie]fc]

and

w(iin\ p ( n + 1 ) ) =

Since, for each i e ]fc], à.<B+1> is deduced from P<rt+1> by function #, so that:

R(k\n+1\ i, P ( n + 1 ) ( + 1 )

we have in particular;

Vie]fc],

and therefore, a) is proved.

b) As soon as n ^ 1, P(n) =-f(L^~») and then P ( n )e/(L f c) . Since R is
assumed to be semi-square, by property (1') of définition 1 applied to P ( n ) :

W(g(Pin))J°g(PM))S W(g(Pin)), P(n))

and as:

g(P{n)) = L(n) and /og(P ( n ) ) =

we have:

which proves *).
Then, (un) decreases and as it is a séquence in R"\ it converges.

Q. E. D.

REMARK: The property that R be semi-square is necessary and sufficient
to prove b), but it is only sufficient to have (un) decreasing since we could
have un+i ^ un without the intermediate inequalities we have used.

PROPOSITION: The two following conditions (2) and (3) on R are sufficient
to have R semi-square, Moreover (2) implies (3).

(2) Jp^p* J W(L, f(L)) g W(L, P),

(3) V L, M e Lk ; W(L, ƒ (M)) g W(M, ƒ (M))

juin 1976.



82 E. DIDAY, A. SCHROEDER

If (3) is true R is said to be SQUARE.
Proof: One can see easily that (2) => (1) and (2) => (3).
Let us prove that (3) => (1):
As (3) stands for all L and M, we can write it for L — g°/(M), then:

(3) => VMeL,,

W(g o f (Af), ƒ o g o ƒ (M)) ^ W(M, ƒ (Af))
=> W(g o f (Af), ƒ o g o ƒ (M)) ^ fF(g o ƒ (Af), ƒ (Af)).

By définition of g and Wfvom R, we have:

VMeLfc> VPeP, , W(g(F), F) g W(M, P).

[This had in fact aiready been proved in the inequality a) of theorem L]
Therefore, the left-hand side of the implication is always true and the

implication is reduced to its right-hand side, for all Af, which is exactly the
condition (1).

Q. E. D.

COROLLARY 1 : If R is defined as:

then the séquence (un) decreases and converges.

Proof: We shall see that the condition (2) is true for such an R : Let us take

L= (Xl9 ...,*,*) and f(L) =Q = (Qu . . . , Qk).

Then, for all PePk:

)~ Y. Z
j e ]fc] x e Pj

[where ôp̂  (.) is the characteristic function of Ps 9 i. e.: 5^ (x) = 1 if x e Pj
and = 0 otherwise.]

On the other hand:

W(L,f(L))= Z* (^ i . » . Q)= Z E ^ ( ^ ^ )

= Z Z öl
x e E i e J/c]

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 83

As Q = ƒ (L), and by définition of ƒ, we know that x e Qt if

for ail y, which implies, for ail LeLk and PeP f e : JF(L, f(L)) S

Q. E. D.

As we have studied the convergence of (wn), we shall now see how (vn) can
give a solution to the problem (2).

DÉFINITION: An element v ~ (L, P) e Lk x Pk is said to be UNBIASED for
the functions ƒ and g, if P = ƒ o g (P) and L = g o f (L).

DÉFINITION: A séquence (L(n)
? P(n)) in LkxPk is said to be convergent if

there exists a M such that:

THEOREM 2: If R has the two following proper des:
(i) semi-square,

(ii) VPe/(L f e)3 Vie]fc], £ ( X i, P) Î5 minimum for a unique Xo. Then,
(vn) is convergent and its limit is an unbiased element.

Proof: Since E is assumed to be a finite set, Pfc is finite too. By définition,
E is such that, for any P e Pfc, g (P) can only take one value in L k , then
g (Pfc) c Ljt is finite too and (vn) and (w„) can only take a finite number of
values. As (un) converges, its limits w* is reached:

3 M, Vn^M, un = u*.

Thus, Vw ^ M, ^(L ( / I )
s P(n)) = JF(L(»+1), P(»+1>) which implies that the

two inequalities a) and b) of theorem 1 are equalities :

&\ P ( n ) )= JF(L(rt), P (n+1))

The second equality may be written:

The hypothesis (ii) implies:

Vie]fe], JR(^n + 1 ) ,

with equality if and only if Wn+1> = Xin\

juin 1976.



