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SOLVING A FAMILY OF PERMUTATION
PROBLEMS ON 0-1 MATRICES (*)

by Gilbert LAPORTE (*)

Abstract. - This paper examines a family of permutation problems on 0-1 matrices. These
problems arise in scheduling and in archaeological seriation. Three exact algorithms and two
heuristic procedures are described and compared.

Keywords : Permutations; seriation; archaeology.

Resumé. - On décrit dans cet article une famille de problèmes de permutation définis sur des
matrices 0-1. Ces problèmes sont souvent associés à la fabrication d'horaires et à la sériation
archéologique, Varticle décrit et compare trois algorithmes exacts et deux procédures heuristiques
pour leur résolution.

Mots clés : Permutations; sériation; archéologie.

1. INTRODUCTION

Consider the following problem recently posed by Telgen [37]. A company
department has 12 employees, each of whom is involved in one or more of
22 projects. It is proposed to hold, on the same day, 22 meetings, one for
each of the projects. Since many employees will have to attend more than
one meeting, the schedule should be such that the number of movements in
and out of the meeting room is minimized.

As noted by Telgen, this problem can be formulated as a travelling salesman
problem (TSP): given m points and C = (ctj), the associated distance matrix,
détermine the shortest Hamiltonian circuit through the m points. Let A = (aik)
be a binary matrix whose entries indicate whether employee k is involved in
project i (aik=l) or not (alfc = 0). ït can be assumed that A contains at least
one non-zero entry in every column. In a gênerai situation, A will be an
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66 G. LAPORTE

mxn matrix. Adjoin to A an artificial row of zéros: am + uk = 0(/c = 1, . . ., n).
Now consider a permutation (<p(l), . . ., cp(m + l)) of the m + 1 matrix rows
and the circular string of O's and I's in column fc. This string contains:

Sj séquences (0, 1) corresponding to entries in the meeting room;
s2 séquences (1,0) corresponding to exits from the meeting room;
s3 séquences (1,1) corresponding to two consécutive periods spent in the

meeting room;

s4 séquences (0, 0) corresponding to two consécutive periods out of the
meeting room.

m+1

Observe that (i) s1 = s2; (ii) sl-\-s3= £ aik since every 1 is preceded either
î = i

by a 0 or by a 1; (iii) s1+s2 + s3 + s4 = m+ 1.
The number of times employee k will enter or leave the meeting room is

equal to s1+s2 = 2s1. Minimizing this number is equivalent to maximizing s3

or to minimizing st + s2 + s4.

The ''distance" between any two rows i and j of A can then be defined as
the total number of occurences of the (0, 1), (1, 0) and (0, 0) patterns, i. e.

n

cij = n " Z aik<*jk (!)
fc = i

Telgen's problem then consists of determining a permutation
(cp(l), . . ., q>(m + 1)) of the m + 1 matrix rows in order to minimize

m

Cq>(m+1), <p(D+ AJ Cq>(0. <p(»+D'

This problem can be solved directly by means of any of the known TSP
algorithms {see [23] for a recent survey and [17, 24] for two similar applica-
tions). Without loss of generality, we can assume that cp(m + l) = m + l so
that every entry of the last row of the reordered matrix A' = (a^) is equal to
zero. A' is such that the number of gaps of zéros between two consécutive
ones in any column is minimized. Equivalently, the number of pairs (i, k)
for which i^m and a'ik = a'i + 1 )fc=l is maximized. If z* dénotes the optimal
value of the TSP solution, the minimum number of movements in and out
of the meeting room is equal to

£ £ fly). (2)
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SOLV1NG A FAMILY OF PERMUTATION PROBLEMS 67

The optimal solution to Telgen's example is displayed in table I. This
solution contains 7 gaps of zéros, but not all of them have the same impor-
tance. If all 22 meetings have the same duration and are scheduled in the
same 8 hour day, each of them will last approximately 22 minutes. Then,
small gaps (such as the first one for employee G) may represent pure wastes
of time whereas larger ones may be used efficiently. However, the TSP
algorithm does nothing to control the lengths of the various gaps: it can only
minimize their number.

TABLE I

Telgen's final schedule. Only 5 employees have to enter the meeting room more than once. The
schedules of employees £, G and H contain unusable pièces offree time.

