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Recherche opérationnelle/Opérations Research
(vol. 30, n° 1, 1996, pp. 65-79)

POLYNOMIAL TIME ALGORITHMS FOR SPECIAL
OPEN SHOP PROBLEMS WITH PRECEDENCE

CONSTRAINTS AND UNIT PROCESSING TIMES (*) 0)

by Heidemarie BRÀSEL (*), Dagmar KLUGE (*) and Frank WERNER (

Abstract. - In this paper we consider different open shop problems with unit processing times.
For the problem with two machines and arbitrary precedence constraints among the jobs, we give a
polynomial time algorithmfor the minimization of the makespan with a better worst case complexity
than a previous algorithm known from the literature if the number of arcs is of linear order. The
complexity of the open shop problem with unit processing times and intree constraints among the
jobs was open up to now if the sum of completion times of the jobs has to be minimized. By means
ofthefirst result we give a polynomial time algorithmfor this problem with two machines.

Keywords: Open shop scheduling, unit processing times, polynomial time algorithms.

Résumé. - Le but de cet article est de proposer des algorithmes polynomiaux pour deux problèmes
d'ordonnancement de type open shop à deux machines avec contraintes de précédence et temps
opératoires unitaires. Le premier algorithme qui permet d'optimiser la durée totale a une meilleure
complexité que le meilleur algorithme connu de la littérature lorsque le nombre de contraintes est
proportionnel au nombre de jobs. Le deuxième algorithme, qui est basé sur le premier, permet de
résoudre un problème ouvert qui est celui de la minimisaîion de la durée moyenne d'achèvement
des jobs quand les contraintes de précédences forment une anti-arborescence.

Mots clés : Ordonnancement, open shop, temps opératoires unitaires, algorithmes polynomiaux.

1. INTRODUCTION

In an open shop problem we have m machines 1, 2, . . . , m, and n jobs
1, 2, . . . , n. Each job i consists of m opérations 0%j where 0%j has to be
performed on machine j for p^ time units without préemption. We assume
that each machine can process at most one opération at a time and each
job can be processed by at most one machine at a time. Both, the machine
and the job orders, can be chosen arbitrarily. In this paper we consider
problems where precedence constraints among the jobs are given. Such a

(*) Received April 1994.
(*) Supported by Deutsche Forschungsgemeinschaft, project ScheMA.
( l) Otto-von-Guericke-Universitat, Universitatsplatz 2, 39106 Magdeburg, Deutschland.

Recherche opérationnelle/Opérations Research, 0399-0559/96/01/$ 4.00
© AFCET-Gauthier-Villars



66 H. BRÀSEL, D. KLUGE, F. WERNER

constraint i —> k means that the first opération of job k can only start with
processig when the last opération of job i has been complétée. The problem
is to détermine a feasible combination of the machine and job orders which
minimizes a certain criterion.

We follow the classification scheme a\/3\j of scheduling problems
suggested by Graham et al [7] where a describes the machine environment,
P gives some job characteristics and additional requirements and 7 is the
optimality criterion.

In the case of arbitrary processing times most of the open shop problems
are NP-hard. If the makespan Cmax has to be minimized, the 2-machine
problem O 2||Cmax can be solved in polynonüal time. Ho wever, the problem
O2|tree|Cmax (Le. the precedence constraints forai a tree) is already
NP-hard.

A variety of polynomial algorithms has been given for the special case
of unit processing times indicated by p^ — 1. (cf. Gonzalez and Sahni [8],
Liu and Bulfin [10], Tanaev et al. [12], Bràsel [1], Bràsel and Kleinau [2],
Tautenhahn [13] and Brucker et al [5] and so on). Complexity results are
given in [9]. In [5] and [13] it has been proven, that in order to solve
open shop problems with unit processing times, it is sufficient to solve a
corresponding preemptive problem on m identical parallel machines where
all jobs have the processing time m and préemptions are allowed at integer
times. If a schedule for this parallel machine problem has been determined,
a machine assignment procedure constructs a schedule for the open shop
problem.

