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A PROBLEM IN RAYLEIGH-TAYLOR INSTABILITY

R. E. L. TURNER *)

1. In this paper we will study an initial - boundary value problem
for a particular linearized Navier - Stokes equation. Such an equation
arises in the study of Rayleigh-Taylor instability of a stratified fluid (cf.
[ 1 ], p. 430), i.e., wherein the density differs from one « layer » to

another in the fluid. The situation we treat in the following: a viscous

incompressible fluid is confined to the region between two stationary
infinite plates which we take to be parallel and at heights z = 0 and
z =1 in an (x, y, z) coordinate system. There is a constant external gra-
vitational force in the negative z direction which, by choosing appropriate
units, we may represent by the vector G = (0, 0, -1 ). The equations
governing the evolution are:

where p is the density, p is the pressure, and V = (u, v, ~,v) is the velocity
vector. Again, we choose units so that the coefficient of viscosity l.1= 1.

*) Supported by N.S.F. Grant GP-5574 and the Italian Government C.N.R.
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In addition, we impose the « viscous » boundary condition that V = 0
for z = 0 and z == 1. One particular solution of the steady state problem is

where po is a 1] function. While we will treat the special case
if po is a sufficiently smooth function with po and D,pD

positive on [0, 1 ], the same type of analysis goes through using weighted
L2 spaces and suitable changes of variables.

If we linearize the equations (1.1) about the solution (1.2) we
arrive at a set of equations for the first order variations V, p, and p:

As has been shown in [2], the problem described above is unstable
in the sense that (1.3) has solutions which vanish at the boundary and
which grow exponentially. In what follows we show that there are

enough solutions of (1.3) to permit a unique eigenfunction expansion
solution of a certain initial-boundary value problem for (1.3). In addi-
tion to the condition that V vanish at the boundary, we specific (more
precisely in section 3)

where we assume, in addition, that V, p, p, V, and p are all periodic
in x with period 2x and independent of y, and that the velocities have
a y-component zero. A similar problem in more general domains will
be treated in a separate paper.
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2. We let n denote the 0  z  1 and n1 ,
the region: 0  z  1. Let 2)(n, 2~) denote the space of

periodic functions on il, which, when considered as functions on the

cylinder 1] under the map (x, z) ~ (eix, z), are C°° and have

compact support. If 2x) is given the usual inductive limit topology
(cf. [3], Part. I), then the dual £9’(Q, 2~) is the space of periodic
distributions on il. By HI(EL, 2x) we denote the space of those distri-
butions 2x) which have all derivatives through mth order in

For f(x, z) in 2x) we define the norm

which makes 2x) a Hilbert space. The corresponding inner pro-
duct is denoted by ( ~ , ~ )m . By 1] we denote the Sobolev space
of functions f(z), ze[0, 1 ] , having m derivatives in Ll with the usual
Hm norm, again denoted I 11m. We will also use I I to denote

110 and (f, g) for (f, g)o.
LEMMA 2.1 The space H’(fl, 2~) (m = 0, 1, 2, ...) consist of

those f representable as a Fourier series f(x, z) _ ~ with

1] and satisfying

The sum in (2.1 ) is equal to jj ·

PROOF. Suppose f (x, z)eH7n(n, 27t). Using Fubini’s theorem one

sees that is measurable in z with I 

from Bessel’s inequality, and since linear combinations of functions of
the form cp(z)e ikx, 1 ] , are dense in fk(z)eik%
with the series converging unconditionally in It follows that there
is equality in (2.2). Since f is in 2x), for there exists
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a unique /1’, for which

for any 2~). Letting
obtain

and hence, 1] for each n with and

II D§Dff III . Then 11 f is just the expression in (2.1 ).
The reverse inclusion proceeds similarly.

By 2-z) we denote the space of those feHm(n, 21t) for

which at z=O, 1 (i.e. has zero trace; cf [4], p. 38) for

(letting It follows from theorem ( 3 .10) of [4]
that the spaces 2~) are closed subspaces of Hm(!1, 

We similarly define 1] to be the subspace of functions

1] with f, Df, ..., vanishing at z = 0 and z =1.

LEMMA 2.2 For m =1, 2, ..., 27t) consists of those

fkeikXeHm(!1, 2n) having for all k and for

n =0, 1, 2, ..., j-1.