Project
numbers

1
4
6
5

20
10
16
11
13
15
22
14
9

12
17
18
21
19
3
7
2
8

Employees

A B E F G 1 H L K J D C

1 1
1 1
1 1 1

1 1
1

1 1
1
1 1 1

1 1 1
1 1
1 1

1 1
1

1 1
1 1

1 1
1
1 1

1
1 1

1 1
1

The situation may be different in a university context: time spent by
students between classes is rarely conducive to fruitful study. Most students
would rather have a schedule in which the time spread between the first and
last lecture is minimized. If the rows of A represent lectures and the columns,
students, a suitabie objective in this case would be to permute the lectures in
order to minimize the sum over all columns of A' of the spread between the
first and last 1, in other words, the sum of lengths of all gaps.

This problem was addressed by Adelson et ai [1] and by Norman [31] in
connection with orchestra rehearsal:

"Not every player in an orchestra is required for every pièce that is to be practised at a
rehearsal. If every player arrives just in time for the first pièce for which he is required and
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68 G. LAPORTE

leaves immediately after the last pièce for which he is required, in what order should the pièces
be played so as to minimize the total time (in man-hours) spent by the orchestra in rehearsal?"

«311 P. 58)

In this problem, the rows of A represent pièces of music, and the columns,
musicians.

A similar ordering problem arises in the context of archaeological seriation.
One of the problems frequently encountered by archaeologists is that of
chronologically ordering graves on the basis of the objects they contain. It is
often hypothesized that a particular object will appear in graves only over a
limited time period. Letting ai} = 1 if object j is found in grave i and atj — 0
otherwise, "the chronological best permutation of the rows of the matrix is
that which minimizes £ r ; where the summation is over the columns of the

j

matrix and where r, is the différence between the row numbers of the first
and last non-zero entries in column/' [7]. Extensive surveys on the seriation
problem can be found in [14, 27, 34].

The archaeological seriation problem has counterparts in various other
fields related to social and behavioral sciences. "For instance, a political
scientist may wish to place legislators along a liberal-conservative dimension,
a psychologist may attempt to seriate subjects along a moral or development
continuüm..." ([16], p. 133), etc.

2. DETERMINING THE OBJECTIVE FUNCTION

All of the above problems can be formulated in a unified way: détermine
the permutation (q>(l), . . ., cp(wi)) which yields the lowest value of some
objective function z. In order to define z, consider the "gaps of zéros" between
successive I's in the columns of A'. These can be indexed by s. Every gap s
has a length ls and can be assigned a weight ws. The objective is then to
minimize z = £ ws ls.

s

(i) In the orchestra scheduling and archeological seriation problems, ws is
generally equal to 1.

(ii) In Telgen's scheduling problem, ws= l//s since every gap in A' makes a
contribution of 1 to the objective function. In this problem, it would make
sense however, to weight the smaller gaps more heavily since they are more
likely to be wasted, for example

0 (ls>T) ƒ ( 3 )
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SOLVING A FAMILY OF PERMUTATION PROBLEMS 69

where T is a suitably chosen constant. To illustrate, setting T= 6 would mean
that only those gaps lasting no more than 132 minutes would be considered
in the objective function.

(iii) Laporte and Desroches [21] recently treated a course scheduling pro-
blem. There were 9 one hour periods per day in which lectures could be
scheduled. Every gap between classes generated a penalty of 2 and so did
every hour of f ree time between classes. Then ws was equal to 2 + 2//s.

Finally, it may prove useful, in some instances, to assign column dependent
weights to the various gaps in order to take into account the fact that two
people's time may be valued differently.

3. CLASSIFICATION OF ALGORITHMS

In all but some very particuîar instances, the problem under considération
is NP-hard. Some of the "easiest" cases correspond in fact to a TSP. One
instance of the problem is however relatively easy to solve. Exact algorithms
are known to have been developed for the following classes of problems.

Class 1: There exists a permuted matrix A such that in every column, all
I's are consécutive. In this case, irrespective of the weights ws9 the value of
the objective function is equal to zero and all problems considered above are
equivalent. Fulkerson and Gross [9] present a polynomial algorithm which
détermines whether A possesses the "consécutive I's property" and if so,
which identifies the optimal permuted matrix A. Bartholdi et al [2] apply a
slight variation of this property to the construction of cyclic staff schedules.

Class 2: ws — \/ls for all s. This is Telgen's original problem which can be
solved by means of any TSP algorithm.