Because this assignment procedure has in the case of a fixed number of
machines a complexity of O (n2 ) or in a more refined version, where ideas
from edge coloring are used, a complexity of O (n log n), each algorithm
for a unit time open shop problem which uses a known algorithm for
the preemptive parallel machine problem mentioned above has at least
this complexity. A survey is given in [5]. However, by determining an
optimal schedule for special unit time open shop problems directly, we can
possibly obtain algorithms with a lower complexity. For instance, in [3]
and [4] algorithms are given for the problems O\pij — 1, tree|Cmax

 anc*
O\pij — 1, outtree) \] Ci, which have a complexity of O (nm).

In this paper we consider special open shop problems with unit processing
times and precedence constraints among the jobs. The paper is organized
as follows. In Section 2 we consider the problem O2\pij = 1, prec|Cmax.
For this problem we dérive an algorithm without solving the corresponding
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POLYNOMIAL TIME ALGORITHMS FOR SPECIAL OPEN SHOP PROBLEMS... 67

parallel machine problem and, consequently, we do not need the above
mentioned machine assignment procedure. The complexity of problem
O\pij — 1, intree|y^Ci was open up to now. In Section 3 we give a
polynomial time algorithm for this problem with two machines. Ho wever, the
complexity status of the gênerai O\pij — 1, intree|y^Cj problem remains
open.

2. THE PROBLEM O2\Pij = 1, prec|Cmax

We consider the open shop problem with n jobs, 2 machines and unit
processing times. Let the graph G = [I', Ef] of precedence constraints
between the jobs be given. The set of vertices V is the set of jobs and each
are (i, k) G E' corresponds to a precedence constraint % —» k. We introducé
a sink s representing a fictitious job which leads to the graph

Gp = [IfU{s}y EfU{(i, s) : i is a sink in G}] = [ƒ, E].

Hence, all jobs are ancestors of the fictitious job s which also consists of
2 unit time opérations. Let C^ax (I) dénote the optimal objective function
value for the set I of jobs. Then we have

Cmax(/)-2 = C£axa')- (2-1)
We dénote by rk (i) and rk* (i) the ranks of vertex i, Le. the number of
vertices on a longest path from a source to the vertex i and from the vertex
i to the sink 5, respectively. Let rkmax := rk(s). Now we form sets Sk
and Z/fc that contain the jobs with the same rank, Le.

Sk = {i e I\rk (i) = k} and Lk = {i e I\rkmax-rk* (i)+l = k}

fork = 1, . . . , rkmax. These sets have the following properties:

PROPERTY 1: For each i € S&, k > 1, there exists a predecessor in Sk-i- If
rkmax

\Sk\ = 1» say Sk = {u}, then all jobs from M Sr are descendants of u.

PROPERTY 2: For each i G L&, A; < rkmax, there exists a successor in
fc-i

Lfc+i. If l̂ fcl = 1, say Lfc = {Ï;}, then all jobs from M Lr are ancestors of v.

Using the introduced sets Sk and L&, we can easily give two feasible
schedules of the problem being considered. Obviously, we can schedule the
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68 H. BRÀSEL, D. KLUGE, F. WERNER

jobs of the sets Sk and Lk, respectively, within the time interval [tky tk]
where in the first case

tk = y ^ m a x {2 ï \Sr\} and tk = ik + niax{2, \Sk\}
r=l

and in the second case
fc-i

ik = /^ max{2, \Lr\} and tk =tfc+max{2, \Lk\}.

is fulfilled.

Hère we use that a set {zi, h,
as follows:

of jobs can be processed in

M2

M,

Figure 1. - Gantt chart in the case \i > 1.

Figure 2. - Gantt chart in the case /i = l.