PROOF. Since each f k(z) is continuous by Sobolev’s imbedding
theorem, the trace of f at z=a is (cf . [4 ], p. 38), which
is 0 in LZ if and only if f k(a) = 0 for all k. A similar argument holds
for derivatives.

We now define and derive some properties of operators that will
be used in Section 3. We let 1] and for 

define where here and in what follows D stands for

Dz. Further, we let 1] and define 
-~- k2)~w. It is known (cf. [ 5 ] , § 18) that Lk and Mk so defined are

selfadjoint in L2 [ o, 1 ] for each k, are positive, and have compact in-

verse. In fact, for
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LEMMA 2.3. There exists a constant 1 such that for f = ~ 
in 2x)

PROOF. We have

after reduction using integration by parts. Using

it follows that

Then since
it follows from Lemma 2.1 that

for T}1 sufficiently large. The remaining inequa-
lity is straightforward.

LEMMA 2.4. There exists a constant n2 &#x3E; 1 such that for f = ~ fke ikx

PROOF. The result follows using

LEMMA 2.5. For ~=±1, ±2, ..., Lkl/2MkLkl/2 acting in 3)(L~)
has a bounded selfadjoint closure (denoted by the same symbol) with
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PROOF. It follows from an interpolation theorem of E. Heinz

has a bounded closure and hence that

is selfadjoint and bounded. For

If follows by closure that

yielding (

PROOF. We can write and from the identity
in the proof of Lemma 2.4 we see that 11 Mkf f f 112
 10 11 Then since I  k-2 by inequality (2.3), the Lem-
ma follows.

LEMMA 2.7. Let Pi(i =1, 2) be positive selfadjoint operators with
in a Hilbert space b. If there exists a constant
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11 &#x3E; 1 such that

PROOF. As noted is just the closure in

the norm f)1~2.

LEMMA 2.8 Let P and Q be positive selfadjoint operators in

a Hilbert space b and suppose T(Q)DO(PI/1). If P-l/2QP-l/2 has a

basis of eigenvectors (in particular, if P-1 is compact), then the problem
has a set of eigenvalues ~,; and corresponding eigenvectors

v; forming an orthonormal basis in the Hilbert where
for v, v’ E ~ (Pl~) the inner product is given by ~ v, pll2V’),
the latter inner product being that in b.

PROOF. The operator is selfadjoint and hence, under
the hypotheses of the lemma, has an orthonormal basis of eigenvectors
gi with eigenvalues One sees that each g’ is in and

setting we have while PVi= ÀiQVi with The

expansion theorem in ~ (P’~2) follovs easily from the (g;)-expansion.

One calls a set of vectors cpn{n=1, 2, ...) in a Hilbert space b,
an unconditional basis if and only if each f E b has a unique uncon-
ditionally convergent expansion We say cpn spans b if and
only if (9n , f ) = 0 for all n implies f = o.

LEMMA 2.9. Let { en } (n &#x3E; o) be an orthonormal basis in b and
let } (n = 0) be a set of vectors which span b. If In I 
then I (Pn) } is an unconditional basis for b.

PROOF. Let no be chosen so that en - cpn 112 1. Then if

and a theorem of Paley-Wiener (cf. [7], p. 208) insures

that 9. is an unconditional basis. Then } (n &#x3E; no) is an unconditional
basis of its closed linear span S which has codimension no in X. Let
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So be the linear span ..., cp~ }. If So fl s= (0) } then it is easy to see
that } (n &#x3E; 0) si an unconditional basis of b. If there were a vector

in S fl so , then the closed linear span of } (n &#x3E; 0 would have

positive codimension in b, contradicting the assumption that } 
spans b

3. Existence and uniqueness. By S(n, 2a~) we denote those vectors
V=(u(x, z), w(x, z)) in 2~) which are solenoidal;
i.e., satisfy Dxu+Dzw=O. Since w(x, z) _ ~ Wk(z)e"’ and u(x, z) _
= L uk(z)eikx with uk , [0, 1] and since V is solenoidal, we see
that ikuk = - DZvvk for all k. Thus w determines u except- for the term

uo(z), which can be any element of 1], while wo(z)-0. The

space 2~) becomes a Hilbert space when given the inner product

where V = ( u, w) and V’=(u’, w’).
We let E denote the Hilbert space of equivalence classes of triples

