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NEW ALGORITHMS FOR MAXIMIZATION OF CONCAVE
FUNCTIONS WITH BOX CONSTRAINTS (*)

by A. FRIEDLANDER (*) and J. M. MARTINEZ (\ X w

Communicated by J. ABADIE \ "

Abstract. — This paper considers the problem of maximizing a differentiable concave fonction
subject to bound constraints and a Lipschitz condition on the gradient, using active set stratégies.
A gênerai model algorithm for this problem is proposed. The algorithm includes a procedure for
deciding when to leave a face of the polyîope without having reached a stationary point relative to
that face, guaranteing that return to that face excludes a neighborhood offîxed size of the current
point. Mild conditions are required to abandon a face, which may possibly never be visited again,
and we show that any face may be revisited at most a fînite number of times. We show a bound
for this quantity. We prove global convergence f or this algorithm and we also show that it identifies
the correct optimal face in a fînite number of itérations, even without any nondegeneracy condition,
when we use the "chopped gradient" introduced in [10], as the direction on which we leave any
face. We combine the active set strategy proposed wit h a gradient projection method following the
approach of Morè-Toraldo ([23,24]), in order to accelerate the identification of the correct optimal
face.

Keywords : Optimization; box constraints.

Résumé. — Nouveaux algorithmes pour la maximisation de fonctions concaves à variables
bornées. Ce travail considère le problème de maximiser une fonction concave differentiable soumise
à des restrictions de bornes sur les variables et dont le gradient satisfait aux conditions de Lipschitz,
en utilisant une stratégie de restrictions actives. Un modèle d'algorithme général y est proposé pour
le problème. L'algorithme contient un procédé permettant de décider, avant d'atteindre un point
stationnaire d'une face, quand cette face du polytope doit être abandonnée, de façon à exclure un
voisinage de grandeur fixe autour du point en question. Des conditions faibles sont nécessaires pour
abandonner une f ace qui, probablement, ne sera jamais revisitée. Nous montrons: (i) qu'une face
quelconque peut être revisitée un nombre fini des fois et, (ii) la valeur limite pour ce nombre. Dans
ce travail la convergence globale de l'algorithme est démontrée. On montre aussi qu'il identifie
correctement la face optimale en un nombre fini d'itérations, même sans aucune condition de non-
dégénérescence, si la direction du «chopped» gradient est utilisée quand on abandonne la face [10],

'Finalement, nous combinons la stratégie de restrictions actives avec la méthode de la projection du
gradient, suivant l'approche de Morè-Toraldo ([23], [24]), de façon à accélérer l'identification
correcte de la face optimale.

Mots clés : Optimisation; restriction de bornes; projection du gradient.
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210 A. FRIEDLANDER, J. M. MARTÏNEZ

1. INTRODUCTION

Many practical problems require the minimization of a convex C1-function
with bound constrained variables:

ƒ Minimize c (x)

[ s . t. l^xSu

where c : Un -> M is convex and has continuous first derivatives in the domain
under considération. For technical reasons, we will consider, instead of (1.1),
the equivalent problem of maximizing a concave C1-function:

fMaximize/(x)
1 s. t.

where/: Un -> M is differentiable in the same sensé as the function c of (1.1).

A very important particular case of (1.1) is the case where c is a convex
quadratic. Applications of this case arise in finite différence discretization of
free boundary problems [5,27], numerical simulation of friction problems
in rigid body mechanics [20], Image Reconstruction from projections [18],
implementation of robust SQP-type methods for Nonlinear Programming
•[26], etc.

Many successful algorithms for solving (1.2) are based on active set
stratégies (see [2, 11, 12, 16, 27, 28]). Briefly speaking, an active set method
proceeds generating itérâtes on a face of the polytope until either a maximum
of the objective function on that face or a point on the boundary of the face
is reached. In the second case, the algorithm continues working in a face of
lower dimension, and only in the first case the itérâtes are allowed to abandon
the current face and go on working in a face of higher dimension. Since
function values are strictly increasing, fini te convergence is obtained (see [27,
28]). However, these finite convergence results are based on the fact that a
finite algorithm is available for finding a stationary point on a given face,
when such a point exists. No algorithm with that property exists for gênerai
concave functions, and, even in the quadratic case, the use of conjugate
gradient algorithms imposes utilization of convergence criteria for inner
itérations different from the very exigent stationary point condition. O'Leary
[27] suggests using empirically determined tolérance parameters ek in order to
déclare convergence of the inner itération, but she does not give a theoretical
justification for this de vice.

Recherche opérationnelle/Opérations Research



MAXIMIZATION WITH BOX CONSTRAINTS 2 1 1

In a recent paper [10], Friedlander and Martinez introduced an active
set algorithm for maximization of a concave function subject to bound
constraints with the following characteristics: the criterion for leaving a face
going to a higher dimension one does not assume that the current point is
stationary relative to that face, but the next point is guaranteed to have a
higher function value than the greatest function value on the old face. They
proved that, after a finite number of itérations, all itérâtes lie on a face such
that its closure contains an optimizer of the problem. Moreover, inside each
face, any globally convergent algorithm for unconstrained problems may be
used, so that the ultimate rate of convergence is the one of the unconstrained
algorithm chosen.

This paper contains two essential improvements of the algorithm presented
in [10]. First, instead of the criterion used in [10] for leaving a face, we
require a milder condition which guarantees that no itération after the current
one belongs to a neighborhood of fixed size of the current itération. Therefore,
we are able to give a bound for the number of times each face is abandoned.