Class 3: ws—l for all s. We refer to this problem as the seriation problem
(SP) as it arises directly from the archaeological context. This case appears
to be the most arduous of all. A description of some exact algorithms for
the SP is provided in section 4. These include

(i) a TSP guided search procedure;

(ii) a linear programming (LP) based algorithm;

(iii) dynamic programming.

In the current state of knowledge, problems which fall in neither of the
above catégories and problems which are simply too large to be solved
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70 G. LAPORTE

exactly, should be handled by means of a suboptimal heuristic approach.
Such examples are given in section 5.

Computational results using both the exact and approximate algorithms
are reported in section 6.

4. THREE EXACT ALGORITHMS FOR THE SERIATION PROBLEM

The first two classes of problems described in section 3 present no real
interest insofar as they can be solved in a polynomial number of steps or
that they reduce to a TSP. The SP is the problem that offers the real
challenge. Hère is a description of three exact algorithms for the SP, totally
or partially developed by the author.

(i) A TSP guided search procedure

This method exploits the relationship between the SP and the TSP. Let
Z*SP and z£p be the optimal values of the TSP (minimizing the number of
gaps of zéros) and of the SP (minimizing the sum of their lenghts) associated
with A. Also, let z£SP and zfP be lower bounds on z£SP and z|P respectively.
Now suppose the TSP is solved by a branch and bound algorithm which
successively fixes arcs (i, j) at 0 or 1 in a search tree. The Little et al.
method [26] constitutes one of the earliest examples of this type of algorithm.
More efficient algorithms belonging to the same family have later been
proposed by several authors (see for example Miliotis [29] and Carpaneto
and Toth [3]). In such algorithms, a lower bound z$SP on z£SP is derived at
every node of the search tree: the TSP solution obtained by exploring the
current branch will contain at least z^p gaps of zéros; but since each of these
gaps has a length of at least one, z$SP also constitutes a valid lower bound
on the total gap length in the optimal SP solution associated with the current
branch. It is therefore valid to set zjtp equal to z|SP. But this bound can be
improved. At the current node of the search tree, the partial solution contains
paths of arcs fixed at 1. Let vh be the number of nodes of path h and consider
only those paths for which vft^4. For a path h with the ordered séquence of
nodes ïl9 . . ., iVfc, define Bh, the matrix consisting of rows iu . . ., iVft of A.
Define

): t n e number of gaps of O's (between successive I's) in columns

zSP(Bh): the sum of lengths of these gaps.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SOL VING A FAMILY OF PERMUTATION PROBLEMS 71

Then, can be increased by £ (zs
h

0
0
0
1
1
1
1
0
1
0
0
0

0
1
0
0
0
1
0
1
0
0
0
1

0
1
1
1
1
0
0
0
0
0
1
1

0
0
0
1
0
1
1
1
0
1
0
1

0
1
1
1
1
1
0
0
1
1
1
0

, ) -

1
0
1
0
1
1
0
0
1
0
0
0

*TSI

0
1
0
1
0
0
0
1
1
1
1
0

>(Bh)). For ex;

Row number
1
2
3
4
5
6
7
8
9

10
11
12

and suppose that at a given node of the search tree, the following arcs have
been fixed at 1: (4,8), (8,1), (1,11), (11,6), (3,7), (7,10), (10,5). To these,
correspond the two paths (4, 8,1,11,6) and (3, 7,10,5) and the two submatri-
ces

and

1
0
0
0
1

0
1
0
1

0
1
0
0
1

0
0
0
0

1
0
0
1
0

1
0
0
1

1
1
0
0
1

0
1
1
0

1
0
0
1
1

1
0
1
1

0
0
1
0
1

1
0
0
1

1
1
0
1
0

0
0
1
0

Row number
4
8
1

11
6

3
7

10
5

The values of zSP(Bh) and zTSP(Bh) are then computed: zSP(B1) = 13,
= 7, zTSP(B2) = 4. Therefore zjjp can be set equal to

(ii) An LP based algorithm

Doran and Powell [7] proposed the following LP formulation for the SP.
Define
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7 2 G. LAPORTE

1 + x(: the position in A' of row i of A;

1 + Qcks 1 + Pk: the row numbers of the first and last non-zero entry of
column k of A'.
Then the problem is

n

(PI) minimize £ (P*-a*)

subject to

Z^=Jm(m-l) (4)

| ^ - ^ | è l (z</; i , i= l , . . ., m) (5)

pfc (att = l) (6)
m

^ % (fc = l , . . . , n ) (7)

