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A NEW APPROACH IN MIXED DISTRIBUTIONS
DETECTION (*)

by E. DIDAY et A. SCHROEDER (%)

Abstract. — Our aim is to detect in a given multivariate sample the possible presence of
sub-samples drawn from probability distributions of some known type.

In the first paragraph, the Dynamic Clusters method is described in the general case of
unspecified kernels. Afterwards, it is applied to the above quoted problem of mixed distributions
detection, taking probability distribution functions as kernels.

As presented here, the algorithm maximizes a likelihood criterion function.

1. INTRODUCTION

1.1. The Problem

From a multivariate sample, all multidimensional techniques (principal
components, factor analysis, multidimensional scaling, clustering techniques,
hierarchical or not) give a description of the population, that have afterwards
to be interpreted either by further statistical methods (e. g. discrimination, ...)
or by common sense. These techniques need no probabilistic assumption,
neither necessarily refer to any probabilistic model.

On the other hand, problems and techniques of modelization exist which
try to adapt a stochastic model to a real phenomenon.

Our own purpose consists to detect if a given sample contains sub-samples
which could have been drawn from populations distributed according to a
known family of probability distribution functions.

More precisely, given a sample, we shall try to find if it results from the
«effects” of several stochastic phenomena arising from different distributions.

This problem is the classical Resolution of Mixtures when one can assume
that the overall distribution function—which will be written F (x)—actually
follows the model:

F(x)= Z Pij(x), 1

15k

(*) Regu janvier 1975, version révisée décembre 1975.
(*) LR.LA. Rocquencourt.
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76 E. DIDAY, A. SCHROEDER

— P;: a priori probability of the jth distribution;
— F;(x): jth distribution function belonging to a known family.

In terms of signal theory, this same problem can be expressed (in the
case: k = 2) as “a model of observation signal consisting of a mixture of two
unknown pulse waveforms of some duration 7, which occur independently
successively at random with probabilities P; and P,, imbedded in additive
zero-mean stationary Gaussian noise with uaknown power”’ [from W. D. Gregg
and J. C. Hancock (1969)].

1.2. Various Approaches

A number of techniques have been proposed to this end. We shall classify
them in two categories, according to the problem they solve.

Those, that use model (1) in its analytical form, and that estimate the P;
and the unknown parameters on which the F; depend:

Fi(x)=0(x, 0) with 6;eR’

unknown, but ¢ known.

Those that are first looking for components from a mixture of a given type
in the observed sample, and estimate afterwards the unknown parameters.

The first category techniques are estimation techniques and they only differ
in the type of estimators they use: method of moments [Pearson (1894)]
with maximum likelihood estimates [Rao (1948), Day (1969) ], minimum %2, etc.
Most of them are adapted to Gaussian distributions and often tothe univariate
case; let us note two of them: Rao (1948), specific for two classes mixtures;
Battacharya (1967), who gives a graphical method to determine the number
of classes, but needs a large number of observations to be collected and the
different distributions to be adequately separated; for a general review of
these techniques, see Dorofeyuk (1971).

Day (1969) also deals with two components, that may be multivariate.

Another approach to the estimation problem of model (1) is Cooper and
Cooper’s (1964): the unknown parameters are deduced from the moments
of the overall observed distribution.

In order to study the multivariate case, particularly when the number of
components is larger than two, many assumptions have to be made (e. g. Day
assumes that the covariance matrices are equal; from a practical point of
view, Cooper and Cooper study the case of two distributions only differing
hy their means).

The second category techniques include bayesian methods, stochastic
approximation, supervised or non supervised learning,...

The algorithms of approximation type are very different. Most of them
attempt a bayesian approach [Patrick and Hancock (1966), Patrick and
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A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 77

Costello (1970), Patrick (1972), Agrawala (1970)] though giving quite various
techniques. The hypotheses differ from one method to another, but are usually
very restrictive.

This kind of approach enables to formalize the mixed distributions detection
problem in terms of unsupervised learning [Agrawala (1970), Patrick (1972),
Duda and Hart (1973)].

An information theory criterion can also be used for a stochastic approxi-
mation algorithm [Young and Coraluppi (1970)] which is very interesting,
because it is not needed to know a priori the actual number of components
in the mixture; it is however restricted to one-dimensional Gaussian
distributions.

1.3. The Dynamic Clusters Approach

Our own approach may be roughly classified in the second category
techniques. We only want to detect in the population the possible presence
of samples of some known distribution, but we do not make any assumptions
about the global distribution.

However, if the user can make hypotheses on the representativeness of the
population as a sample of a global population and can admit model (1) for
the overall distribution, then our algorithm will give him a solution of the
mixture type, as soon as goodness of fit may be proved.

We shall use an algorithm of the “Dynamic clusters’ type (c¢f. Diday,
[6] to [9]) i.e. an algorithm that detects parallely clusters among the obser-
vations and some typical features for these clusters: the “kernels’’; for us
the feature to find will be fitness with a probability density of some known
type.

Our algorithm will be presented in a general form for any density function,
any dimension for the sample space and any number of components.

The only input we need is the form of the probability distribution function
and the number of components. However, we can see that this last hypothesis
is not really restrictive, because the actual number can be found by several
means even if the algorithm has run with another a priori number.

D. C. algorithm has been thoroughly studied in E. Diday ([6] to [9]) in
two particular cases: when the kernels are linear manifolds (in factor analysis),
and when they are subsets of the population, in non-hierarchical clustering;
in that case, the algorithm belongs to the class of methods such as Isodata
(Hall and Ball, 1965), k-means (MacQueen, 1967), iterative relocation
(Wishart, 1971).

In the first part of the paper, we shall recall the D. C. (Dynamic Clusters)
algorithm in the general case—for any set of kernels—and its convergence
properties. Afterwards, the problem will be formalized in precise terms
and D. C. applied to it.
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78 E. DIDAY, A. SCHROEDER

Several practical remarks will then be made, essentially’ concerning the
number of components. Afterwards, the particular case of mixed gaussian
distributions will be developped, as it brings interesting results from a geome-
trical viewpoint. We shall then conclude with several examples.