For the schedules described above we obtain
rkfnax

r = l

where hi is equal to the number of sets Sk, 1 < k < rkmax, with |Sfc| = 1.
rkmax

r = l
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where f12 is equal to the number of sets L^, 1 < k < rkmax with |L&| = 1.
In an optimal schedule, we must have a minimal number h of unavoidable
idle times on each machine, Le, Cm a x — n + h. Clearly, the first constructed
schedule is optimal if there does not exist a set S&, 1 < k < rkmax - 1,
with |Sfc| = 1 and the second schedule is optimal if these conditions hold
for the sets L&.

The following lemma gives the possibility to describe the existence of
unavoidable idle times.

LEMMA 1: Assume that there exists an index k with 1 < k < rkmax such
thaï |Sfc| = 1 holds and that S^ — {«}. Moreover, for the optimal objective
value C^a x (PCi) for the set PCi of ancestors of job % we have

then it is not possible to process all jobs of the sets S\, £2 ? • • •, Sk without
any idle time.

Proof: Assume that there exists an index k with the above properties. Then,
within the time interval [0, C^a x (PCi)] it is possible to process completely

k-l

all jobs of the set \^j ST, We notice that C^ a x (PCi) is the earliest starting
r-l

time of job i. On the other hand all jobs of the sets Su,u > k, are descendants
of job L Therefore, within the time interval [C^ax (PCi), C^ a x (PCi) + 2],
only job i can be processed, Le. an idle time is unavoidable. •

The above condition is easy to formulate but hard to handle because
the détermination of C^a x (PCi) is an optimization problem, too. Now we
will divide the problem into subproblems by means of the existence of
unavoidable idles times.

LEMMA 2: Let k be the smallest integer with \L^\ = 1 and assume that
Lk — {%}. Moreover, let

k k

S=\JSr\{J Lr.
r=l r=l

IfS = $, then in the time period 0, \^ t^r | + 2 an idle time is unavoidable

and, if S ^ 0, it is avoidable in this time period.
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70 H. BRÀSEL, D. KLUGE, F. WERNER

Proof: Again let PC% dénote the set of all ancestors of job i G Lk,
fc-i

Because | i f c | = 1, we obtain PC% = ( J i r (cf. Property 2). Since \Lr\ > 2

for 1 < r < k the optimal objective value for the set PCi of jobs is equal
to the cardinality of this set. Moreover, \PCi\ is the earliest starting time
for job i E Lk.

k k k k

If S = 0 then, due to [ J l * Ç [Jsk, we obtain \^jLk = (Js f c and,
r = l r = l r = l r = l

fc-1 fc-1

therefore, |5fc| = 1 holds. Thus, [JLr = (J& is

satisfied and, by Lemma 1, an idle time is unavoidable in [0, \PC%\ + 2].
If 5 T̂  0, then it contains a job j 7̂  i exécutable in

+ 2
r = 1 r = l

and this idle time is avoidable. •
By means of Lemma 2 we can design an algorithm for solving the problem

as a partition into ji subproblems Pr, 1 < r < fi. We dénote the set of jobs
of problem Pr by Ir. Each set Ir has one of the following properties:

1. there exists a job i G Ir with the property that all other jobs of Ir

are ancestors of job i,
2. there exist two jobs i, j G Ir with the property that job j is not an

ancestors of job i and all other jobs of Ir are ancestors of job i.
The first case stands for the occurence of an unavoidable idle time when

the processing of the job i G Ir begins and in the second case an idle time
is avoidable in this situation by scheduling job i and j in parallel. We obtain

f*

^max (-0 — y ^ l ^ l — n+-h and h is the number of unavoidable idle times.
r=l

In the following Algorithm 1 we construct a schedule by inserting each
job i into a block Bk of jobs, 1 < k < rkmax, such that the resulting
schedule contains only unavoidable idle times. All jobs in Bk are processed
in the time interval [t/,, tk] with

k-l

tk = ] T max{2, \Br\} and tk = tk + max{2, \Bk\} (2.2)
r=l

Recherche opérationnelle/Opérations Research
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Let k (i) and k (i) be the smallest and greatest possible value of the index
k of the block in which job i can be inserted, i.e. we have i E S^u\ and
i £ Lfcuy We call a job i critical if k(i) = k(i).