= l

(k = l, . . . , n ) (8)

(i=l, . . ., m). (9)

In (P 1), constraints (4) and (5) ensure that (xl5 . . ., xm) constitute a permuta-
tion of (0, . . ., m — 1) so that there is no need to specify integrality conditions
on the x/s. Constraints (9) are in fact redundant. Constraints (5) can be
replaced by the following dichotomy:

Xj-Xj-^1 or Xi — Xj^—l. (10)

A strategy for solving (P 1) could then be to replace each of these disjunctions
by

y ^ ^ m — 1 (11)

5y=0 or 1

as suggested by Dantzig [4]. Alternatively, one could avoid introducing the
binary 80 variables by branching directly on the two alternatives of (10). In
both cases the results are likely to be disappointing since the relaxation of

R.A.I.R.O, Recherche opérationnelle/Opérations Research



SOLVING A FAMILY OF PERMUTATION PROBLEMS 7 3

(PI) obtained by dropping constraints (5) will yield a solution in which

m

In other words, the gap between the objective value of (P1) and that of its
relaxation will be large and slow to fill.

We now propose some altérations to (PI). These do not remove the
difficulty just mentioned, but yield totally unimodular subproblems which
can be easily handled by a network based algorithm. This formulation is
obtained by removing constraints (4) and (9) from (PI):

n

(P2) minimize £ (Pk — 0Lk)

subject to

x,-p^0 (aik=\) (13)

Xf-a^O (ait = l) (14)
m

x^-x^-1 (16)

xi-xj£-l or xj-xt£-ll ( 1 7 )

(f <ƒ; i = 1, . . ., m — 2; j = 1, . . ., m) J

In (P2), all variables are unrestricted in sign. Since the coefficient matrix
contains only two non-zero éléments in every row, a " 1 " and a " — 1", it is
totally unimodular. And since all constraints have an integer right-hand side,
all basic solutions will be integer. We will also make use of the following
result.

PROPOSITION: If A contains at least two non-zero éléments in every column,
and no row of zéros, then the optimal solution to (P2) is such that (xu . . ., xm)
constitutes a permutation of m consécutive integers.

Proof: First note that the conditions imposed on A are not restrictive since
the value of the objective function is unaffected by the order of éléments in
columns ha ving less than two I's. Such columns can in f act be removed from
the matrix. Similarly, all rows of zéros will be positioned at the beginning or
at the end of the matrix in the optimal solution. These too can be removed.

vol. 21, n° 1, février 1987



7 4 G. LAPORTE

In (P2), constraints (17) imply that the distance between any two xt's is at
least 1. Consider a feasible solution (xl9 . . ., xm; âls . . ., ân; p l s . . ., pn) to
(P2) such that two consécutive values xy and x; differ by more than 1. We
will show that this solution is not optimal, by displaying a better solution
(xi, . . ., x̂ ; ai, . . ., <; Pi, . . ., p;).

Let x, — x,= l-hA where A>0. Also let K={k: âk^x,- and pfe^x,}. The
set K is non-empty since row j and row / of A each contain at least one
non-zero element. Then we can set

xi = x£ — A (x^Xf)
ât = ÖL (ÖL < x,)

< = ïk-A - — - (18)

This new solution satisfies all constraints of (P2) and the value of its objective
function is reduced by A | K\. •

In (P2), the value of l+x f does not necessarily represent the position of
row i of A in A\ as was the case in (PI). But since the x£'s are consécutive
integers, these positions are now given by

i

Finally, constraint (16) has been introduced in order to avoid considering
solutions which are merely symmetries of one another.

The dual of (P2) will only have a " 1 " and a " — 1" in every column and
can be represented by a directed network with nodes associated with
constraints and arcs with variables. The dichotomy xi — Xj^ — 1 or
Xj—x^ — l now corresponds to a choice between are (i9j) and are (/, 0 on
the network. As bef ore, this can be handled by branch and bound. But now,
all the subproblems are totally unimodular: each consists of determining a
minimum cost flow. For this, any standard network package such as an
out-of-kilter code [8] or RNET [12] can be used.