2. THE DYNAMIC CLUSTERS ALGORITHM

2.1. Notation

— Let E be any finite subset of R%;

— P,: the set of all partitions of F into k classes; the elements of P, will
be called: k-partitions.

PeP, <= P=(Py, ..., P);

— L: a set that will be called the space of “kernels’’. These kernels will
be associated with subsets of E, as a characterization of these subsets depending
on the application of the algorithm;

— L,: the set of all k-tuples of L:

LeL, < L=\ Ay, ..., ) where M,eL, Vielk]
Gf]K] ={1,2, ..., k}.

The D. C. algorithm solves the following problem: To find a couple (P, L)
where P € P, and L € L, that minimizes some criterion function, which will be
denoted W: L, xP,— R*. Many problems can be written in these terms as
long as any choice is possible for the kernels and the criterion function.

The general idea of the algorithm is then quite simple: It consists in deducing
from any element of L, an element of P,, and from this element of P, an
element in L,, so that the values of the criterion function on successive
couples (L, P) decrease. To be precise, we shall need some more notation:

.D: ExL-R",
(x, M) D(x, A)

will express a “‘distance’” between an observation and a kernel.

.R: Lx]k]xP,—»R",
(x’ i’ P)HR(X’ i’ P)’

will give a measure of the goodness of fit of kernel A with the ith element P;
of the k-partition P.
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A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 79

The way to associate a k-partition with a k-tuple of kernels will then be
given by the following function:

S Li- P,
L=y, ..., N) = f(Ly=P=(Py, ...,P),
where:
P;={xeE/D(x,\) = D(x, Ay, Vje]k]}.

(In case of equality, x will be assigned to the lower index class.)
P; is therefore built with all elements of E that are “nearer’’ (in D sense)
to A; than to any other kernel of L.

Reciprocally, to associate a k-tuple of kernels to a k-partition, we shall
introduce the function g:

.g: P.>L,,
P=(Py, ..., P) = gP)=L=(y ..., M),
where, V i € ]k], A; is given by:

R(\;, i, P) = minR(, i, P).

AeL

In other words, among all possible kernels, A; is chosen as the nearest
(in terms of R) to P;. [If this definition leads to several L, one has to define a
unique choice, so that, for any PeP,, g (P) is a well determined element
of L,].

The criterion to minimize will be defined as:
.W: L,xP,»R",

v=(L,P) = W= Y R, i P).
ieJk]

The problem is now an optimization problem:
Minimize W(v) for all veL, xP,. 2)
2.2. The Algorithm

The D. C. algorithm is based on two sequences:
- (Un)’ iIl LkXPk ’ ie v, = (L(”), P(n));
— and u, = W(v,)eR",

juin 1976.



80 E. DIDAY, A. SCHROEDER

Let P, be any initial k-partition (it can either be drawn at random,
or chosen) and L@ = g (P©)— v, = (L9, P®). The sequence (v,) is then
defined recursively:

Vyrr = (L&*D, P&*D) js deduced from v, by: P®+D = f(L™) and
Lintl) = g(P(n+1)).

We shall show that—under certain constraints—the sequence u, = W (v,)
decreases. As it is o sequence in R*, it converges, and we shall see (th. 2)
that its limit is attained:

iM, Vn=M, u, =u*.

A couple v* = (L*, P*) such as W (v*) = u* will be called a LOCAL
OPTIMUM for the problem.

A couple (L*, P*) will be called a GLOBAL OPTIMUM if:
W(@*) £ W(v) for all veL, xP,.

For a v* given by the algorithm, this inequality only holds for v in a part
of L, x P, , this is why it is called a “local’’ optimum. For further information
on this optimality, see Diday [9].

We shall see now how (u,) decreases.

— proofs of the results are given for self-consistency but are not necessary
to understand the following sections. —

DEFINITION 1: A function R : Lx Jk]x P, — R* is said SEMI-SQUARE,
if’:

6] VLeL,, W(gef(L),fogof(L)= W(gef(L), f(L))

(The sign o is used to denote the composition of functions).
(1) can be written equivalently:

19 VPef(Ly), W(g(P),f-g(P))=< W(g(P), P).

THEOREM 1: If R is semi-square, the sequence (u,) decreases and therefore
converges.

Proof: We shall prove the following inequality:
U,y S U,, Vn,
in two steps:
a) Upyy = W (LOFD, poty < (L@, pe+D)
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A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 81

and
b) Ww(I™, Py < WL, Py =u,,
a) un+1 — Z R(xfn+ l)’ i, P(n+1))
ielk]
and

W(L”, PPy = % RO, i, PO D).

ie k]
Since, for each i e ]k], A{** 1) is deduced from P**+1 by function g, so that:

RAS*Y, i, P"*y = minR(), i, P+ 1)
Ael
we have in particular:

vielkl, ROL*D, i, PUD) < RO, i, PO+D)

and therefore, a) is proved.

b) As soon as n 2 1, P®™ = f(L®-V) and then P™ef(L,). Since R is
assumed to be semi-square, by property (1) of definition 1 applied to P™:

W(Eg(P™), fog(P™) = W(g(P™), P™)
and as:
gP™)=L" and  fog(P®)=f(L) =PV,
we have:
W(L", P"* Dy < w(L”, P™),
which proves b).
Then, (u,) decreases and as it is a sequence in R, it converges.

Q. E. D.

ReMARK: The property that R be semi-square is necessary and sufficient
to prove b), but it is only sufficient to have (u,) decreasing since we could
have u,,, < u, without the intermediate inequalities we have used.

ProPOSITION: The two following conditions (2) and (3) on R are sufficient
to have R semi-square. Moreover (2) implies (3).

VLeL
@ VPGP:
(3 VL,MeL,; W(L,f(M))=< WM, f(M))

= W(L, f(L)) £ W(L, f (M)).

} W(L, /(L)) = W(L, P),

juin 1976.



82 E. DIDAY, A. SCHROEDER

If (3) is true R is said to be SQUARE.

Proof: One can see easily that (2) = (1) and (2) = (3).

Let us prove that (3) = (1):

As (3) stands for all L and M, we can write it for L = go f (M), then:

(3) = VMeL,,

W(gof(M), fogof(M)) = WM, f(M))
= W(gof(M), fogof(M)) = W(gef(M), f(M)).