The second improvement is that, following the ideas of More and Toraldo
[23, 24], we consider the polygonal path defined by the projection on the
polytope of the half-line generated by the "escape direction". Therefore, the
active set may change dramatically from one itération to the next one {see [6,
23, 24]), a fact that represents a positive advantage for large-scale problems.
Moreover, a good "polygonal search" may guarantee that each face is visited
(and abandoned) a small number of times.

We consider two possible "escape directions". The first is the "chopped
gradient" direction also considered in [10]. Using it we are able to prove
a global convergence theorem and we also prove (without nondegeneracy
conditions) that an optimal face is identified in a finite number of steps. The
second "escape direction" is the classical projected gradient {see [1, 4, 15, 19,
22]). In this.case we prove the same results as in the case of the "chopped
gradient" but we need a nondegeneracy assumption. A third (minor) improve-
ment of the algorithms presented in this paper over the one introduced in
[10] is that hère we use a more gênerai model algorithm for searches inside
each face. This model algorithms allows curvilinear or dogleg stratégies {see
[7]).

Notation

We use the following notation:
||. || is the 2-norm on W.
<,) is the ordinary scalar product, <x, j s) = xTy.
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2 1 2 A. FRIEDLANDER, J. M. MÂRTINEZ

(v)t indicates the i-th component of a vector veUn.

# ƒ is the number of éléments of the set /.

2. THE NEW ALGORITHMS

General Hypotheses

We consider the problem of maximizing a continuously differentiable
concave function with bound constrained variables:

f Maximize ƒ (x)

1 s.t jceQ,

w h e r e Q = { \ ^ ^ , }

Let us assume that g, the gradient of/, satisfies a Lipschitz condition in Q:

(2.2) \\g(x)-g(y)\\SL\\x-~y\l VxjeQ

(2.2) implies that, for all x, zeCl,

(2.3) f(z)'f(x)-(g(x)Az-x))^- ~\\z-x\\2

(see [7]).

Let us define an open face of Q as a set F f c Q such that
(2.4) ƒ is a (possibly empty) subset of { 1,2, . . . , 2 n } such that i and n + i
cannot belong to I simultaneously, /= 1, . . ., «.

FI—{xeQ.\xi-Iii( iel, Xi — u^if n + iel,

lt < xt < ub otherwise }.

Therefore, the set Q is divided into 3" disjoint faces. Let us call FT, the
closure of each open face, [FJ the smallest linear manifold which contains
F/5 Sf (Fj) the parallel subspace to [FJ and dim F, the dimension of £f (F{).
Clearly, d i m F ^ w - # / .

Recherche opérationnelle/Opérations Research
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For each xeü. let us define gp(x) a real «-vector such that

if Xf = /, and —(x)<0
dxt

(2.6) or x^Ui and — (x)>0

= — (x), otherwise

Therefore, a necessary and sufficient condition for x being a global opti-
mizer of our problem (see [13]) is:

(2.7) gp(x) = 0.

For each x e F, let us define gj(x) as

(gI(x))i = 0 if iel or n + iel

(2.8) ôf, x L .
= —(x), otherwise

Therefore, ^/(x) is the orthogonal projection of g(x) on £f(Fj). We also
define, for x e Fj,

); = 0 if / é / and

if iel and — (x)<0

or w + i e / and - ^
dxi

= —(x) otherwise.
3

The vector gj plays a major rôle in the main results of this paper. We
shall name it the "chopped gradient" associated with Fv Clearly, for ail

e have

LEMMA 2.1: Assume that xeFI is such that

(2.10) f(x)^f(x) forall

vol. 26, n° 3, 1992



2 1 4 A. FRIEDLANDER, J. M. MARTINEZ

Then the two following statements are equivalent:

(2.11) ƒ (x) ^f(x) for ail xeQ.

(2.12) £(x) = 0.

Proof: Let us assume (2.11). If iel, then x£ —lh and so, by (2.6) and
(2.7) (df/dx^fà^O. Analogously, if n + iel, then xt = ut and (3/73jt£)(JË) = O.
Therefore, by (2.9), &(x) = Q.

Now, assume (2.12). We want to prove that gp(x) = 0. For each
i = l , . . . ,n, let us consider the following three possibilities:

(2.13) x t = li9

(2.14) xt=uî9

(2.15) /,<*,<«,.

Let us consider first (2.13). We have two alternatives:

(2.16) ie/,

(2.17) i$L

If (2.16) holds, we have, since {g\ (x)); = 0, and using (2.9), that
(Ôf/Ôxdix)^. Therefore, by (2.6), (gp(x))-0.

If i$I9 then x£>/f for ail xeFj. But, by (2.10), f(x)^f(x) for ail xeF /5

therefore (3//3xi)(x)^0. So, (gp(x))£ = 0. The same argument leads to
(gp (x))i = 0, when xt = M£.

Now, if (2.15) holds, we have, by (2.10), that (df/ôxi)(x) = 0, Thus, the
desired resuit is proved. D

In Lemma 2.1 we proved that a stationary point x for Fj5 either is a
global optimizer in Q, or has a nonnull gc

t (x). Thus, g] (x) shouid be a useful
direction for escaping from a nonoptimal face.