84 E. DIDAY, A. SCHROEDER

We then have two sums of positive which are equal while every term of one
of them is Iess than or equal to the corresponding term of the other. This is
only possible if all corresponding terms are equal and therefore:

= L(n)
X(B+i) = X(n)^ v*e]fc] o L{n+1) = L(

Then P<»+i) - f(L^) and P<"+2> = /(L(n)) imply that PO+1> = P<"+2> and
the convergence of (vn) is proved ;

i>* = (L*, P*) = (L(n), P(n)) = (g(P(n)), P(n))
P * = pfn^

L* = g(P(B)) = g(P*)>

and

»* = (L*, P*) = (L<n+1), P(n+1)) = (g=/(L(">),/(L<">))
P * =ƒ(!*) =/og(P*),
L*=go/(L*).

Therefore v* is an unbiased element for ƒ and g.
Q. E. D.

3. MIXED DISTRIBUTIONS DETECTION

3.1. The Problem

We shall now write in mathematical terms the problem we have informally
described in the introduction.

Let £ b e a set of N observations on which q measures have been taken:
then E is a finite subset of Rq.

Suppose we are given a family of probability density functions: ( A \ £ L >
which dépends on the parameter X, with l e L c R s , [For instance, if q = 1,
this family could be that of Gaussian univariate distribution with X = (|i, a),
s = 2, L = R x R + ]

We want then to find a couple (L, P), where L = (Xu . . . , Xk), À,(eL and
p = (p l5 . . . , Pfc) is a ^-partition of E9 such that for ail ie ]fc], Pt may be
considered as a "likely" sample of the distribution fx . y

To this end, we shall try to maximize the product of the likelihoods of
the k "samples" P(- for the densities/^ , or, in other words, to find L* and P*
such that:

xePt

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 85

Let us now note

KiPÙ = El A,W-
xePt

We shall show that, in fact, the D. C algorithm make the following
criterion (*) on (L, P) decrease:

W(L, P) = K- S LogVXi(Pd
fejfc]

(where K is a constant).

3.2. The Algorithm

Let us take:
• £eR ? , The finite set to classify.
• L G Rs. Set of the kernels (which will be exactly the set of parameters

introduced above).

• D: £xL->R + ,

where ƒ * ^ max {AW/^eL , xeE}\ it is sufficient to know such an ƒ
exists to use the algorithm; for instance, for univariate Gaussian distributions
with X = (H, a):

and then a possible/* is:

xeE
yeE

This définition for D expresses that the greater fx (x) is, the nearer to kernel X
the observation x is. (It can also be said that the likelihood of the sample { x }
is large for / ^

• R is then defined from D:

R: Lx]fc]xPf t->R+,

xePt
Log(/*/A(x))

Log[(ƒ*)"'•'/ EI A(x)](where | P,\ - cardP()
xeP,

(x) The same problem may of course be formalized in other terms.

juin 1976.



86 E. DIDAY, A. SCHROEDER

• Finally, the criterion is:

W: L f exP f c^R+ ,
(L,P)^W(L,P) = £

ie]*]

[iïL=(Xu . . „X*) ] ,

W(L,P) = X Log [(ƒ*)! "l/KXl (PO],
*e]fc]

^(L,P) =Log(/*)N- I Log ^(P ;) (since X |P;|=iV).
iem ie}fc]

So the above formalization leads us to a criterion which expresses that we
shall maximize the product of the likelihoods of the k samples Pt.

The two fundamental functions of the algorithm, ƒ and g, become:

• ƒ : L f c ^ P k ,

L=(XU . . . ,X k ) =* P = (P!, . . „ P O ,

where

(x being assigned to the lower index class in case of quality).
The éléments of E are therefore assigned to the class to which they more

likely belong.

• g : Pfc->Lfc,

where Xt is such that:

i, U P) = minR(X, i, P)

,, i, P) = min Log [(ƒ*)<p' 1/ ̂  (Pf)]

UL

<̂> X£ is the maximum likelihood estimator of X, deduced from sample P^
This définition détermines uniquely g (P) since, in usual conditions of regula-

rity for density functions, and at least when fk is the gênerai family of the
exponential type distributions, there exists one and only one maximum
likelihood estimator for. (See for instance Fourgeaud and Fuchs,)

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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3.3* Convergence of the Âlgorithm

THEOREM 3 : 'Given:

— a number of classes, k;

— a family of distribution fonctions ( / ,} X e L .