By definition of g and W from R, we have:
VMeL,, VPeP,, W(g(P), P) £ W(M, P).

[This had in fact already been proved in the inequality ) of theorem 1.]
Therefore, the left-hand side of the implication is always true and the
implication is reduced to its right-hand side, for all M, which is exactly the
condition (1).
Q. E. D.

COROLLARY 1: If R is defined as:

VieL, VPeP,, RO i,P)= Y D(x M),

xeP;
then the sequence (u,) decreases and converges.
Proof: We shall see that the condition (2) is true for such an R: Let us take
L=y -5 A and f(L)=0Q0=(Qy, ..., Q).
Then, for all Pe P;:

it

WLP)= Y T Deuhp

jelkl xePy

= 2 X D(,A)3p(x)

xeE jelk]

[where 8, (.) is the characteristic function of P;, i.e.: §, (x) =1 if x € P;
and = 0 otherwise.]

On the other hand:

W(Lsf(L))= Z R()\‘i’i’ Q)= Z Z D(x’ )"1)

ielk] ieJk] xeQ,
= 2 2 D M3
xeE ielk]

Revue Frangaise d’Automatique, Informatique et Recherche Opérationnelle



A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 83
As Q = f(L), and by definition of f, we know that x € Q; if
D(x, M) £ D(x, \))
for all j, which implies, for all Le L, and PeP,: W (L, f(L)) £ W(L, P).

Q. E. D.

As we have studied the convergence of (u,), we shall now see how (v,) can
give a solution to the problem (2).

DEerFINITION: An element v = (L, P) € L, x P, is said to be UNBIASED for
the functions fand g, if P = fog(P) and L = go f(L).

DEeFNITION: A sequence (L™, P™) in L, x P, is said to be convergent if
there exists a M such that:

Vvax=M, (I, P™)=(L¥, P*).

THEOREM 2: If R has the two following properties:
() semi-square,

(i) VPef(Ly, Vie k], R(\, i, P) is minimum for a unique \,. Then,
(v,) is convergent and its limit is an unbiased element.

Proof: Since E is assumed to be a finite set, P, is finite too. By definition,
E is such that, for any Pe P,, g (P) can only take one value in L,, then
g (P) = L, is finite too and (v,) and (»,) can only take a finite number of
values. As (u,) converges, its limits «* is reached:

IM, Va2 M, u,=u*

Thus, Y 2 M, W (L™, P®) = W (L#+YH, Pe+D) which implies that the
two inequalities @) and b) of theorem 1 are equalities:

W( L("), P(n)) = W( L(n)’ P(n+ 1)) — W( L(n+ 1)’ P(n+ 1)).
The second equality may be written:

Y RGP, i, PO"D)y= 5 RAPTY, 0, POTD),
ie Jk] ielk]

The hypothesis (ii) implies:
Vielk]l, RQASD, i, P**D) < RO, i, PUTD),
with equality if and only if A"+ D = A™,

juin 1976,



84 E. DIDAY, A. SCHROEDER

We then have two sums of positive which are equal while every term of one
of them is less than or equal to the corresponding term of the other. This is
only possible if all corresponding terms are equal and therefore:

}\4§"+ 1) _, 7\:?.), Vie]k] P I‘('l“'l) —_ H").

Then P®*V) = f(L™) and P**+2? = f(L™) imply that P*+1) = P®+2) and
the convergence of (v,) is proved:

VngM-*'la vn=vn+l=v*a

v* = (L, P*) = (L, P?) = (g(P"), P")
{ P*=P",
L* = g(P™)=g(P"),

and

v¥ = (L¥ P*) = (L"), P = (go f(L™), f(L™)
{ P*=f(L*) =fog(P*,
L* =gof(L".

Therefore v* is an unbiased element for fand g.

3. MIXED DISTRIBUTIONS DETECTION

3.1. The Problem

We shall now write in mathematical terms the problem we have informally
described in the introduction.

Let E be a set of N observations on which g measures have been taken:
then E is a finite subset of R?.

Suppose we are given a family of probability density functions: (/) .5,
which depends on the parameter A, with A e L < R*, [For instance, if g = 1,
this family could be that of Gaussian univariate distribution with A = (i, o),
s=2,L=RxR"]

We want then to find a couple (L, P), where L = (A, ..., M), A;e L and
P = (P, ..., P is a k-partition of E, such that for all ie ]k], P; may be
considered as a “likely”” sample of the distribution f;, . v

To this end, we shall try to maximize the product of the likelihoods of
the k “samples’’ P; for the densities f;, , or, in other words, to find L* and P*
such that:

L P=max [ T[] A.&.

LeLy ielk] xePy;
PePx
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A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 85

Let us now note

Vi(P) =11 £,

xeP;

We shall show that, in fact, the D. C. algorithm make the following
criterion (') on (L, P) decrease:

W(L, P)=K— ) LogV,,(P)
ieJk]
(where K is a constant).

3.2. The Algorithm

Let us take:
e E e R? The finite set to classify.
o L e R* Set of the kernels (which will be exactly the set of parameters
introduced above).
' D: ExL-R*,
(x, M) D(x, ) = Log(f*/fi(x)),
where f* = max {f, (x)/heL, xe E}; it is sufficient to know such an f

exists to use the algorithm; for instance, for univariate Gaussian distributions
with A = (i, 0):

maxf, (x) = QII)"2¢"2

xeR

and then a possible f* is:
f=QmM™"%ds"  if do=min|x—y|".

xe€E
yeE

This definition for D expresses that the greater f, (x) is, the nearer to kernel A
the observation x is. (It can also be said that the likelihood of the sample { x }
is large for £)).

® R is then defined from D:

R: Lx]Jk]xP,—>R",
(A, i, PR, i, P)= 3 D(x,M\),

xePy
R\, i, P)= : % ]Log (f*1A(x)
= Log[(/'"!/ T] Ai(x)](where | P;| = card P))

x€eP;
= Log[(/' ™ V. (P)].