We consider the mapping P : RM -» Q such that:

), = x, if / ^ * ^ « *

wf if xf>wf

/f if x(<lt

Recherche opérationnelle/Opérations Research



MAXIMIZATION WITH BOX CONSTRAINTS 215

P is the projection of IR" onto Q. Now, we are able to define the following
algorithms:

ALGORITHM 2.1: Define

jj = min {ut — lh i e I or n + i e I}

and

Dj = diameter of Fj

Let M, a, 0, a be given constants such that M is a positive integer,
0<a<2/L, 9, a G (0,1). If xkeFî is the A>th approximation to a maximizer
of/in Q, and gp(x

k)^0, the steps for obtaining xk + 1 are the following:

Step 1 (Test the location of the maximizer of a minorizing parabola and
then test if the internai gradient is small enough).
Define D = Dï\M.

If

| |^(x fe)| |>Ly/ and *| |

or

| | f e | | and

go to Step 2. Else, go to Step 3.

Step 2 (Find a feasible point outside Fj with a sufficient large function
value). Compute X>0 such that

f(P (xk + Xgï (xk))) >f(xk) +\\gl (xk) || D.

Set

xk + 1 = P(xk + Xgï(xk)). Stop.

Step 3 (Test if the current point is near the boundary of Ft).

If xk + ogj (xk) $ Fj, go to Step 6.

Step 4 (Détermine an ascent direction for optimizing inside F

(i) Choose a direction dke&}(Fj) satisfying

(2.19)

(2.20) <d

vol. 26, n° 3, 1992
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[Observe that such a direction exists, for instance ogjfö) satisfies (2.19),
(2.20)]

(ii) If xk + dkeQ, go to Step 5.

(iii) Compute

(2.21) 7L = max{\^Q\x* + 'kdk€n}.

(iv) Replace dk by Xdk. Ifdk satisfies (2.19), go to Step 5. Else set dk = gj(xk)

(v) Compute X by (2.21) replace dk by Xdk.

Step 5 (Find a point inside Fj with a suffîcient large function value)

(i) Let s = dk

(ii) If

(2.22) ƒ(x* + s) ̂ /(x*) + a < gl ( A s > go to (iv)

(iii) Choose 7e^(Fj) such that

(2.23) < ^

and

(2.24) 0

Let .s = 7and go to (ii).

(iv) Set dk = s and x*+x = x* + rfk. Stop.

6 (Take a point on the boundary of Fj with a strictly larger function
value).

Let l = meix{X^0\^c-\-XgI(x
k)eQ} and set x*+1 = ** + £,£ƒ(Ve). Stop.

The next algorithm is a variant of Algorithm 2.1 that uses gp (Ve) instead
of gJOt*) to escape from a nonoptimal face.

ALGORITHM 2.2: Let Y7, Dj, M, a, 0, a be as in Algorithm 2.1. Given
i such that £p(x*)#0, the steps for obtaining Ve+1 are the foliowing:

Step O (Test feasibility for steplength y,).

If «5(**)*(> and x* + Y^F(jc*)/||gp(x*)||ell, go to Step 1. Else go to Step 3.

The same as in Algorithm 2.1 replacing g] (x*) by gp (x*)
Step 2

Recherche opérationnelle/Opérations Research



MAXIMIZATION WITH BOX CONSTRAINTS 217

Step 3

Step 5

Step 6

The same as in Algorithm 2.1.

Remark: In Section 3, we prove that these algorithms are well defined. We
also prove a convergence theorem for each algorithm and guarantee that the
optimal active constraints are identified in a fini te number of itérations. No
additional hypotheses are required for Algorithm 2.1. For Algorithm 2.2
we shall need a nondegeneracy condition.

Now, we intend to shed some light on the meaning of the steps that define
Algorithms 2.1 and 2.2.

Let us start with Step 1 of Algorithm 2.1. Consider the parabola defined
by

Due to (2.3), we have for X^

The unconstrained maximizer of cp(X) is X=l/L9 therefore in Stepl, we
are testing first if l/L<yI/\\g

c
I(x

k)\\. We prove in Section 3, that in this case
we guarantee that jc* + (l/L)g5(x*) is feasible. If l/L^Y//||g50c*)||, we take
A, = y//||gj(jcfc)|| in order to guarantee the feasibility of Jt*-I-A.gj(jc*). Clearly,
we have that

(2-25)

and

(2-26)

We use (2.26) when

( 2 2 7 )

l . Then

vol. 26, n° 3, 1992



218 A. FRIEDLANDER, J. M. MARTINEZ

Thus, moving away from xk in the direction of g\ (x*), we achieve improo-
vements in the values o f / o f at least (1/2 L)\\gcj (JC )̂ ||2 or Lyj/2 depending
on the choice of X. Now, if these values are greater than \\gj (xfc) \\D, we may
show (see Section 3, Lemma 3.3) that f(xkjr'kgc

ï(x
k)) is greater than ƒ (y),

for every yeFj such that | | j / — x^H^D. So, if we satisfy any of the tests in
Step 1, we go to Step 2. We will show in Section 3, that the required improove-
ment (||gj(xfc)||Z)) is possible. If x k +ag f (xk)$FI (see Step3). we conclude
that xk is very near to the boundary of Ft, and thus, it is cheaper to take the
next iterate in the boundary (Step 6) than to continue searching in Fx. We
also show is Section 3, that this choice of xfe + 1 produces an improovement
in the objective function value.