In Algorithm 1 we first insert all critical jobs into the blocks. If after
this insertion there exists an index k with \Bk\ = 1 we détermine exactly
one job i in the set of unscheduled jobs which can be inserted in B^. If
this set of possible jobs is not empty, we choose the job % with minimal
k (i). This can be realized in O (n max{l, max{& (i) — k(i)\l < i < n}})
if we assume that the jobs are ordered by nondecreasing k(i) values, i.e.
h(l) < k(2) < ... < k(n). Furthermore, if there exist two jobs i and
i + 1 with k (i) = k (i + 1) then k(i) < k(i 4- 1) should be satisfied. This
ordering can be done in O (n + r) time if r is the number of arcs in the
graph of precedence constraints (note that this ordering is simply a classical
topological ordering of the vertices of a directed graph without circuits).
Hence we get the following complexity of Algorithm 1 :

THEOREM 1: Algorithm 1 solves the problems O2\pij = 1, prec|Cmax in
0 (n max{l, max{fc (i) — k(i)\l < i < n}} + r) time.

Algorithm 1 : Détermination of the blocks B^ for the problem
O2\pij = 1, prec|Cmax

begin

1. for k := 1 to rkmax do Bk — 0;

2. for * := 1 to n do

3. if k(i) = k(i) then

begin

4. k := fe(i);

5. Bk := Bk U {i};

end,

6. for i := 1 to n do

7. if k{i) < k(i) then

begin

8. k := k{i);

9. while (\Bk\ > 2 or k < k{%)) do k := k + 1;

10. Bk := Bk U {i};

end;

end.

Now we détermine the corresponding schedule by means of the sets Bj~,
1 < k < rkmax and the corresponding values of tk and t^ (which can be
calculated by 2.2) as shown in Figure 1 and Figure 2.
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72 H. BRÀSEL, D. KLUGE, F. WERNER

Note that Algorithm 1 does not successively détermine the individual
subproblems. Nevertheless, these subproblems have been obtained when
Algorithm 1 stops. Also the number // of subproblems has only been
determined at the end of Algorithm 1. We still have to prove that Algorithm 1
works correctly.

THEOREM 2: Algorithm 1 générâtes an otpimal solution,

Proof: Consider the first block B^ with one of the properties

L \Bk\ = 1 or

2. |Î3fc| = 2 and there exists a job j G B^ with k (j) > k.

In both cases \Br\ > 2 for 1 < r < k holds and the algorithm has
fc-i

only ordered ail jobs / with k(l) < k into M Br. Thus, the equality
r=l

fc-1 fe-1

l | S r — \\Lr is satisfied. Furthermore, the condition \Bj~ n L%\ = 1

holds and for each of the above described properties of Bk the equality
|Lfc| = 1 follows. According to lemma 2 there exists an unavoidable
idle time in case 1 and we can avoid this idle time in case 2. The set

k
II of jobs of the first subproblem Pi is I\ = \^Br and we obtain

r=l
k

Ui) = ^2 m a x ( l ^ l ' 2}. Clearly, for the further considérations we
r=l

have to delete the job j G B& from the set L^^y Now we can separately
consider the remaining blocks Br with k < r < rkmax. We repeat the
above argument, which proves the theorem. •

To illustrate the above algorithm, we consider the following example. Let
n = 18 and the graph Gp is given in Figure 3. The jobs are numbered
according to the required order.

Figure 3. - T h e graph G p .