The séquence S£ (L(n\ P(n)) of the products of the k likelihoods increases and
converges.

The corresponding séquence vn = (£(n), P(/>)) converges towards an unbiased
element.

Proof: Since R is defined as in the hypotheses of corollary 1 {see 2.2), the
séquence W(Lin\ P(n)) decreases, and since:

W{L(n\ P{n)) = Const.- £ L ° g vu(n)(pin)) = Const. - Log J?(L(I>), P(n)),

if (L(n), P(n)) increases and converges.
The convergence of (vn) is ensured by theorem 2.

Q. E. D.

4. PRACTICAL ASPECTS AND INTERPRETATION

4.1. Meaning of the k Classes Obtained

When the D. C. âlgorithm is applied to mixed distributions détection,
the k classes obtained are attached to the two following constraints:

— the notion of likelihood which has been taken as a quality criterion;
— the family of probability densities which is initially chosen.
Before anything else, goodness of fit tests must be made for each class /,

between the sample Pt and its computed probability density function fu.

4.2. The Overall Density and the Resolution of Mixtures

In the spécifie case where E can be supposed a représentative sample arising
from an underlying distribution and when model (1) is assumed, then an
overall distribution on Rq can be deduced from E and (L, P):

VzeR", F(z)= E Pr(zeP f)A ((z),

where the probabilities Pr (z e P() are estimated by the frequencies :
card

juin 1976.



88 E. DIDAY, A. SCHROEDER

The D. C. algorithm then gives a solution to the mixtures resolution problems
this solution must of course be checked afterwards with goodness of fit test;
(for such an application of the D. C. algorithm, see example 4.2).

4.3. The Initial Partition

It has been seen that the algorithm needs a partition of E as a starting point.
The first idea which comes to mind to build this initial partition is of course
a random classification. Several numerical tests have proved that it was not
convenient to do so: In fact, if the k classes Pf\ P<°) and P£0) are really
uniformly distributed on E, the maximum-likelihood estimators of the unknown
parameters will take almost equal values; this means that

will be such that: # M2°> # . . . # X-<°> and the new partition P(1) = ƒ (L(0))
will be very loose; the algorithm has then difficulties to converge and takes
anyway a large number of itérations.

Consequently, we have adopted a particular way of chosing P (0): We eut
up the ranges of E in all q dimensions according to the given number k.

— If q = 2, k = 3 and given an ae]0, 1], the cutting up is shown in figure 1.

M

(x + cc y = Cs t )

XMeE such as: A™ +

Figure 1.

max (xt + ax2).

XmeE such as: X™ + aX? = min (xt -f ax2).
>
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A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 89

By this mean, the space Rq is eut up by hyperplanes, but one can imagine
maay other ways to get the initial partition: cutting up for instance, by curves,
or around sphères, etc.

Moreover, it is not necessary to start from a partition, the user may have
rather chosen initial kernels L(0); P(1) is then taken as f(Li0)) and the
algorithm goes on as above. A way to get an initial Z/o) is for instance to draw
at random k éléments of E, take them as mean vectors for the Ar-initial distri-
butions and calculate the other parameters of the distributions so that the
range of E in Rq is entirely covered.

4.4. Notion of Stable Class. The Number k

Knowing that different initial partitions lead to different unbiased éléments,
it seems necessary to compare the éléments obtained from a given set of data
with several trials with different initial partitions.

To this end, let us consider the following table ( Fig. 2) :

O S

Figure 2.

rtj (x) = number of the class to which x belongs in the partition obtained at the yth trial.

The éléments of E are then compared with one another with the help of the
following measure of dissimilarity:

V x, y e E, 0 (x, y) = number of trials in which x and y have not been
classified in the same class.

In this way, x and y are near if they often belong to the same class of the
obtained partitions. 9 (#, y) = 0 means that they always belong to the same
group.

juin 1976.



90 E. DIDAY, A. SCHROEDER

DÉFINITION: A "stable class" is a subset A of E, such that:

Vx, yeA o 9(x, j/) = 0.

The set <F of ail stable classes is nothing else than the quotient space E/R
where R is the relation of équivalence:

xRy o 9(x, y) = Q.