Formulations similar to (P2) arise in a variety of other permutation
problems. Consider for example the "sequencing through a junction" problem
described by Nicholson [30]: m routes intersect at a common point P. From
each route i, a unit arrives at P at time u( and takes a time vt to cross P. A
minimum delay c0 is incurred between the passage of i and the passage of j

R.A.LR.O. Recherche opérationnelle/Opérations Research



SOLVING A FAMILY OF PERMUTATION PROBLEMS 7 5

through P (e. g. trains crossing a junction, m jobs having to be processed
through a machine with change-over times, etc). We want to minimize the
time at which the last unit finishes passing through P. Define

xt: the time at which unit i starts crossing P;

y: the time at which the last unit finishes crossing P.

We then formulate the problem as follows:

(P3) minimize y

subject to

xt*ut ( i= l , . . . , m ) (20)

y-x^Vi ( ï= l , . . . , m) (21)

Xi-Xj^cji + Vj or Xj-x^Cy + Vi (i<j^m). (22)

If Ui = Vi = 0 ( ï=l , . . ., m) in (P3), and if C satisfies the triangle inequality,
i, e. cik^cu + cjk (i, j , k= 1, . . ., w), the problem reduces to that of determi-
ning a shortest Hamiltonian open path.

Both these problems can be solved by using the branch and bound approach
with network flow subproblems suggested for the SP. However, in the case
of the shortest Hamiltonian path problem, it is more efficient to use one of
the known TSP algorithms (see for example [3]).

(iii) A dynamic programming algorithm

Adelson et al [1] and Norman [31] provide a dynamic formulation for the
orchestra rehearsal problem. This formulation can be specialized to the SP.
Any state can be described by a vector (pl9 . . ., pm) where /?i= 1 if pièce i
has already been played and ^, = 0 otherwise. If p( = 09 define pï = l. Let
f(pl9 . . . > pm) be the lowest increase in the objective function, attainable from
state (pu . . ., pm), The aim is to compute/(O, . . . , 0 ) . Define:

d{: the duration of pièce i and

1 if X aik>0 and J!
i i

Pi = 1 Pi =

0 otherwise

(23)

i. e. lk = 1 if an only if musician k has already played and still has another
pièce to play.

vol. 21, n° 1, février 1987



76 G. LAPORTE

Then the solution can be obtained by considering ail 2m states through the
following backward recursion, starting from state (1, , . . , 1 ) and with
ƒ(!, . . . . D=0:

(24)
i such k

that pi = O

In this expression, dt is included in the sum (i) if musician k plays in pièce i
or (ii) if he has already played and still has at least one pièce to play, i. e. if
he has to remain in the rehearsal room. The optimal solution is obtained by
going through the séquence of optimizing states [i. e. those yielding the
minimum in (24)], starting from (0, . . ., 0). The SP formulation is easily
derived by setting dt= 1 (i= 1, . . ., m).

In order to illustrate the computations, consider the following example.

Pièce i

1
2
3
4

Duration ^

2
4
8
5

Musician
1 2 3 4 5
1 0 0 1 0
1 1 0 0 1
0 1 1 0 0
1 0 0 1 1

First set / ( l , 1, 1, l ) = 0 . The values of the next four states are relatively
easy to compute and will not be explicited: / (0 ,1 ,1 ,1)=4, / ( l }0,1,1) = 12,
/ ( l , 1,0,1) = 16 and / ( l , 1,1,0) = 15. We now compute /(0,0,1,1). At state
(0,0,1,1), Pi—p2~^ and /?3=/>4=l, i.e. only pièces 3 and 4 have already
been scheduled. From this state, it is possible to move to state (1,0,1,1) and
to state (0,1,1,1). First consider state (1,0,1,1): this state is attained from
(0,0,1,1) by setting/?!.= 1. Only musicians 1 and 4 play in pièce 1; therefore,
atti =«1 ,4=1 and alt2 = ali3 = alt5 = 0. Moreover, player 2 has already
played (in pièce 3) and still has a pièce to play (pièce 2): therefore 12 = 1.
Similarly, we compute /5 = 1. Musician 3 has already played in pièce 3, but
has no more pièce to play: therefore Z3 = 0. This information is sufficient to
compute

d1 X max(al = 8. (25)

The cost of going from state (0, 0, 1, 1) to state (1, 0, 1, 1) is therefore equal
to 8 + / ( l , 0, 1, l )=20. Similarly, the cost of going from state (0, 0, 1, 1) to
state (0, 1, 1, 1) is equal to 16+ƒ(<), 1, 1, l,) = 20.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SOLVING A FAMILY OF PERMUTATION PROBLEMS 77

It is easy to verify that the optimal solution consists of going through the
following séquence of states: (0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 1, 0, 1),
(1, 1, 1, 1), i. e. the pièces should be played in the order 1-4-2-3 and the total
rehearsal time is equal to 47.