Recherche opérationnelle/Opérations Research
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Notice that vertex 19 is the fictitious sink. All jobs in / \{13 , 14, 16, 18}
are critical. In step 1-5 the algorithm détermines the blocks Bi = {1, 2, 3, 4},
B2 = {5}, B3 = {6}, B4 = {7}, Bb = {8, 9, 10}, B6 = {11}, B7 = {12},
Bg = {15}, B9 = {17} and Bio = {19}. In step 6-10 job 13 is inserted
into i?2, job 14 into B?, job 16 B% and finally job 18 is inserted into B$
(note that k (13) = 1, k (14) = 7, k (16) = 8 and k (18) = 2 hold). Because
of the cardinalities of the sets Bj~, 1 < k < 10, all jobs of the set Bk are
processed in the time interval [tk, t^] with

k

h

1

0
4

2

4
6

3

6
8

4

8
10

5

10
13

6

13
15

7

15
17

8

17
19

9

19
21

10

21
23

Therefore, the optimal objective function values is C = 21.

3. THE PROBLEM O2\Pij = 1, i

In this section we give a polynomial time algorithm for the problem
0 2\pij = 1, intree\S^ Ci. Gp dénotes àgain the graph of precedence
constraints including the fictitious sink. The above problem will be solved
by partitioning the original problem into two subproblems Pi and P2 with
the following properties:

• the set I\ of jobs of the first subproblem Pi is the larges t subset that
can be processed without any idle time on the machines, Le. the last job
is completed at time | / i | and

• the set of jobs 1% of the second problem P2 forms a chain in the graph
of precedence constraints.

Notice that it is possible that all jobs form a chain. Let Sfc, L& and rkmax
be defined as in Section 2. We use the considérations about unavoidable idle
times in Section 2 for determining the subproblems, Clearly, Algorithm 1
constructs also an optimal schedule for the problem O 2\pij = 1, intree|Cmax
such that there exists an index k with \Br\ > 2 for 1 < r < k and |J3r| = 1
for k < r < rkmax. Therefore, we obtain the above described partition

&;—1 rkmax

1 = h U h with h = (J Br and I2 = \J Br.
r=l r—k

All jobs not contained in I\ form a chain in the graph of precedence
constraints and C^ a x (I\) is the earliest possible starting time of the first job
of this chain. Hence, having determined an optimal schedule for the set I\ of
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7 4 H. BRÀSEL, D. KLUGE, F. WERNER

jobs with respect to V^ Ci that is also Cmax optimal, one can concatenate
this optimal schedule with the remaining set I2 := / \ / i of jobs such that
the jobs of I2 are processed in the interval [C^ax (Ji), C^ax (Ii) 4- 2 • |/2|].
Note that one machine is always idle in this period.

Let us now return to the solution of the first subproblem with the set /1
of jobs. This problem will be solved by transforming the intree problem into
an outtree problem by reversing the direction of all arcs between jobs of
II and applying an algorithm, which has been given in [4] for the problem
O\pij — 1, o u t t r e e | ^ Ci.

First we dérive a lower bound for O2\p%j = 1, outtree | V j C .̂ Consider

the parallel preemptive machine problem P2\pi = 2, pmtn\S^]Ci, which

is a relaxation of the problem O 2\pij = M 2^ ^*' ^n ^ ^ McNaughton has
proved that there is no schedule for the parallel machine problem with a finite
number of préemptions, which yields a smaller objective value. Hence, the
optimal objective value for P2\pi = 2, pmtn\S^Ci is a lower bound for

O2\pij = i j y^Cj . Thus, an optimal schedule for this open shop problem
is given by scheduling successively blocks of two jobs within 2 time units
(only the last block contains only one job if ni := | / i | is odd).

The corresponding objective value is

/ i = 2 - 2 + 2-4 + . . . + 2 - m = 4 -

if ni is even or

/ÜL + i x
h = 2 • 2 + 2 . 4 + ... + 2 • (m - 1) + (ni + 1) = 4 • ( 2 J + nx + 1

if ni is odd.