The properties of the stable classes are thoroughly developped in Diday
([6] to [9]) in the case of non-hierarchical clustering where they are called
"strong patterns".

• The example 4.4 shows how they are of use as a complement of information
about the true number of classes existing in the population.

5. THE PARTICULAR CASE OF GAUSSIAN DISTRIBUTIONS

5.1. Définition of D. R, W, ƒ and g in the Gaussian Case

Let now the family of probability densities (fJXelS) be the Gaussian
family, i. e.:

VxeR« A(x) = (2n)~4/2(det P y ^ e x p F - -(x-u)' V^Cx-

where X = ([i9 V) with:

\xeRq : mean-vector of the distribution,
V: its covariance matrix (qxq).

— Hère, L = Rq x ê [if ë is the space of ail (q x q) symmetrie positive
definite matrices] and we have L c R s with s = q(q-hl).

Now, we can define D, R, W,fa.nd g:

• D(x, A,) = Const.+ -[Logdet K+0c-u)' V~1(x-\i)'}.

— As F " 1 is a positive definite and symmetrie matrix, it defines on Rg a
quadratic distance which we shall dénote dv_v

Vx, yeW- 4 - , (x, y) = (x-y)' V~\x-y)

=> D (x, X) = Const. + - [Log det V+dy-i (x, u)],
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,i, P) = £ D(x,X),

= Const.+ 1 [ £
2 xePt

Quadratic dispersion of the set Pt around the point
xePi

for the metric V ,

W(L,P) = Const. + £ tf(^, j , P) where

) = Const. + 1 X X
2 ie]ft] xe

= Const. + J [ ^ |Pi|LogdetV;+ £ £

• f-.L^P with:

P,- = {xe£/û(x, Xj) ^ D(x, X,.), V; # i,

with x assigned to the lower index class in case of equality } :

Vie]fc]; Pt = {xE£/Logdet

• g : Pt->L, where, for ail ie ]fc], \it and F{ are the maximum-likelihood
estimâtes of the mean-vector and of the covariance matrix of the sample Pt.

We know these estimâtes are given by:

1 v
\ * i \ x e p *

and

5.2. Geometrical Interprétation

In this particular case we see that the function ƒ reclassifies the éléments
of E in the following way :

The "distance" between an xeE and the ith kernel Xt = (\ii9 Vt) is
expressed as the sum of two quantities :

— d$.i (x, \ii) = distance from x to \it for the metric V
and

— Log det Vi, which does not depend on x but onlyon Vt and is a charac-
teristic feature of the dispersion of the i'th distribution.
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Therefore k kernels define on Rq k local metrics.
The unbiased element obtained at the point of convergence gives a System

of k local metrics At- around k different points \it (the mean-vectors) such that:
— A; is entirely defined by [it and a positive definite, symmetrie matrix V{,

with the distance between x e R* and |if in terms of A(:

Logdet Vi + dyri{x9 ^ )

and:
— if P = (Pl, .. ., Pk) is the /c-partition of E which is determined by

the Xi9 (i = 1, . . . , k), i. e.:
/>. = | x e Ejx is nearer in terms of A(- to \xt than to any \irin terms of Aj },

then, |it- = mean-vector of Pt and Vi = covariance matrix of P f.
We can then consider that our algorithm has given a solution to the following

problem: To find local metrics in R* that express in some way the features
of E.

In fact, the countour-lines of the points that are equidistant from [it in terms
of At are the ellipsoids of inertia of the Gaussian distribution of
parameters (\i(, F ;): our algorithm, in this case, is therefore able to detect
ellipsoidal clusters.

5.3. Sebestyen's Problem (see Sebestyen and Romeder)

In his works on clustering and descrimination, Sebestyen has been brought
to the following problem:

Knowing a finite population E of N éléments, in Rq, to find the distances d
in R* that minimizes the mean of the squares of the ^/-distances between
all N points, two by two. If this mean is denoted by D2 :

EN(N— 1) xeE yeE

In fact, he searches d in the class of the euclidean metrics that are defined by
a positive definite symmetrie matrix, and therefore looks for such a matrix Q
which minimizes D2:

1 I Z (*-JO'Ö(*-JO.
N(N-l) XTE ytE

N.B.: One remembers that any positive definite and symmetrie matrix Q can
be written: Q = W' W, where W is triangular. Then, to assign the metric Q
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to Rq is equivalent to assign the usual metric to the transformée! of Rq by the
application: *i-> Wx:

4 ( x , y) = (x->0' Q{x-y) = (x-y)' W' W{x-y) = (Wx- Wy)'(Wx- Wy).