Finally, if the tests in Step 1 are not satisfied and xk is not "near" to the
boundary, we conclude that Hg/Cx*))! is still large and therefore it is conven-
ient to continue insidei^. Thus, Steps 4 and 5 are executed. These steps
consist in a quite gênerai unconstrained optimization algorithm. We show in
Section 3 that this algorithm "converges", so a suffïciently small value of
||gj(xk)|| is always obtained, and consequently the face Ft is abandoned,
unless it is an optimal face.

Algorithm 2.2 uses gp(x) instead of gcj(x) and performs an additional
StepO. In this step, we test if x* + Y/gp(x

fc)/||gp(x
k)|| is feasible. (This test is

not necessary when using g\ (x)). In Section 3 we prove that under a nonde-
generacy condition, we guarantee the feasibility of xk + yI(gp(x

k)l\\gp(x
k)\\),

for a suffïciently large value of k, when working in a non optimal face. Once
feasibility is obtained, ail our assertions above remain valid if we replace
*S(**)by *,(**).

3. CONVERGENCE RESULTS

In this section we prove the following theorems:

THEOREM 3 .1 : Algorithms 2.1 and 2.2 are well-defined.

THEOREM 3.2: Any séquence {xk} generaled by Algorithm2.1 either stops
at an iterate which is a global optimizer of(2.1), or, if infinité, satisfies
(3.1) There exists la {1, . . . ,2n} , ko^0, such that xkeFj for ail k^k0

and Fj contains a global optimizer of(2.1).
(3.2) Every limit point of{xk}isa global optimizer of (2.1).

If xeFj is such that gI(x) = Oi we shall call it a stationary point relative to

Recherche opérationnelle/Opérations Research
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Assume that xeFj is a stationary point relative to Fj, We say that x is
non degenerate if (df/ôxi)(x)^0 whenever xie{Ii9ui}. Otherwise, we say that
x is a degenerate stationary point.

For proving convergence of Algorithm 2.2 we will assume that the problem
has no degenerate stationary points. Clearly, this assumption may be stated
as follows:

Nondegeneracy Condition

For all xeQ, if xeFj is a stationary point relative to Fj, then xeFv

Assuming the nondegeneracy condition, we are able to prove the following
global convergence theorem for algorithm 2.2:

THEOREM 3.3: Assume that problem (2.1) is such that for all F1 c= Q, Fï ^ 0,
there are no degenerate stationary points relative to Fv Then, any séquence
{xk} generated by Algorithm 2.2, either stops at an iterate which is a global
optimizer, or, if infinité, satisfies (3.1) and (3.2).

The proofs of Theorems 3.1, 3.2 and 3.3 are obtained as a conséquence
of the following lemmas:

LEMMA 3.1: Let yj = min{ut — lu iel or n + iel} and xeFj such that
. Define

(3.3)

Then

(3.4) x + ycoj (x) e Q - Fr for ail y G [0, y j .

Proof: It is sufficient to prove that

(3.5)

for ail ze{ 1, . . . , « } , y e [0,7/].
If i £ ƒ and n + i^ 1,(3.5) is true since (oJ'Ot)); = 0 by définition (2.9).
If iel, we have since xeFj, that Xi = lt. Therefore, by (2.9), either

(©j(x))j = 0, or (©/(JC))i>0- I n a ny case» by (3.3),

(3.6)

Therefore,

vol. 26, n° 3, 1992
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If (œj (x))i > 0, then lt < lt + y (œj (x))t and so x + ycoj (x) £ F,.
A similar argument is used if n + iel, therefore x + y<iïi(x)eQ. But, since

^j(x)^0, some component of (ÛJ(JC) is nonnull. So, x-\-yofï(x)^FI. This
complètes the proof. D

LEMMA 3.2: Let xeFj be such that

(3.7)

(3.8)

Define

(3.9) p ^ |

r/î^«, //zere exists K(x), a neighborhood ofx relative to Fh such that

x + y(op(x)eQ-Fj for ail x e V(x) and y e[0,yf].

Proof: Let

(3.10) 7 = { i e { l , 2 , . . .9n}\i4I and

and

(3.11) r { ^

Define

(3.12)

Clearly, since xeFj, we have that £j(x)>0.
Now, gj(jc) a,d gp(x) are continuous when restricted to Fj5 therefore, by

(3.7) and (3.8), there exists a neighborhood V(x) a Fj such that for all
xeV(x)

(3.13)

and for all i = 1,2, . . ., n

(3.14) Yl
2

Now, we are able to show that if xe V(x)

/• ̂  Xt + 7 (C0p (x)) f ^ Mf

Recherche opérationnelle/Opérations Research



MAXIMIZATION WITH BOX CONSTRAINTS 221

foranie{l ,2 , . . . ,«} ,Ye[0,yJ .
If i e / , by the définitions (2.6), (2.8), (2.9),

*i + Y (<op W), - /, = xt - k + y (gj (x))J\\g, (*)

From (3.12), (3.13) and (3.14) we obtain

*))£-/,>0 for

The same argument leads to

for ye[0,Y,].

Now, take iel. In this case

Therefore, we have that

feïtt).
Wil

< I

So, the same arguments used in Lemma 3.1 lead to the desired result. •

Remarks: P(X + X(ÙCJ(X)) and P(x + X(op(x)) are linear functions of X, on
any interval on which the active set of P(X + XQ?J(X)) or P(X + X(ÙP(XJ),

respectively, is unchanged. Both Lemma 3.1 and Lemma 3 - 2 state conditions
under which the first interval inciudes [0, y,].