However, if ni is odd the above schedule is not optimal for the Cmax

criterion. But it is easy to see that this can be obtained by forming one
block containing 3 jobs without changing the value of Y^ Ci. For the further
considérations we only need such an assertion for the following types of
blocks in this case:

1. |2?il = 3, | ^ | = ... = |5 [„ i / 2 J | = 2

2. \B'{\ = . . . = |fî['ni/2J-il = 2 ' lBL»i/2j' = 3 '

Recherche opérationnelle/Opérations Research



POLYNOMIAL TIME ALGORITHME FOR SPECIAL OPEN SHOP PROBLEMS... 75

Scheduling the blocks B^ in the time intervals [tk) £&] as described in
Section 2, we obtain in case a) the value

= l - 2 + 2 - 2 + 2 - 4 + . . . + 2 - ( m - l ) - ^ — -

+ m + i = /2.

Analogously, this can be shown for case b, Le. we have ƒ£' = ƒ2-
In [4] there has been given an O (nm) algorithm for the problem

O\pij = 1, out tree | \ ^ C j by decomposing the original problem into
subproblems and processing blocks of jobs within m time units. However,
in our case we have only one subproblem for the outtree problem with I\.
Let Sj be the corresponding rank sets for the outtree problem. It is shown
in [4] that for an arbitrary number m of machines we have no idle time
in the period [0, rm] when

u-m, u = 2, . . . , r (3.1)

holds. However, using the blocks 5fc_i, Bk-2, • • •, -Bi determined by
Algorithm 1, it is immediately clear that condition (3.1) holds for m = 2
and all u because each of these sets contains at least 2 jobs and we have
no precedence constraint among the jobs of each block Bj. Hence, the
Algorithm from [4] works for O2\pij = 1, outtree|S^ Ci as follows:

Algorithm 2: Détermination of the blocks for the problem
O2\pij = 1, o u t t r e e | ^ Q

begin

1. U, := 5j[;

2. j := 1;

3. jm,ax := [ni/2\;

4. vvhile j < jrnax do
5. begin
6. détermine the block Bj by sëlecting 2 jobs from Uj having the largest number of

jobs on a longest path from this job to a sink; j :~ j + 1;

7. détermine Uj by replacing in U3-\ all jobs of Bj„x by their direct successors

end;

8 if m is odd then Bjmax+i '•= Ujmax+i-
end.

vol. 30, n° 1, 1996



76 H. BRÀSEL, D. KLUGE, F. WERNER

Hence, applying the above algorithm to an odd number ni of jobs the
last block contains only one job, Le. we have idle times. In this case we
modify the obtained solution by combining the last two blocks into a block
of three jobs. Because of the above considered case b), this does not change
the value of /_^Ci- The following lemma shows that this modification is
always possible.

LEMMA 3: Let n\ be odd. Then we have no precedence constraint among
the jobs of the last two blocks obtained by Algorithm 2.

Proof: Assume that we have a precedence constraint between two jobs
u G Bjmax and v G Bjmax+i- Let job r G Bw be an ancestor of job v such
that any two adjacent blocks in the chain C from r to v have been inserted
into adjacent blocks and w is as small as possible (see Figure 4).

x+1

o—
r C

Figure 4.

u V

Then we consider two cases:

1. w = 1: Due to the définition of k when determining both subproblems,
it is impossible that a job of h has the rank jmax + 1.

2. w > 1: Then Bw-\ must contain two jobs from which a chain exists
in the graph of precedence constraints {Le. the graph of outtree constraints
among the jobs of the set 7i) with at least as many jobs as in the chain C.
Because of the outtree constraints these 3 chains are disjoint. However, this
constradicts the fact that we have altogether only 2 jmax + 1 jobs.

Hence, we get the assertion of the lemma. •

Thus, using the above modification we obtain a schedule that is optimal
for both criteria 2_. C% an<l Cmax with respect to I\ and outtree constraints.
Now, processing the blocks of jobs in reversed order we get an optimal
schedule for the intree constraints and both criteria (note that, if n is odd,
now the first block contains 3 jobs, which does not change the value of
^2 Ci due to case a), Le. f2 = ƒ2).