The problem is then solved by the following theorem:
The metric on R*, defined by Q = W' PF— w/zere W is a linear transformation

on Rq that keeps volumes constant, L e. det W = 1 — which minimizes D2 on the
finite set £, is:

where V is the covariance matrix of E,
Sebestyen's metric therefore is rfv_ t , with a multiplicative constant which

cornes from the constraint

Q= w'W and det W=\.

The déformation on E is then given by V~l: the countour-lines of equi-
distant points around the mean vector \i of E are ellipsoids :

\i) = Const.

(x-n)'V"1(x-n) = Const.

o (x~\i)fV~1(x-\i) = Const.

which is the équation of an ellipsoid, the axes of which are given by V " l .
Suppose now given a /c-partition P of E, Sebestyen finds local metrics

associated with the classes Pt that minimize the mean of the dispersion Z>?
of each class.

As for the D. C. algorithm, no A>partition is initially given. Classes and local
metrics are simultaneously researched and one can remark that it leads to
the same ellipsoidal countour lines as Sebestyen's: the metrics differ only by
constants, but not in direction. (It is natural, for instance, that there is no
constraint on volumes in D. C. algorithm, since different clusters have to be
compared. It is for the same reason that it needs the additive constants:
Log det Vx which are associated with the dispersions of the clusters.)

On the other hand, the Sebestyen's criterion Df may be written, if

\xt = — X x = mean-vector of P^N; = Card(P()),
N

(x-y)' Q(x-y) = [(x-iiO-CK-»
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N(JV

- E E (x-iO'
x e Pi y e Pt

[*. E

and since

- E (x-tó'Q( E (y-ik))]
JcePi y e Pi

E ü'-ni) = o,
y e Pi

we have:

„ 2 _ 2

Then, given a P = (P1? . . . , Pfc), Sebestyen minimizes the Df by choosing
the optimal g, while the D. C. algorithm finds simultaneously the
/c-partition P and the local metrics that tend to minimize

= E

This paragraph leads us to remark that the local transformations we have
found in the aim of maximizing local likelihoods, while searching Gaussian
distributions, belong to the family of those that minimize the mean of the
square of the distances within the clusters.

6. NUMERICAL EXPERIMENTS

6.L. In an univariate population drawn from three Gaussian populations,
we drew:

• 50 observations from a population of parameters (see appendix 1)
H! = 0 and <yx = 1,

• 50 —• jx2 = 3 and a2 = 2,
• 50 —» |i3 = — 5 and a3 = 2.

Five trials have been performed; exécution time for these trials on
CII IRIS 80: .12 minutes.
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The best trial, with the 115th, 5Oth, 9th observations as starting points
(cf. 4.3), has given the following results:

Results obtained with k = 3
after 4 itérations

j l l = - .04 ai = .9
H2= 3.5 a 2 - 1 . 2
H3 = - 4 . 9 a3 = 1.7

Empirical moments
of the 3 drawn samples

HX = .1 ax = 1.0
^2 = 3.4 a2 = 1.8
^3 = - 4 . 9 a3 « 1.7

6.2. The data: an artificial sample proposed by Duda and Hart (1973)
25 observations drawn (see appendix 2) from the one-dimensional two com-
ponents Gaussian mixture;

— UsingtheD.

Input:

Output:

Pi = 1/3,

P2 = 2/3,

C. algorithm,

P , = 8/25,

P2 = 17/25,

O 1

H2 = +2, <J2 = 1.

in the particular case of gaussian distributions:

k = l,

^ = -2.2, a, = .8,

The convergence is achieved in 2 itérations, we obtained exactly the two
drawn samples, associated with their maximum-likelihood parameters with
any initial drawing. (Execution tinxe for 5 trials: .8 minutes on CH IRIS 80.)