5. HEURISTIC ALGORITHMS

Seriation problems which are either too large or too difficult to solve by
an exact algorithm have traditionally been tackled by means of interchange
heuristics (see for example [6, 15, 19, 35]). These algorithms often take into
account some particular features of the SP. Since the class of problems
described in section 1 is more gênerai, we suggest the use of a relatively
gênerai procedure such as Lin's 3-opt algorithm [25] or, if the value of m
becomes too large, Or's Or-opt algorithm [32].

The 3-opt procedure is relatively powerful. It dominâtes (as far as the
value of the objective is concerned) those presented in [6, 15, 19, 35].

(i) Consider an initial permutation and compute the associated objective.

(ii) Consider all permutations of rows taken 3 at a time.

(iii) Implement those permutations which yield an improvement in the
objective function.

(iv) Repeat until no further improvement can be achieved by this process.

Several independant runs can be made, starting from R different initial
solutions. Lin shows that the probability that this procedure will yield the
global optimum is approximately equai to

p=l-(\-2~mll0)K. (26)

But since each step of the 3-opt algorithm requires O (m3) comparisons,
this method may prove infeasible for large scale problems. Instead, we suggest
the use of the Or-opt algorithm, a simplified version of the 3-opt algorithm.
The Or-opt algorithm consists of successively inserting in all positions of the
matrix all bloes of 3 consécutive rows and of implementing the profitable
insertions. This procedure is then repeated with bloes of 2 rows and 1 row.
The complexity of each step the Or-opt procedure is only O (m2). According
to a recent study by Golden and Stewart [10], when applied to the TSP, the
Or-opt and the 3-opt procedures perform just as well, but the former is much
quicker. In the following section, we present some comparisons of our own
for the SR

vol. 21, n° 1, février 1987
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6. COMPUTATIONAL RESULTS

6.1 Small and medium size seriation problems

The three exact algorithms described in section 4, the 3-opt and the Or-opt
procedures were programmçd in FORTRAN and tested on 30 classical seria-
tion problems extracted from the literature on anthropology, archaeology
and epigraphy [36]. The précise références are provided in table IL The three
exact algorithms were tested on a CDC7600 while the 3-opt and Or-opt
searches were implemented on a VAX/VMS computer, a much slower mach-
ine.

The TSP based search was constructed from the Little et al. [26] algorithm
for the TSP. The algorithm fared pretty well in problems in which zgP was
close to z|SP (problems 4, 6-13, 19-20, 25-30) but was more disappointing in
other cases. It failed to reach a global optimum within 600 seconds in
7 problems out of 30. The use of a more efficient TSP algorithm (for example
[29]) would certainly have reduced the computation time but would have
done little to reduce significantly the growth of the search tree in problems
in which the gap between z|P and z£SP was too large.

For the LP based algorithm, we used for the solution of the sub-problems
a version of the out-of-kilter algorithm [8] adapted to our particular problem.
The computational times given in table II indicate that this algorithm is
dominated by the other two. Despite its poor performance on the seriation
problem, we believe that this type of algorithm could constitute a valuable
tool in problems possessing a similar structure (such as the "sequencing
through a junction" problem [30]) but in which the lower bound on the
optimum obtained at the root of the search tree would be higher.

The DP algorithm had without any doubt the best performance. Problems
with m^ 16 and a reasonable value of n can be solved in O (mn2m) opérations
in a relatively short time with this algorithm. The size of the array required
to store the 2m states prevented us from solving larger problems. Note that
contrary to the previous two algorithms, computation times are here directly
related to the number of columns.

The 30 problems used for testing the three exact algorithms were then
attempted by performing 10 independent runs of the 3-opt and of the Or-opt
procedures. The best optimal value obtained in each case was then compared
with the global optimum determined by the dynamic programming algorithm.
As can be seen from table III, each algorithm found the global optimum at
least once in each of the 30 problems: 5.4 times on the average for the 3-opt
algorithm and 5.57 times on the average for the Or-opt algorithm. The latter
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