To evaluate the complexity of the above algorithm, note that the
détermination of the sets S& and L^ can be done in O (n) time for the intree
constraints. At the same time the required ordering to non-decreasing k(i)
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values is automatically generated. Because we use Algorithm 1 to détermine
the set of jobs for problem Pi, the above algorithm has the same complexity.
However, because we have only to détermine the first unavoidable idle time,
we only note here, that in the case of intree constraints algorithm 1 can be
modified to run in O (n) time. hence we obtain the following result:

THEOREM 3: Algorithm 2 solves the problem O2\pij = 1, intree|
in O (n) time.

To illustrate the above algorithm, we consider the following example. Let
n = 12 and the intree graph G be as in Figure 5. For simplicity we avoid to
add a fictitous sink because we have only one intree component.

Here we have Si = {1, 2, 3, 4, 5}, S2 = {6, 7, 8}, S3 = {9}, S4 = {10},
55 = {11} and 56 = {12}. Moreover we obtain Lx = {1, 2, 3, 4},
L2 = {6,7, 8}, L3 = {5, 9}, L4 = {10}, L5 = {11} and L6 = {12}.
Applying Algorithm 1, we get I\ = {1, 2, 3, 4, 5, 6, 7, 8, 9} and
I2 = {10, 11, 12}. Transforming the precedence constraints among the
jobs 7i into an outtree, using the algorithm for O 2\pij = 1, outtree|V^ Ci,
Cmax and processing the blocks of jobs in reversed order, we get the
following blocks for the intree problem: B\ = {1, 2, 3}, B2 = {4, 6},
Ö3 = {7, 8} and B4 = {5, 9} with the makespan value Cm a x = 9. Thus,
the jobs 10, 11, 12 are processed consecutively in [9, 15] and we obtain the
optimal objective value ^ C ? = 89.

4. CONCLUDING REMARKS

In this paper we gave polynonüal time algorithms for two 2-machine
open shop problems with unit processing times and different types of
precedence constraints. The presented algorithms can also be used for solving
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78 H. BRÀSEL, D. KLUGE, F. WERNER

the corresponding parallel machine problems with a simple straightforward
modification. Whereas for the problem P 2\pij — 1, prec|Cmax there already
exist some algorithms mentioned in the introduction, for the problem
P 2\pij — 1, intree|y^ Ci there is no known algorithm from the literature.

However, the algorithm presented in Section 3 for the problem
O2\pij = 1, intree|V^Cï does not necessarily lead to an optimal solution
for thie case of an arbitrary number of machines. To illustrate, we consider
the following instance of this problem. We have to process 16 jobs on 3
machines and the graph of intree constraints is given in Figure 6.

Figure 6. - The graph G for a problem O 3\pi3 = 1. i n t r e e | ^ Ci.

If we apply Algorithm 2 to this problem, we obtain B\ = {1, 2. 3},
B2 = {4, 7, 8}, Bs = {9, 10, 5} and 5 4 = {6,11, 13}, S 5 = {12, 14},

= {15} and Bj = {16}. The corresponding objective function value is
Y Ci = 159. However, if we choose Bi = {1, 2, 3, 4}, B2 = {7, 8, 9, 10},
B3 = {13, 5, 6}, B4 = {14,11, 12}, Bh = {15} and B6 = {16} we can
construct a schedule with \^ Ci = 158. In this case the optimal schedule
has the property that for B\ one job is finished at time 3 and the other three
jobs are finished at time 4, for B2 one job is finished at time 7 and the other
tree jobs are finished at time 8 and so on.

However, some polynomially solvable cases of both problems O\pi3 — 1,
prec|Cmax and O\ptj = 1, int ree | ^ Ci can easily be given. Hère we
mention only two cases:

1) for ail k with 1 < k < rkmax the condition |Sfc| < m hold or
2) for ail k with 1 < k < rkmax the condition S^ — L& holds.
In both cases it is easy to see that one can form blocks B3 consisting of

the jobs of the set Sj and process each block Bj within max {\B3; |, m} time
units to détermine an optimal solution. Therefore, the complexity status of
the problem O\pij = 1, intree|V^Ci is still open.
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