() The same problem may of course be formalized in other terms.

juin 1976.
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e Finally, the criterion is:

W: L.xP,>R*,

ie k)

[if L=y, ..o A))
W(L, P)= Y. Log[(f'"!/V,(P)].

ielk]

W(L, P) =Log (f*N— Y. Log V;,(P) (since 3. | P;| = N).
ie k]

ieJk]

So the above formalization leads us to a criterion which expresses that we
shall maximize the product of the likelihoods of the k samples P;.

The two fundamental functions of the algorithm, f and g, become:
L4 f: Ly—=P,,
L=y, ..., ) = P=(Py, ..., P),
where
P;={x€E/D(x,\) < D(x,\)),Vj#i},
P;={x€E[f,,(x) 2,(x), Vj # i}

(x being assigned to the lower index class in case of quality).
The elements of E are therefore assigned to the class to which they more
likely belong.

b g: PoL,
P=(P,,...,P) = L= .., N)

where A; is such that:

R(\;, i, P)=minR(A, i, P)

rLel
- R(Ai, i, P) = minLog[(f %' "/ W3, (P)]
AeL
g Vi, (P) = max V, (P)
Lel

<> A; is the maximum likelihood estimator of A, deduced from sample P,.

This definition determines uniquely g (P) since, in usual conditions of regula-
rity for density functions, and at least when f; is the general family of the
exponential type distributions, there exists one and only one maximum
likelihood estimator for. (See for instance Fourgeaud and Fuchs.)
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3.3. Convergence of the Algorithm

THEOREM 3: Given:

— a number of classes, k;

~ a family of distribution functions ( f,), .-

The sequence & (L™, P™) of the products of the k likelihoods increases and
converges. o

The corresponding sequence v, = (L™, P™) converges towards an unbiased
element.

Proof: Since R is defined as in the hypotheses of corollary 1 (see 2.2), the
sequence W (L™, P™) decreases, and since:

W(L™, P™) = Const.— Y. Log V,, (n)(P{”) = Const.—Log % (L™, P™),
ie k]
£ (L™, P™) increases and converges.
The convergence of (v,) is ensured by theorem 2.

4. PRACTICAL ASPECTS AND INTERPRETATION

4.1. Meaning of the k£ Classes Obtained

When the D. C. algorithm is applied to mixed distributions detection,
the k classes obtained are attached to the two following constraints:

— the notion of likelihood which has been taken as a quality criterion;
— the family of probability densities which is initially chosen.

Before anything else, goodness of fit tests must be made for each class i,
between the sample P; and its computed probability density function f, .

4.2. The Overall Density and the Resolution of Mixtures

In the specific case where E can be supposed a representative sample arising
from an underlying distribution and when model (1) is assumed, then an
overall distribution on R? can be deduced from E and (L, P):

VzeRY F(z)= Y Pr(zeP)f, (2),

ie 1kl

where the probabilities Pr(ze P;) are estimated by the frequencies:
card (P)/N.
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88 E. DIDAY, A. SCHROEDER

The D. C. algorithm then gives a solution to the mixtures resolution problems
this solution must of course be checked afterwards with goodness of fit test;
(for such an application of the D. C. algorithm, see example 4.2).

4.3. The Initial Partition

It has been seen that the algorithm needs a partition of E as a starting point.
The first idea which comes to mind to build this initial partition is of course
a random classification. Several numerical tests have proved that it was not
convenient to do so: In fact, if the k£ classes P§°’, P and P are really
uniformly distributed on E, the maximume-likelihood estimators of the unknown
parameters will take almost equal values; this means that

L =g(P®) =0, ... %"

will be such that: M® # A # ... # A and the new partition P = f (L)
will be very loose; the algorithm has then difficulties to converge and takes
anyway a large number of iterations.

Consequently, we have adopted a particular way of chosing P(®: We cut
up the ranges of E in all ¢ dimensions according to the given number k.

— Ifg =2,k =3 and given an a€ ]0, 1], the cutting up is shown in figure 1.

\ \
\
\ \ M
\ \
\ (o) (o)
\ P2 \ P
\ \
(o) ‘
x o Pl \ \
\ \
\ \
\ \
\ \ (x +ay = Cst)
\ \
\ \
Figure'l.
XMecE such as: XY + a XY = (ma;() (x1 + axy).

XmeE such as: X7 + aX? = min (x; + axs).
{xeE}
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By this mean, the space R?is cut up by hyperplanes, but one can imagine
many other ways to get the initial partition: cutting up for instance, by curves,
or around spheres, etc.

Moreover, it is not necessary to start from a partition, the user may have
rather chosen initial kernels L(®; P®) is then taken as f(L'®) and the
algorithm goes on as above. A way to get an initial L is for instance to draw
at random k elements of E, take them as mean vectors for the k-initial distri-
butions and calculate the other parameters of the distributions so that the
range of E in R is entirely covered.

4.4. Notion of Stable Class. The Number &

Knowing that different initial partitions lead to different unbiased elements,
it seems necessary to compare the elements obtained from a given set of data
with several trials with different initial partitions.

To this end, let us consider the following table ( Fig. 2):

o8
l 2 PRI I SRS j see e ne e——I0]

. »
N .
x ..QQ.QQ-..CQ...n..(x)ollcnog
. J
J .

Figure 2.

n; (x) = number of the class to which x belongs in the partition obtained at the jth trial.

The elements of E are then compared with one another with the help of the
following measure of dissimilarity:

Vx, yeE, 0(x, y) = number of trials in which x and y have not been
classified in the same class.

In this way, x and y are near if they often belong to the same class of the
obtained partitions. 8 (x, y) = 0 means that they always belong to the same
group.
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DEFINITION : A ¢sstable class’’ is a subset 4 of E, such that:
Vx, yed < 6(x,y)=0.

The set & of all stable classes is nothing else than the quotient space E/R
where R is the relation of equivalence:

xRy < 0(x, y)=0.
The properties of the stable classes are thoroughly developped in Diday
([6] to [9]) in the case of non-hierarchical clustering where they are called
“strong patterns’’.

-The example 4.4 shows how they are of use as a complement of information
about the true number of classes existing in the population.