— Using Duda and Hart method (which necessarily requires Gaussian
distributions) :

Input:

Output:
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6.3, 150 points in R2 have been drawn from three two-dimensional Gaussian
populations [see fig. a and b, and appendix 3] of mean-vector \it and covariance
matrices Z, (i = 1, 2, 3).

and

Fig. a. — Original data. Fig. b. — Ellipsoids of equiproba-
büity (95 %) of the distributions
from which the original data arise.

At the point of convergence, of the best of 5 trials three classes are found
after 6 itérations {see fig. c). The parameters of which are:

(- .3; 2.9),

H 2 = ( 2.9; - . 2 ) ,

( 2 . 9 ; 3.0),

' '

= 55.

(This trial had the 53th, 87th and 41st observations as initial mean-vectors,
cf. §4.3.)
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This example shows the efficiency of the algorithm even if the classes are
not clearly separated. Here the exécution time for the five trials is 48 minutes
on CII IRIS 80.

\ t
V

X
\

\
\
\
\
\
f

\
1

Fig. c. — Ellipsoids od cquiprobabUity (95 %)
of the distributions given by the algorithm after 9 itérations.

6.4. 150 points in R2 have been drawn from three two-dimensional Gaussian
populations (see fig. d and e, and appendix 4):

4 273'

2

(The principal axis of the equiprobable ellipsoids of this distribution make a n/6
angle with the lst coordinate axis.)

u2 = (0; 3), S2 =

u3 = (4; 3), L3 =

1/4 0

-h/± \ (-*a(5/6)nangle).

\ 2
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S *> ,

Fig. c/. — Original data. Fig. e.—EUipsoids od equiprobability (95 %)
of the distributions from which the original
data arise.

Two trials have been done:
1) Asking for 3 classes, the algorithm has been used starting from different

initial partitions and the results achieved with the best criterion value are :

2.9),

Fig. ƒ. — Clusters that have been detected by the algorithm after 8 itérations,
asking for three classes.

(Execution time for 5 trials: 0,58 minutes on CII IRIS 80.)
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2) Asking for 4 classes, the algorithm has been applied starting from four
different initial partitions. The classification obtained at the trial that gives
the best criterion value is shown on figure g. (Two of the initial classes are
recognized, the third one is eut un in two parts.)

Fig. g. — Clusters that have been detected b} the atgorithni af ter 8 itérations,
asking for four classes.

Comparing the results obtained from the four different initial drawing there
are 23 stable classes (see fig. /i) —sets of points that have been classified together
in all the 4 trials, see 4.4—but, by gathering these stable classes as soon as
they are classed together in three of the four trials, there remains only three
patterns (see ƒ g. i) which are the three that have been given.

ij; // — Stable classes got after four Fig. L — Sets of points that have been
different drawings asking for four classes. classified together in three of the four

drawings asking for four classes, using
the array of stable classes.

This example shows how the use of several initiai partitions and of stable
classes can be of help when the actual number of components of the
population is not known.
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6.5. An Application in Operating Systems Modeling

Modeling is an attempt to describe in mathematical terms a physical system
(operating system, biological system...). Knowing some input parameters,
the model permits to compute likely values for other parameters (output).

As soon as the considered Systems becomes complex, stochastic models
are not anymore the numerical values of some parameters, but their probability
densities.

In operating Systems modeling, theoretical results allow to use queuing
networks models where service times may be assumed distributed as mixtures
of gamma densities or even anyhow, in the case of approximation by a diffusion
process (in this case, gaussian mixtures have been estimated).

Our application consisted in using the algorithm presented hère on a sample
of measures that have been picked up on a real operating system to estimate
the service times distributions; these formulas may now be used in mathema-
tical models or in simulation to generate artificial samples.

The computing aspect of the problem and all results are thoroughly described
in [17].

7. EXTENSIONS

Many extensions in various directions may be considered to enlarge the
algorithm field of applications.

Let us introducé those that have been recently studied.
Though this likelihood based method has proved its efficiency, we have

tried to replace it in a more genera! context to that it could be extended other
estimation methods'and to the optimization of other criteria [26].

Another step in generalization is the following: the scheme presented here
consists in optimizing the criterion function at each itération by computing
a new set of kernels for the preceeding partition; the proposed generalization
replaces the optimization by a plain "improving" of the chosen criterion:
convergence properties may be proved under this new assumption [27] and
this extension widely enlarges the possibilities of the algorithm.