We show later that we may obtain sufficient increase of the objective
function in the direction coj(x) or cop(x) for a value of Xe[0, jj]. The assump-
tion that xeFj in Lemma 3.2 is restrictive. lîxsFt — FI the thesis of Lemma
3.2 may not be true. Take, for example

f(xl9x2)=- -xl- —x\

^x^l0}. Then,

-x,

vol. 26, n° 3, 1992
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Consider the point x = ( j, and let

so / =

Then

Now, consider points JC=I M with xx -> 0. Obviously, there is no neigh-

borhood of x in /^ such that for every x in that neighborhood, x H- J(ÙP (x) is

feasible for ail ye[0,yj]. Note that ( J is a degenerate stationary point

relative to ^1,4}. This observation suggests that if we wish to consider
problems with possibly degenerate stationary points in faces FIt the direction
given by gcj(x) should be used.

LEMMA 3.3: Let 0<DS£>i, 0<X^jj and xeFj such that gcj(x)¥^0. Then
for ailyeFj such that \\x — y\\^D,

(3.15)

If x + \®p(x)eQ, then assertion (3.15) is also true if we replace cocj(x) by
co"(x).

Proof: The concavity of/implies that for ail yBFt such that | | x - j | | g

(3.16) Ay)^f(x) + (g,(x),y-x

and using the Cauchy-Schwarz inequality,

(3.17) f(y)^f(x)+\\gl(x)\\D.

Now, by (2.3), we have:

(3.19) \

Recherche opérationnelle/Opérations Research



MAXIMIZATION WITH BOX CONSTRAINTS 223

and by the définition of coj (x),

(3.20) /(x+^(x))-/(*)-a.| |«ï(*)| |^- ^ 2

or

(3.21) ƒ(x + \<oc
t (x)) -f(x) èX || £ (x) || - | X 2

Substracting (3.17) from (3.21) we obtain (3.15).

If we assume that X + XG>P(X)EQ, the proof of inequality (3.15) with cop(x)
instead ofooj(x) is exactly the same. •

L E M M A 3.4: Ifx?+1 is defined at Step 6 of Algorithms 2 . 1 or 2.2, then

(3.22) xfc+ x e F,, where dim (i^) < dim (Fj),

(3.23)

/ : By the définition of gj(x) and X at Step 6, xfc+i belongs to the
boundary of Fj, therefore, (3.22) is true.

Let us prove (3.23). Since xk+agI(x
k)$FI, we have g/(xfc)#0, and

Now, by (2.3), we have:

But

Hence, by(3.24)

Therefore,

(3.25)

But ?i - (L/2) ?i2 > 0 for all X e (0,2/L), and 0 < X g a < 2/L.
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Thus by (3.25),

f(xk+1)^f(xk-hlgI(x
k))>f(xk)

and the desired resuit is proved. D

Proof of Theorem 3.1: Let us consider fîrst Algorithm 2.1. If xkefI is
not a solution of (2.1), xk+1 is defined either at Step 2, 5 or 6.

If x* + 1 is defined at Step 2 we have that either

(3.26) M(pl>yi and
L (2 Ü)

or

(3.27) UiiAUltL and

By Lemma 3.1 we have that x* + Yf afj (x*) e Q - F,. Then if (3.26) holds,

P (**+y, ©H**))=^+ii œf( A

and by (3.21) in Lemma 3.3 and (3.26),

~ | Y ?

If (3.27) holds, let us define X = ||gj (**) ||/L. By (3.21) and (3.27) we have:

P (x* + Xcoc
f (x

k)) = x*+XcoJ (x*)

and

f(P(x* + tof, (a*)) è/(x*) + II«5 (x*) ||2/Z, - II gj (x*) ||2/(2L)

Thus, we showed, that for X^jj or )i = ||gj(xfc)||/L we may obtain the
desired increase in the objective function.
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If x* + 1 is defined at Step 5, we are maximizing in Fu and thus we require
a sufficient increase condition of the Armijo's rule type using an ascent
direction dk. This condition is obviously satisfied if X is small enough (see
[7,13]).

If xk+l is defined at Step 6, by Lemma 3.4, it belongs to the boundary of
Ft, and

The same results hold for Algorithm 2.2, replacing ©J (xk) by cop (xk). D

Remark: We do not need nondegeneracy conditions to guarantee that
Algorithm 2.2 is well-defined. In fact, by StepO of this algorithm, the tests
(3.26)-(3.27) (with gp instead of g\) for leaving a face are performed only if
the segment [xk, xk 4- yT cop (x*)] is contained in Q. It is possible, when degener-
acy is present, that this never Kappens, as in the counter-example which
follows Lemma 3.2, and this will affect the convergence properties of the
algorithm, but not its well-definition.

LEMMA 3.5: Assume that xkeFI, and that xk+jeFI is computedfor allj^l
at Step 5 of algorithms 2.1 or 2.2. Then there exists a limit point x of the
séquence {xk+j}j^l9 such that xeFT andgj(x) = 0.