5. THE PARTICULAR CASE OF GAUSSIAN DISTRIBUTIONS

5.1. Definition of D. R, W, f and g in the Gaussian Case

Let now the family of i)robability densities (f,/A € L) be the Gaussian
family, i. e.:

VxeRY% fi(x)= (I 7*(det V)“’ZCXP[— %(x—u)' V-l(x—u)],

where A = (i, V) with:

neR?: mean-vector of the distribution,
V: its covariance matrix (g X q).

— Here, L = R?x & [if & is the space of all (¢ x¢) symmetric positive
definite matrices| and we have L < R® with s = ¢ (¢+1).
Now, we can define D, R, W, fand g:

e D(x, ») = Const.+ %[Logdet V+Gx—w' V1 (x—w]

— As V1 is a positive definite and symmetric matrix, it defines on R? a
quadratic distance which we shall denote d, _,.

Vx, yeR% dp-i (x, ) =(x—y)' V ' (x—y)

= D(x, \) = Const.+ %[Logdet V4dy-i(x, W],
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o RO i, P)= Y D(x M),
{xe Py}

R(M\, i, P) = Const.+ %[ Y. [Logdet V+di-.(x, w]],
xePy
Y, d2-.(x, p) is the quadratic dispersion of the set P, around the point p

xeP;

for the metric ¥ 1,

° W(L,P)=Const.+ ) R(A;, i, P)  where A;=(y;, V),
ielk]

W(L,P)=Const.+% Y Y (Logdet V;+di-1(x, W)

ielkl] xeP;

=Const.+%[ Y | Pi|Logdet Vi+ Y. Y diri(x, m)]
ieJk]

ielk] xeP;
e f: L P with:
P;={xe€E[D(x,\) £ D(x, X)), Vj #1,
with x assigned to the lower index class in case of equality }:
Vielk]; P, ={xeE[Logdet V;+dp;(x, 1)
< Logdet V;+dp;: (x, ny, Vj}.

e g : P L, where, for all ie Jk], p; and V; are the maximum-likelihood
estimates of the mean-vector and of the covariance matrix of the sample P;.
We know these estimates are given by:

1
W= — X
IP,‘ xEZPi
and
1 ,
Vi= —— Z (x—p)(x—ny)'.
Pil xePy

5.2. Geometrical Interpretation

In this particular case we see that the function f reclassifies the elements
of E in the following way:

The “distance’” between an x€ E and the ith kernel A; = (u;, V) is
expressed as the sum of two quantities:

- d‘;f‘ (x, n) = distance from x to p; for the metric V
and

— Log det V;, which does not depend on x but onlyon ¥; and is a charac-
teristic feature of the dispersion of the ith distribution.
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Therefore & kernels define on R? k local metrics.

The unbiased element obtained at the point of convergence gives a system
of k local metrics A; around k different points p; (the mean-vectors) such that:

— A, is entirely defined by y; and a positive definite, symmetric matrix V;,
with the distance between x € R? and y, in terms of A;:

Logdet V,-+df,(_, (x, 1)
and:

— if P=(P,, ..., P) is the k-partition of E which is determined by
theh,, (i=1,...,k)ie.:

= { x € E/x is nearer in terms of A; to p; than to any p-in terms of A, },
then, p; = mean-vector of P; and V; = covariance matrix of P,.

We can then consider that our algorithm has given a solution to the following
problem: To find local metrics in R? that express in some way the features
of E.

In fact, the countour-lines of the points that are equidistant from p; in terms
of A; are the ellipsoids of inertia of the Gaussian distribution of

parameters (4;, V;): our algorithm, in this case, is therefore able to detect
ellipsoidal clusters.

5.3. Sebestyen’s Problem (see Sebestyen and Romeder)

In his works on clustering and descrimination, Sebestyen has been brought
to the following problem:

Knowing a finite population E of N elements, in RY, to find the distances d
in R? that minimizes the mean of the squares of the d-distances between
all N points, two by two. If this mean is denoted by D?:

D*= Y ¥ 4 ).

N(N l) xeE yeE

In fact, he searches d in the class of the euclidean metrics that are defined by
a positive definite symmetric matrix, and therefore looks for such a matrix Q
which minimizes D?:

1
2 _
b N(N-1) xgb‘ y;E (=Y Q(x=2).

N.B.: One remembers that any positive definite and symmetric matrix Q can
be written: Q = W' W, where W is triangular. Then, to assign the metric Q
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to R? is equivalent to assign the usual metric to the transformed of R? by the
application: x +— Wx:

d3(x, ) =(x=p) Q(x—y) = (x—y) W W(x—y)=(Wx— Wy) (Wx— Wy).

The problem is then solved by the following theorem:

The metric on R4, defined by Q = W' W—where W is a linear transformation
on R? that keeps volumes constant, i. e. det W = 1 —which minimizes D?* on the
finite set E, is:

Q = (det V)12 v,

where V is the covariance matrix of E.
Sebestyen’s metric therefore is d,_, , with a multiplicative constant which
comes from the constraint

OQ=WW and det W=1.

The deformation on E is then given by ¥ ~!: the countour-lines of equi-
distant points around the mean vector p of E are ellipsoids:

dg(x, p) = Const.
<> (detV)4(x—p)’ V™ '(x—p) = Const.
< (x—p)’ V! (x—p) = Const.

which is the equation of an ellipsoid, the axes of which are given by V.

Suppose now given a k-partition P of E, Sebestyen finds local metrics
associated with the classes P; that minimize the mean of the dispersion D?
of each class.

As for the D. C. algorithm, no k-partition is initially given. Classes and local
metrics are simultaneously researched and one can remark that it leads to
the same ellipsoidal countour lines as Sebestyen’s: the metrics differ only by
constants, but not in direction. (It is natural, for instance, that there is no
constraint on volumes in D. C. algorithm, since different clusters have to be
compared. It is for the same reason that it needs the additive constants:
Log det ¥V, which are associated with the dispersions of the clusters.)