For instance, it allows to optimize a likelihood criterion when dealing
with distributions that do not admit maximum-likelihood estimâtes for their
unknown parameters, such as Gamma distributions (see application 6.5).

8. CONCLUSION

This paper introduces the gênerai Dynamic Clusters algorithm as a useful
tooi in mixed distributions détection, and présents one way among many
to apply it.
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The interest of the proposed method can be seen in the described
experiments. Anyway, this work is only a first step in that sort of application
and further research has to be made on the following points:

— the initial choice of a partition or of kernels;
— the interprétation of the stable classes; have they a probabilistic

significance in the case of distributions détection?
— the problem of the number of classes—which is close to the precedent;
— the choice of other criterion functions associated with other estimation

techniques for the tunction g;
— the use of labelled samples if they are some, which would lead to a

supervised learning approach.

APPENDIX 1

50 observations from a Gaussian population of parameters jJ-i = 0 o\ — 1

1 7394
- 0423
- 6672
1785

- 2401

2
1

1

6194
1062
4114
7724
3913

-1

50 observations from

2 9314
1 8650
2 6453
5 8085
9066

4
4
4
2
3

3458
9257
9680
9557
9800

1

3
1
6

3708
7442
4637
7588
5089

3497
1 5797
- 0791
4954

-14681

14361
8246
3015
8018
6116

_

-

a population of parameters

6919
7697
9999
4572
0400

5 0392
2863

1 2877
4 1418
2 4195

C
/1 0085

2 7909
5
3
2

7267
7362
1572

5312
1647
0975
3521
8819

2 6981
4

7
1

50 observations from a population of parameters

2 8243
3 8914
3 2204
-3 3577
-4 6563

-6
-4
-6
-2
-6

9449
3042
0275
8789
0423

6 2504
6 8031
-7 1818
-3 0543
2 3475

-6 9985
6 0803
-2 8435
-6 4160
3 7037

3
-3

7375
2544

4 4249
-3
-5

0076
0953

-5
-4
6
6
-1

1684
7706
1410
1677

4383
8036
9575
3012
2384

_

-

3
3
5
1
1

-2
5
-5
-6
-5

1120
5664
1285
1036
2125

1122
8922
0836
2201
5911

i3=-5

9924
5317
9212
7394
5724

1

G

2
3

5
1

0

-5
-3

1088
0836
3514
2092
2124

3901
8375
4341
0516
0378

0097
9576

2 9093
-3
2
7253
2887

_
-1

1
-

2
1
5
5
5

-5
-1

-5

3396
4007
7351
1873
3618

3309
9952
6432
3289
9066

1264
9603
1652
6971

3 5806

-

1
-

4
1
7

0164
8435
4271
2409
2588

4738
4338
7662

4 5089
2 0994

-1
4
-4
-4
-6

6716
1438
8075
6550
8857
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APPENDIX 2

25 observations drawn from the one-dimensional two components Gaussian
mixture [see Duda and Hart (1973)].

2n L 2 J 3y27i L 2 J

with [i1 — — 2 and JI2 = + 2 .

A:

1.
2
3
4
5
6
7
8
9

10
11
12

*k

0.608
-1.590

0.235
3.949

-2.249
2.704

-2.473
0.672
0.262
1.072

-1.773
0.537

(Ciass)

2
1
2
2
1
2
1
2
2
2
1
2

k

13
14
15
16
17
18
19
20
21
22
23
24
25

xk

3.240
2.400

-2.499
2.608

-3.458
0.257
2.569
1.415
1.410

-2.653
1.396
3.286

-0.712

(Class)

2
2
1
2
1
2
2
*>
2
1
2
2
1

APPENDIX 3

150 observations from a Gaussian population of parameters :

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 103

û o t r o > t f o r ^ * ^ O ( o ( N O o O t r o o o o > ^ o o
i O C O C * ^ ©vOCOr*N©NOmON r-'Oi-i i-i t^ ̂  « O NO\O© m~* v© V1<S ̂  ON m~-<<* i—it— f* ON VJi-iOO Vï iftcO ̂  ^ ^<S

m V) ̂ H o\ rt w vo m ON oo O ON *-< r* (*ï m O O ON C-* NO C) oo ̂  O oo 1-1 ON c*» oo ̂ * *T NO ̂ " v© '-' oo -̂< ~* m N© v© m *-i oo ̂  t** oo ^
o en vO ̂ <h ^^ t^ i/) ̂ h Ov ̂ t in Oj *-H vj o i / i in ̂ f ̂  fo oj c* en in oooo oo O f j \O j o i/j VÏ O o o * O o O O o O i i n ' j

oo c< r< O ^ o o ^
r^ O i - « i n O N < > t ^ f O O N ^ ^ r n ^ r - ^ O N O o o r - t n o N inoo i n o o f ^ t O ^ * O O Ï N O