Proof: The séquence {xk+j}j^i is contained in Fj5 which is a compact
subset of Un, so there exists a limit point xeFr

If gj(xk+J) = Q for somey', then by Lemma 3.2 we would have feasibility
for stepsize jj in Algorithm 2.2, and consequently in both algorithms we
would compute xk+j+1 at Step 2. Thus, our assumption implies that

Now, we want to prove that g7 (x) = 0. Let [xk+Jl }z> x be a subsequence of
{xk+i}j^x such that

(3.28) \im
l ~* 00

By(2.22),

(3.29) /(x fe+^ + 1)^/(x f c+^

and by (2.23), we have:

(3.30) f(xk+ji+ ')^f(xk+h) + ae\\gl(xk+
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As j 2 ̂ j\ + 1, we have that

(3.31)

Repeating the same arguments, we get, in gênerai, for />1:

(3.32) / ( x ^ O è / V ^ + cxe X ||*/(**+'-)|| \\dk+j
S~l

Now, by (2.19) in Step 4 and (2.22), (2.23), (2.24) in Step 5, we have
the two following possibilities.

Case 1: ||rfft+jJ|è<j||£/(^+jO|| f° r 'G^i> K\ a n infinité subset of positive
integers.

In this case we have

(3.33)

(3.28) and the continuity of ƒ (x) imply that

00

(3.34) ƒ(*)= lim/(*»+*)è/"(x*+J0 + «ea X ||g/

00

then Y, \\Si(xk+Js)\\2 converges and we have that
s=l

By (3.28) and the continuity of (df/dx^) (x) for all / we deduce that gf(x)

Case 2: \\dk+jl\\<o\\g1(x
k^^\\ for all /£/<,.

Now, we get for /^ / 0 in inéquation (3 .32):

(3.35) /(**+J.) ̂ fixX+%) + ̂  f || dk+js ||
2.

a s=l0

Taking limits with / -» oo, we obtain

(3-36)
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So> E II A+js ||
2 converges and

(3,37) li

We also have in this case, by (2.22), (2.23) and (2.24) in Step 5, that
there exists St+^eSfiFj), such that

(3.38) 0<\\sk+JlUm\\dk+Jl\\ for

(3.39)

and

(3.40) j)

(3.37) and (3.38) imply that

(3.41) lim |K+J. || = 0.

The séquence {^4- /̂11^+^11} is contained in the unit sphère, so it must have
a limit point. So, there exists an infinité subset K2 c: {/§: /0} such that

(3.42) Hm / f c + i f
| i =T? with ||i?||=l.

I*K2 \\sk+ji\\

Now, by, (3.40), for leK2l

and by the Mean Value Theorem,

with ^ e [0,1].

Now, making ƒ-* oo, with /eJT2 we obtain, by (3.41) and (3.42), that

(3.43) (gl(xl
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But < gj (x), v > ̂  0 by (3.39) and a e (0,1) by définition. So (3.43) is possible
oniy if

But as Ij v || = 1, we necessarily have gj (x) = 0. Thus, the proof is complete. D

LEMMA 3.6: Assume that Ft does not contain a global optimizer of problem
(2.1) and that x * e i v Then:

(i) After afinite number ofsteps j of Algorithm 2.1, xk+j$FI.

(ii) If we assume that every stationary point relative to Fj is nondegenerate

then assertion (i) is also true f or Algorithml.2.

Proof: If (i) is not true, then xk*ieFI is computed at Step 5 for ail 7^ 1.
By Lemma 3.5, we know that the séquence {xk+i}jzi has a limit point
xeFj such that gj(x) = 0. Our assumption on Fj implies that g] (x)^0 and
gp(x)î£0. By the définition of gcj(x) and the continuity of the gradient of ƒ
in Q, we deduce that there exist £, 8>0 such that for ail xeFj with
II A: — Je II < 8, we have ||#5(x)||>s and ||gp(jc)||>s. Then, for suffîciently large

j9 we shall meet points xk+i satisfying the conditions required in Step 1. So,
xk+j+1 will be computed at Step 2 for these points. This is a contradiction,
so part (i) of our lemma is proved.

Let us prove part (ii). If we assume that (i) is false, we have, as before, a
limit point xeFj, of {xk+j}j^x ci Fi5 such that gl(x) = 0 and gj(x)^o. Now,
by the Nondegeneracy Condition, we know that x e Fj, and by Lemma 3.2,
there exists F(x) a neighborhood of x, V(x) a Fj such that
x + jj (ùp(x)eQ — Fj for ail xe V(x). So5 for sufficiently large j , feasibility will
be obtained at Step 0 of Algorithm 2.2, and from then on, we shall always
go to Step 1. Now, the same arguments used to prove (i) for Algorithm 2.1
are valid for Algorithm2.2. This complètes the proof. D

So far, we proved that the following assertion is true for Algorithm (2.1):
Algorithm (2.1) stops after a finite numbers of itérations fe, fînding a

global solution of (2.1), or it générâtes an infinité séquence which satisfies
the following properties:

(3.44) /(**+1) >ƒ(**) for ail fc=0,l,2,...

(3.45) Given xk e Fjs one and only one of three following possibilities holds:

(3.45a) xk+1eFr

(3A5b) xk + 1eFj where
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(3.45c) xk+1^FI and/(xk+1)>/(x) for all xeFl such that ||jc-x*||£Z>
(3.46) If xkeFI and Fj does not contain a global optimizer of (2.1), then
there exists l>k such that xl$Fj.
(3.44) and (3.45) are also true for Algorithm 2.2. If we assume the Nonde-
generacy Condition, then by Lemma 3.6, (3.46) is also true for Algorithm
2.2. Let us prove now that (3.44), (3.45), (3.46) are sufficient conditions
to prove that an Algorithm identifies in a fmite numbers of steps a face Fj
such that a solution of problem (2.1) is in F^

LEMMA 3.8: Assume that a séquence { ^ k e N J satisfïes (3.44)-(3.46).
Then> there exists a positive integer l0 such that for all k>l0, either (3.45 a)
or(345b)holds.