On the other hand, the Sebestyen’s criterion D? may be written, if

B = 1 Y. x = mean-vector of P;(N; = Card(P))),
Ni xeP;

x=»)0(x=y)=[(x—m)—-(y—m)]) C[(x—nm)—(y—n]
=(x-p) Qx—p)+(y—w) Q(y—p)—2(x—p1) Q(y—m),
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D} = m (N 1)[";" Ep. (x—p) Q(x—m)

- ZP ZP (x—1) Q(y—m)]
=__" _ [N, dz .
Nl-(Ni— 1) [Nl XEZP‘ Q(x, H.)

- ¥ —-w) 0 Z y—u)]

xeP; yeP;
and since
Z (y—ul)=0’
yeP;
we have:
2
D = do(x, i
N,—1 xezp, o -

Then, given a P = (P;, ..., P;), Sebestyen minimizes the D? by choosing
the optimal Q, while the D.C. algorithm finds simultaneously the
k-partition P and the local metrics that tend to minimize

Y, (N;Logdet V;+ ). dg(x, n)

ie Jk] xe Py

_ N;—=1
z“[ N ]

This paragraph leads us to remark that the local transformations we have
found in the aim of maximizing local likelihoods, while searching Gaussian
distributions, belong to the family of those that minimize the mean of the
square of the distances within the clusters.

6. NUMERICAL EXPERIMENTS

6.1.. In an univariate population drawn from three Gaussian populations,
we drew:

e 50 observations from a population of parameters (see appendix 1)
;=0 and 6, =1,

e 50>y, =3 and 5, =2,

e 50 - p; =—5 and o3 = 2.

Five trials have been performed; execution time for these trials on
CII IRIS 80: .12 minutes.
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The best trial, with the 115th, 50th, 9th observations as starting points
(cf. 4.3), has given the following results:

Results obtained with k = 3 Empirical moments
after 4 iterations of the 3 drawn samples
l“"l = - .04 0'1 = -9 pq = .1 O'l = 1.0
l.lz == 3.5 0'2 = 1.2 ,J.z = 34 0'2 = 1.8
ll3 ="'4.9 0'3 = 1.7 IJ.3 =—4.9 03 = 1.7

6.2. The data: an artificial sample proposed by Duda and Hart (1973)
25 observations drawn (see appendix 2) from the one-dimensional two com-
ponents Gaussian mixture:

Py=13, m

l

—2, Gy = 1,
P2=2/3, Hy = +2, 0'2=1-
— Using the D. C. algorithm, in the particular case of gaussian distributions:
Input:
k=2,

Output:

Pl = 8/25, ul = —2.2, Gl = .8,

P2=17/25, K, = 1.8, 62=1.2.

The convergence is achieved in 2 iterations, we obtained exactly the two
drawn samples, associated with their maximum-likelihood parameters with
any initial drawing. (Execution time for 5 trials: .8 minutes on CII IRIS 80.)

— Using Duda and Hart method (which necessarily requires Gaussian
distributions):

Input:
k=2, 61=62=1, P1=1/3, P2=2/3;
Output:

py=—2.1, pp,=1.7
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6.3. 150 points in R? have been drawn from three two-dimensional Gaussian
populations [see fig. a and b, and appendix 3] of mean-vector p; and covariance
matrices Z; (i = 1, 2, 3).

By =(05;3), =30, pu3=@3;3)

10
21=22=23=(0 1).

and

. TS VLN

4 N/ N\

/ > N
. / ’ N\ \
‘/ [ \
\ $ " ,' - )
\ \ /
\ ' ‘- /

: N ,)< \\/,

- : Se e el

- . I N\

. ’

. \
Saet e { . )

] I

. \ ,

\ /

\\_-’/

Fig. a. — Original data. Fig. b. — Ellipsoids of equiproba-

bility (95 %) of the distributions
from which the original data arise.

At the point of convergence, of the best of 5 trials three classes are found
after 6 iterations (see fig. ¢). The parameters of which are:

6 -2
Hy =(_3: 2-9)v zl"=(_ 2 1 l>, |Pli=49,

1.0 —.1
My =(2.9; —.2), 22=( q 8), | P, | = 46,

1.0 -.2
My =(2.9; 3.0), za=(_2 8>, | P,| = 55.

(This trial had the 53th, 87th and 41st observations as initial mean-vectors,

of. §4.3.)
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This example shows the efficiency of the algorithm even if the classes are
not clearly separated. Here the execution time for the five trials is 48 minutes
on CII IRIS 80.

- / \\
~
Vg
’ * N
/ \ < \
| x| \ |
\\ ‘\I\ /l
/ -
\\‘/,[/)‘\ ~:)</
+ . Y
\
\ /
- Ve
"N*u -

Fig. ¢. — Ellipsoids od equiprobability (95 %)
of the distributions given by the algorithm after 9 iterations.

6.4. 150 points in R? have been drawn from three two-dimensional Gaussian
populations (see fig. d and e, and appendix 4):

423
2

m=00, Z,=\2/3
2

(The principal axis of the equiprobable ellipsoids of this distribution make a 7/6
angle with the 1st coordinate axis.)

=03, 5= (1{)4 34),
Hs=(4;3), ZI3= 2\/3 (- a (5/6) II angle).
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Fig. d. — Original data. Fig. e. — Ellipsoids od equiprobability (95 %)
of the distributions from which the original
data arise.

Two trials have been done:

1) Asking for 3 classes, the algorithm has been used starting from different
initial partitions and the results achieved with the best criterion value are :

(see fig. f):
2.8 1.4
we=(=.1 =1, 21:( 1.4 1.0 >
22 — .03
~ .03 26)
3.2 —1.8
~1.8 1.4 /)

wp=(—.1; 2.9), I,

H3=(3.9; 3.0), Z;

Fig. f. — Clusters that have been detected by the algorithm after 8 iterations,
asking for three classes.

(Execution time for 5 trials: 0,58 minutes on CII IRIS 80.)
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2) Asking for 4 classes, the algorithm has been applied starting from four
different initial partitions. The classification obtained at the trial that gives
the best criterion value is shown on figure g. (Two of the initial classes are
recognized, the third one is cut up in two parts.)

Fig. g. — Clusters that have been detected by the algoritiun after 8 iterations,
asking for four classes.