^ ^ ^ i n ^ \ Û ( N O V ) ONt--0000 O\^OvO « O O O W fS O t ^ O l - H ( S i n St (SOOOOr^ V)<S v
O ^ n n o O f * j ( s r j v o o o o N O i n o o i > o o o O O O O t o o t o o

r i r i ci^rö m ̂ <s in r i ^ ri rn rî ^ rn r i rJcJ ̂  rô ̂ mes *H*H*-H

o r - o o o \ 0 — « < N m n f m v ô t - o o O ^ O ^ H çs c o ^ - i n v © r - o o o \ © * H < H

oo O ~H I-H oo oo (S vo ̂" m c* o> c>i ̂ o t^ vo (s oo oo oo Q\ (S r- r- oo O\ ON C^ OO ̂- I-H <S m »-< ̂ " O m »-H ON ̂ t"* ̂" oo m ̂ H ̂- \Q \n »n
u <-H ONr«vo^r moNOO o o o o n ^ o o o o o t - ror-ramoo ô NO o ^ f t^ooro^- woo^û wioo^ OI-HOO^OOO m ovooor-oooom
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APPENDIX 4

150 observations from a Gaussian population or parameters

f
4

2^3* •O-
\ 2

\2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

88
26

-1 00
18

- 18
- 35
- 39
25

- 47
46
02

- 07
- 62
97

1 13
01
38
19
36
30
09
34
25

- 61
- 38
- 25
39
07
08
10
12

- 42
55
04
19

- 04
56

- 82
08

- 54
-105
- 53
- 18
14
00
20

- 29
53
41
22

2 85
2 62
3 05
2 72
3 34
2 56
3 84
2 94
2 62
271
3 21
2 39
242
3 02
3 31
3 70
2 44
3 29
3 29
363
3 15
3 22
2 96
3 31
2 24
3 12
3 05
2 23
2 38
2 74
251
3 44
3 02
2 18
2 43
3 49
2 56
3 92
2 00
3 18
261
3 01
3 08
2 37
2 01
3 24
3 81
3 22
3 51
3 58

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

4

2^3

161
102
55

125
-3 18

44
04

2 71
1 20
- 86
183
3 69
150
24
82
32

1 19
77
66

-2 22
180
- 15
- 99
-2 12
2 59
102
-2 68
-2 76
2 82
104
353
-184
-2 48

92
2 08
4 71
- 41
-2 22
146
1 74
3 25
88
43

-167
29
29

-1 50
-148
- 06
50

46
68
47

1 25
80

- 27
- 35
1 17
26

-123
- 23
1 75
93

- 61
1 72
01

1 10
47

- 44
-1 85

99
14
07

1 16
1 70
58

-1 55
-1 50
105
-2 03
1 60
- 09
- 88
87

1 77
1 93
87

1 94
1 33
03

2 05
1 08
- 71
-1 30

90
90

- 55
93
44
88

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

4 74
5 69
3 26
2 90
4 07
68

3 97
4 34
3 38
3 81
2 04
161
3 35
7 23
5 02
5 46
4 35
4 38
5 07
4 55
82

5 30
6 15
251
5 90
2 82
2 33
3 14
3 98
3 40
2 32
1 14
2 16
5 31
2 73
5 35
5 93
151
6 86
4 16
6 02
8 22
4 01
7 33
2 41
- 33
2 22
3 83
142
4 45

2 15
2 20
2 55
3 68
3 09
5 86
2 91
1 77
3 31
3 45
3 72
4 58
3 14
78

2 40
1 79
2 42
211
2 30
2 42
3 44
261
1 44
4 48
2 09
3 28
3 93
3 43
4 12
3 63
3 78
5 02
4 50
271
3 19
2 77
147
4 47
2 44
2 22
1 77
59

4 18
1 84
4 14
5 23
3 28
3 35
4 04
3 00
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