Proof: Suppose, on the contrary, that there exists an infinité set of indexes
K such that for le K,xl+1 vérifies (3.45 c).

We may find an infinité subset Kt c K, such that XJGFJ for all j in Kt

and some fixed set / . (The number of faces Fj is finite). Then we have, by
(3.45c) that for j e J^, xi+ï$Fj and f(xJ+1)>f(x) for all xeFj such that
\\x-x>\\£D.

Let j , m€Kt such that m>j. Then, by (3.44) and (3.45c), we have

(3.47)

and

(3.48) ƒ (xJ+ A) > ƒ (x) for all xeFj such that 11 x - xj \\ g D

(3.47) and (3.48) imply that || xm - xJ || > D.
So, the séquence {xs} vnthjeKu is an infinité subset of the compact set

Fj, such that the distance between two arbitrary éléments is greater than a
fixed value D>Q. This is impossible, so there exists /0 with the desired
property. Q

LEMMA 3.9: Let us assume again (3.44)-(3.46). If Fj does not contain a
global optimizer of (2.1) then there exists Â:f>0 such that xk$Fjfor all k^.kr

Proof Let /0 be as in Lemma 3.8. We have two possibilities:

(3.49) x*#Fj for all

(3.50) There exists k > l0 such that xk e Fv

Suppose that (3.50) holds.
By (3.46), we may take j as the first index such that j>k and xJ$Fj.
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By (3. 50) j — 1 > lQ and by Lernma 3.8 we have that

xj e Fj where dim (F,) < dim-^)

and that for m>j either xmeFj or xmeFJm where dim (FJm) < dim Fj. Then,
the desired resuit is obtained taking £7 = max{lo,j}. •

LEMMA 3.10: Under the same assumptions of Lemmas 3.8 and 3.9, there
exists mo>0, such that if k^m0, xke{JFj such that FI conîains a global
optimizer of (2.1).

Proof: Take m0 = max {kj}, kx as in Lemma 3.9. D

Proof of Theorem 3.2: Suppose that the séquence is infinité. By Lemma
3.8 and Lemma 3.10, if fe1=max{/0)m0} we have that for ail k^k1

xhe\J Fj such that Fx contains a global optimizer of (2.1).

If xkeFkl for ail k*tku take kö = k1 and we are done.
If xk2$Fkl for some index k2>kx, by Lemma 3.8, we have that

x?2eFk2 where àim(Fk2)<àim(Fkl).

Continuing this reasoning, as the number of different faces Fj is finite,
and the séquence infinité, we must stop with kt such xkeFk. for ail
k^k(> . . . >k2>k1 and dimFk.^ 1.

So (3.1) is true with ko = kt and Fj = Fk..

By Lemma 3.5, we have that gjr(x) = 0 for any limit point of {xk}. Now,
our function is concave and Fj contains a global optimizer. Then gI(x) = 0
and so, x is a global optimiser of (2.1).

So, the desired resuit is proved. D

Proof of Theorem 3.3: If we assume that Nondegeneracy Condition, by
Lemma 3.6, Algorithm 2.2 has the properties (3.44), (3.45) and (3.46).
Thus, the proof of this theorem is the same as the proof of Theorem 3.2. D

Remarks: (i) We proved in Lemma 3.6 that if x* e Fj such that there is no
global optimizer in Fj, there exists j 0 ^ 1 such that xk+j°$FI. That is, after a
finite number of steps of the algorithms, we leave Fj. If y0 is such that
xk+jo'1eFj, we guarantee that the intersection of a bail centered in x/c+J°~1

with radius D/2 and Fj is never revisited. Let us call r| = dim F7 = « — #Fr

The union of all the balls with center in Fj and radius D/2 is contained in
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the set

xeWl\xi = li if ie/ , xt = ut if « +

£— — <Xi<Ui+ — otherwise V.

The r|-dimensional volume of SF is

i e /

But the lydimensional volume of each bail of radius D/2 restricted to Fj is
greater than (D/2)nr\~7]/2. Therefore, the number of itérâtes xkeFI such that
xk+1$Fj, is less than or equal to

M A X = [ 1 {u-

^[max (ut-li

i1/2r-

Of course, it is expected than in practical computations the number of these
type of steps will be much less that the bound above. However, the possibility
of obtaining such a bound, independent of ƒ / and u is interesting from the
theoretical point of view.

(ii) We showed that with the direction gci{xk), there is no need of the
nondegeneracy hypothesis in order to obtain our convergence results. More-
over, if we use g] (xk) when we try to leave face Ft> the free variables remain
unchanged and that the stepsize yt is always feasible. Thus, to compute the
new point it is sufficient to consider the changes of components with indices
i such that iel or n+iel. In order words, the number of "break points" of
the polygonal path is ~ # / when we use g\ and grows to ~ n when gp is
used. Consequently, Algorithm 2.1 is in practice much simpler than Algo-
rithm 2.2, which uses direction gp(x*).