Comparing the results obtained from the four different initial drawing there
are 23 stable classes (see fig. 4)—sets of points that have been classified together
in all the 4 trials, see 4.4—but, by gathering these stable classes as soon as
they are classed together in three of the four trials, there remains only three
patterns (see fig. i) which are the three that have been given.

tig i — Stable classes got after four Fig. i. — Sets of points that have been
diftferent drawings asking for four classes. classified together in three of the four
drawings asking for four classes, using

the array of stable classes.

This example shows how the use of several initial partitions and of stable
classes can be of help when the actual number of components of the
population is not known.
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6.5. An Application in Operating Systems Modeling

Modeling is an attempt to describe in mathematical terms a physical system
(operating system, biological system...). Knowing some input parameters,
the model permits to compute likely values for other parameters (output).

As soon as the considered systems becomes complex, stochastic models
are not anymore the numerical values of some parameters, but their probability
densities.

In operating systems modeling, theoretical results allow to use queuing
networks models where service times may be assumed distributed as mixtures
of gamma densities or even anyhow, in the case of approximation by a diffusion
process (in this case, gaussian mixtures have been estimated).

Our application consisted in using the algorithm presented here on a sample
of measures that have been picked up on a real operating system to estimate
the service times distributions; these formulas may now be used in mathema-
tical models or in simulation to generate artificial samples.

The computing aspect of the problem and all results are thoroughly described
in [17].

7. EXTENSIONS

Many extensions in various directions may be considered to enlarge the
algorithm field of applications.

Let us introduce those that have been recently studied.

Though this likelihood based method has proved its efficiency, we have
tried to replace it in a more general context to that it could be extended other
estimation methods’and to the optimization of other criteria [26].

Another step in generalization is the following: the scheme presented here
consists in optimizing the criterion function at each iteration by computing
a new set of kernels for the preceeding partition; the proposed generalization
replaces the optimization by a plain «improving’’ of the chosen criterion:
convergence properties may be proved under this new assumption [27] and
this extension widely enlarges the possibilities of the algorithm.

For instance, it allows to optimize a likelihood criterion when dealing
with distributions that do not admit maximum-likelihood estimates for their
unknown parameters, such as Gamma distributions (see application 6.5).

8. CONCLUSION

This paper introduces the general Dynamic Clusters algorithm as a useful
tool in mixed distributions detection, and presents one way among many
to apply it.

Revue Frangaise d’Automatique, Informatique et Recherche Opérationnelle



The interest of the proposed method can be seen in the described
experiments. Anyway, this work is only a first step in that sort of application

A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION

and further research has to be made on the following points:

— the initial choice of a partition or of kernels;

— the interpretation of the stable classes; have they a probabilistic

significance in the case of distributions detection?

— the problem of the number of classes—which is close to the precedent;
— the choice of other criterion functions associated with other estimation

techniques for the tunction g;

— the use of labelled samples if they are some, which would lead to a

supervised learning approach.

APPENDIX 1

50 observations from a Gaussian population of parameters g1 =0 07 =1

17394
- 0423
- 6672

1785
- 2401

6194
21062
14114

7724
13913

3708 3497
7442 15797
- 4637 - 0791
-17588 4954
5089 -14681

14361 - 5312
8246 1647
3015 - 0975
8018 3521
6116 8819

50 observations from a population of parameters

29314
1 8650
26453
5 8085

9066

4 3458
49257
4 9680
29557
39800

16919 50392

7697 2863
39999 112877
14572 41418
6 0400 24195

50085 26981
27909 41684
57267 7706
37362 71410
21572 11677

50 obscrvations from a population of parameters

28243
38914
32204
-3 3577
-4 6563
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-6 9449
-4 3042
-6 0275
-2 8789
-6 0423

62504 -6 9985
68031 60803
-7 1818 -2 8435

-3 0543 -6 4160

23475 37037

37375 -54383
-32544 -4 8036
44249 69575
30076 63012
-5 0953 -12384

- 1120
5664
1285

- 1036

- 2125

My =3

31122
38922
50836
12201
15911

1088
- 0836
3514
12092
2124

gy =2

23901
3 837S

4341
50516
10378

H3:—5 g3 =2

-2.9924
55317
-5 9212
-6 7394
-55724

-5 0097
-39576
29093
-3 7253
22887

- 3396
-1 4007
7351
11873
- 3618

2 3309
19952
56432
53289
59066

-5 1264
-1 9603
- 1652
-5 6971
3 5806

- 0164
- 8435

4271
12409
- 2588

44738
14338
77662
4 5089
20994

-16716
41438
-4 8075
-4 6550
-6 8857
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APPENDIX 2

25 observations drawn from the one-dimensional two components Gaussian
mixture [see Duda and Hart (1973)].

1 ) 2 1
p(x/By, W) = 3\}ﬂexp[— i(x—ul) ] + 3\/ﬁexp[— i(x—uz)z],

with g, =—2 and p, =+2.

k £ (Class) k z; (Class)
1 0.608 2 13 3.240 2
2 —1.590 1 14 2.400 2
3 0.235 2 15 —2.499 1
4 3.949 2 16 2.608 2
5 —2.249 1 17 —3.458 1
6 2.704 2 18 0.257 2
7 —2.473 1 19 2.569 2
8 0.672 2 20 1.415 2
9 0.262 2 21 1.410 2

10 1.072 2 22 —2.653 1

11 -1.773 1 23 1.396 2

12 0.537 2 24 3.286 2

25 —0.712 1
APPENDIX 3

150 observations from a Gaussian population of parameters:

@G ) we() mem w-()

™
|
L

3 =

Revue Frangaise d’Automatique, Informatique et Recherche Opérationnelle



A NEW APPROACH IN MIXED DISTRIBUTIONS DETECTION 103

\Dl\V)OQQ\O—‘I*&K\I\O(*(*MN—‘M‘OO—‘g?ﬂvc\\bl\MNOO\NO\O\O\V’!‘N&O\&@G&Q&M\O

<
CRMNOL L =T AFTNO=NONINTS T MO 0QMONO D MANMRARRQNNM

MNmNN~¢NﬂNMNN¢mQMNNMNNmf')NNN "'"‘NNN"‘!P("N-‘M?"’QNQN-‘”VNN

eouno-aooow CTOCAETNO~NOOTRORAT T ~ANOVENANT-N—ORXTORX = ~—NOT
CO=NO\ O\(ﬁﬂ'm-'t\—‘O\Oﬂ)l\lhc«InwmO\"‘O\N(‘°Q¢O\\D-NO\N‘O¥OQ%M\O®FMO\\D®

<
NFOOATNMRMNANORAQWVRRNNN—RORVNONQANRYVYMMNONTNEANOIWN

MANN=NN=NNANTANA~ONNN— O ON = = TN NNT NN =T ANNNNTONNNNT

HANNTNOTOAO~ANNTNOTORAO=NNTNOOND=NNT O RN NNT O
CO0OOCOOO = mrm et (= = NN NN NNNNNANNNNOOAMNMNASSEITSSTTTTn
o vt e v e o e P ot Pk ey Yk o o e e el ey e e e P e P e P e Y Y e Pt e o e e 7t

RO =00 OTN-NNOONRROANCRANTXFT = NN =T ON T TRV =T O
O=ANOTMNARNOOONT RO M-NMOOOOTE-0MTROVNN0T O =00 0WNS\OWO-00M
OV RA=NOTONO—ON=OTARRNOCTTACO VTR ONT ITONT-RONOTNNN
R=AREACEN AT RIA-NEEQARRMNHMNNGRHQ TN QONAMA =R RNAR AN N TS
P "“'—I‘Nn Y "‘ux-n"‘(’-"‘ ""-‘ "" oo™ v

TORA=ANNOOACNANE =N AOTOVOVEOTONNOT OOV —ONX—OONNOTTR
AV NN == OO TN ORN= =0V AN ACRT = AN NN =N =M
V)—'NI\ONNQ'*O:w"‘wﬁl\—‘\DF‘\OV)O\NQ‘OOQOI\—‘Q‘O\Mﬂ??m—d‘mﬁ'l‘—'@ﬁlﬁca\‘f‘n\b

ANMOONTANNL == NN TLTLTATAANNNNNANNNNNNTOO—MNNN =N

AN NOHOAO—NNTNOEROAO~NNT VO ORO=NNTNOC-ONO~NNTNOOND
VNV NNOV VOOV VVLOVT- T RNRWVRVRVVRVRVVANANARNAANRND
—

WOVANO—OOVNMNONOAN=NTINAMNMNO =N OVOMO =~ MNOARNT NN = AN NS
VOBV ONNTONN === =NONOOY =WV MNANONOOV - ONANT AN NONONOM
VWOV ITXVRRVONNNBAAOROVAOMNOVOOOVOVORUNNO=LTONTONNO—ANNON-CIT~
RVLOONT T N=INEVNOMNAVEROL = = ANt = = N O AT NNV O NONORNTNTONN

N@N¢mmﬂﬂm—‘—‘NNMMMWNN"‘vaﬂ\")m'-‘Nvmﬂm"@i"“nﬂmvﬂe(“QNN'-'—‘mﬂﬂ

"‘.“.‘---tl- :"“"N. ' () [ ' 0 |""" "‘N"‘n 0 v"‘

—vawot\oocho-ﬂmvm\ot\eoo‘o—wmtrmohwmo—~m¢m01~wo\o—-ﬂm
= REANANNNRAANONOOMOMOO OO

juin 1976,



104 E. DIDAY, A. SCHROEDER

APPENDIX 4

150 observations from a Gaussian population or parameters:

2./3 Ly
2

4 z
0 0 4
= z = — = Z =
Pll (0 1 2\/3 uz 3 2 1
I\ 1 0 -
) 4
2./3
4 2
Hs =( I3 = =
3 2./3
RN
2
1 88 285 51 161 46 101 474 215
2 26 262 52 102 68 102 569 220
3 -100 305 53 55 47 103 326 255
4 18 272 54 125 125 104 290 368
5 -18 334 55 -318 80 105 407 309
6 -35 256 56 4 - 27 106 68 586
7 -39 384 57 04 - 35 107 397 29I
8 25 294 58 271 117 108 434 177
9 -47 262 59 120 26 109 338 331
10 46 271 60 -8 -123 110 381 345
11 02 321 61 183 - 23 111 204 372
12 - 07 239 62 369 175 112 161 4 58
13 -62 242 63 150 93 113 335 314
14 97 302 64 24 -6l 114 723 78
15 113 331 65 82 172 115 502 240
16 01 370 66 32 01 116 546 179
17 38 244 67 119 110 117 435 242
18 19 329 68 77 47 118 438 211
19 36 329 69 66 - 44 119 507 230
20 30 363 70 222 -1 85 120 455 242
21 09 315 71 180 99 121 82 344
22 34 322 72 - 15 14 122 530 261
23 25 296 73 - 99 07 123 615 144
24 -61 331 74 212 116 124 251 448
25 -38 224 75 259 170 125 590 209
26 -25 312 76 102 58 126 282 328
27 39 305 77 -268  -155 127 233 393
28 Q7 223 78 -276 -150 128 314 343
29 08 238 79 282 105 129 398 412
30 10 274 80 104 -203 130 340 363
31 12 251 81 353 160 131 232 378
32 -42 344 82 -18 - 09 132 114 502
33 55 302 83 -248 - 88 133 216 450
34 04 218 84 92 87 134 531 271
35 19 243 85 208 177 135 273 319
3 -04 349 8 471 193 136 5§35 277
37 56 256 87 - 41 87 137 593 147
38 -8 392 88 222 19 138 151 447
39 08 200 89 146 133 139 686 244
40 - 54 318 90 174 03 140 416 222
41 -105 261 91 325 205 141 602 177
42 - 53 301 92 88 108 142 822 59
43 - 18 308 93 43 - 71 143 401 418
44 14 237 94 167 -130 144 733 184
45 00 201 95 29 90 145 241 414
46 20 324 96 29 90 146 -33 523
47 - 29 381 97 -1 50 - 55 147 222 328
48 53 322 98  -148 93 148 383 335
49 41 351 99 - 06 44 149 142 404
50 22 358 100 50 88 150 445 300
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