(iii) Lemma 3.3 guarantees the existence of a value of À,, such that
sufficient increase is obtained in Step 2. In practice, of course, we shall not
necessarily use this theoretically guaranteed value. An adequate line search
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strategy should pro vide us with a value of X satisfying the sufficient increase
condition. The theoretical value gives us a better point on the first pièce of
the linear piecewise path defined by P(xk + Xgc

I(x
k), This comes from relaxing

some constraints without adding any new constraint We expect that with
other values of X, we should be able also to add constraints, improving the
performance of the algorithm.

4. NUMERICAL EXPERIENCE

The numerical performance of Algorithms 2.1 and 2.2 is highly dependent
on the choice of dk at Step 4. Our main interest is the resolution of large
scale problems, so we used the Fletcher-Reeves conjugate gradient formula
(see [8], p. 65) in our computer implementation. We use a^lO" 4 , 9=10~6

in the safeguarding inequalities (2.19) and (2.20). If any of these inequalities
is not satisfied by the Fletcher-Reeves direction, we replace dk by gî (x

k).

With the above choice of dk, the storage requirements of the algorithms
2.1 and 2.2 are very low. So, we were able to solve many large scale
optimization problems within a very modest computer environment (IBM
PC-XT type microcomputer with 640 Kb of RAM).

The optimum value of M dépends on the characteristics of the problem.
In gênerai, we obtained the best results with M& 100, but in many cases the
choice M = l was more efficient. Remember that when M = l , the current
face is abandoned only when returning to it is impossible. On the other hand
setting M ^ 100 produces a mild condition for leaving the face.

Our practical expérience with Algorithms 2.1 and 2.2 comes from four
types of problems.

1. Problems of optimal opération policy of hydro-thermal energy génération
(See[9,21])

This type of problems gives rise to large-scale highly structured nonlinear
programs with bounds and linear constraints. For running our methods it is
necessary to transform these problems into box constrained problems via
penalization of the equality constraints. Augmented Lagrangean techniques
can also be used. Several techniques were used for solving these problems,
that take advantage of the sparsity pattern of the technology matrix. In
particular, we used the package MINOS of Stanford University (See [25]) and
other active set methods of reduced gradient type, like the ones introduced by
Friedlander et ai [9] and Gomes and Martînez [16]. As expected, when the
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number of variables is not very large, so that the storage of the PC computer
is suffïcient to run the algorithms of [25, 9, 16], these algorithms are more
efficient that the ones introduced in this paper due to the difficulties that are
inherent to penalization. However, when the number of variables is very
large, penalization is the only possible approach and algorithms like the ones
described here become the only viable techniques. In [21] it is described an
algorithm that can be considered an ancestor of the ones studied in this
paper, where it can be observed that this approach can be extremely efficient
for practical very large dynamic control problems.

2. Randomly generaled linearly constrained large-scale problems with staircase
structure

In [16] a set of large scale randomly generated nonlinear programming
problems with linear constraints is described, where the technology matrix
has staircase structure. The algorithms introduced in this paper can be used
for solving these problems by means of penalization or augmented Lagran-
gean techniques, as so happens to be with the dynamic control problems
mentioned above.

For this set of problems, the conclusions are the same as for the first set.
In fact, MINOS is the most efficient technique for small to medium scale
problems, and the algorithm of Gomes and Martinez is more efficiënt from
medium to large scale problems. However, both MINOS and the Gomes-
Martinez method are impraticable for very large problems where only
penalization together with box constrained techniques can be used.

3. Physical problems

Many variational problems originated in the modellization of physical
phenomena give rise to large-scale box constrained optimization problems
(See [14]). We ran several variations of Algorithms 2.1 and 2.2 for solving
the problem of finding the equilibrium position of an elastic membrane which
passes through a curve F (Obstacle Problem [6,24]). In these problems the
best performance for Algorithms 2.1 and 2.2 was obtained using a large
value of M (M« 10,000) and the algorithm 2.2 behaved slightly better than
the algorithm 2.1 in terms of exécution time. In gênerai, our results are
slightly better than those reported by Dembo and Tulowitzki [6], and compar-
able to the ones of More and Toraldo [24]. We are preparing a computer-
oriented report where a detailed description of these experiments will be
given.
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4. Box constrained problems with a rondom quadratic as objective function

This set of problems is described in [23]. They are very useful for testing
the effect of dual degeneracy in the performance of the algorithms. As
expected, we observed that the performance of Algorithms 2.2 détériorâtes
in relation to Algorithm 2.1 in the présence of degeneracy. As in the previous
case, the detailed results of these experiments will be showed in a forthcoming
computer-oriented paper.

5. FINAL REMARKS

In the last few months we have been ellaborating a production code based
on a combination of Algorithms 2.1 and 2.2. Many colleagues and students
tested preliminary versions of this code for solving Mathematical Program-
ming and Physical problems. Up to the present, the code based on the
techniques introduced in this paper has proved to be extremely robust. Our
implementation is oriented towards the resolution of large-scale problems, so
the speed in the resolution in small to medium problems was sacrified in
order to obtain reliable results for large problems.

However, the theoretical-based criterion for leaving the face described in
this paper can be used in combination with other unconstrained techniques
that are more suitable for problems of moderate size (Newton or Variable
Metric). Many library subroutines for box constrained problems of moderate
size have a built-in heuristic criterion for leaving the face. Any of these
routines can be modifïed in order to incorporate our theoretically justified
procedure, thus providing stronger justifications for convergence and, prob-
ably, better computational results at least in the présence of degeneration.
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