(V, p, p) in S(n, 2~) with (Vi , pi , pi) equi-
valent to ( V2 , p2 , P2) if and only Vi=V2, pi = p2 and pl - p2 = p, p

being independent of x and z. The norm in E is

n1I N N

THEOREM. 1Z)eS(n, 2) and peL2(n, 2) be given.
Then for any T &#x3E; 0 there exists a unique triple (V{x, z, t), p(x, z, t)
p(x, z, t)) satisfying:

2) The map t -~ (V, p, p) E E is strongly differentiable for 

3) (V, p, p) satisfies equation (1.3) in the sense of 2).
N /V

4) lim (V(x, z, t), p(x, z, t»=(V, P) in the sense of H1(n, 27c) X
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PROOF. We write equation (1.3) in the form

and look for a solution:

with initial data

Substituting the expressions (3.2) in equations (3.1 ) and equating
Fourier coefficients we obtain
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Suppose that (we will return to the case k = 0 later). Applying
D to the first equation of (3.4) we can use the first and second equations
to eliminate pk . Then using the last equation to eliminate uk we arrive at

Since both vvk and uk must vanish at the boundary we see from the

equation that we will want 1]. Letting 4bk denote
the pair (~, Pk) and defining the operator matrices

where Lk and Mk were defined in section 2, we can write (3.5) as

that Pk and Qk are selfadjoint in If we seek a solution of the
form then (3.6) reduces to the relative eigenvalue
problem

We will show that (3.7) provides a basis of eigenvectors for

We let
I -
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selfadjoint, and we note that replacing Pk by Pk in (3.7) does not change
the eigenfunctions. Using the inequality

one sees easily that

where the inner product p) and ~’ _ (~,v’, p’) is (w, w’)+(p, p’).
It follows from (3.8) that Pk is positive and, using Lemma 2.7, that

~)(P~)=S)((P~/2)=~)(H/2)x~. As a corollary

as a map in recalling the proof of Lemma 2.6.
In addition we have

and a constant n3 independent of k.
To show this we write

for all sufficiently large k, using 11 w )~&#x3E;:~"~ 11 Lkm 11 2 and Lemma 2.6.
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one sees from the closed graph theorem
that for each k there is an ~3 = ~3(k) for which (3.10) holds. We can
then choose Y]3 sufficiently small so that it serves for all k. From (3.9)
it follows immediately that

as a map in 

If we eliminate p from the pair of equations equivalent to (3.7)
we obtain

Equation (3.12), in turn, is equivalent to

where i and (cf. [2]). It is shown in [2]
that (3.13) has a discrete « spectrum » consisting of a sequence of positive
eigenvalues decreasing to zero and a sequence of negative eigenvalues
decreasing tao - 00. The positive ones lie in the interval [0, II and
the negative ones, in ( - ~ , - ~ ~ Bk ~ ~ -1). With the aid of inequality
(2.3) and Lemma 2.5 we see that, for each k, the eigenvalues of (3.13)
lie in ( - ~ , - k2/2 ] U (0, k-2). Since the eigenvalues of Lk 1 converge
to zero as 0(n-4)n=1, 2, ... ([5], § 4), Ak is in the compact operator
class Cr (cf. [8], p. 1088) for any r&#x3E; 1/4. As such, from Theorem 2.24
of [9] we may conclude that the eigenvectors of (3.13) corresponding
to positive eigenvalues form an unconditional basis in L2[0, 1 ] and hence,
applying to these vectors, that the corresponding eigenvectors of
(3.12) form unconditional basis in ~(Lk 2).

For each eigenvector vkn of (3.13) we obtain eigenvectors Wkn=
of (3.12) and of (3.7). For each k, we

let run through the positive eigenvectors of (3.13) for n=1, 2, ...

(in decreasing order) and through the negative ones for n = -1, - 2, ....
Let .L E ;~! (Pk~2) be the closed linear span of I (n ~ O) where

closure is with respect to the norm and the eigenvectors are:
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normalized so that (Pk(Dk,, , (Dki) = the Kronecker delta. Let

where (~w, means

If o 1 ~ then w determines p and in fact

for some constant Ck . To show this we require the result that the (nor-
malized) set I (n &#x3E; 0) provides an unconditional basis for L2[0, 1 ] .
Since the eigenvalues of Lk are 0( n - 4) it follows from the variational

principles of [2] that ~,kn = ( n - 4) for n &#x3E; 0. Now f or k fixed, the operator
n =1, 2, .... For each t, the eigenvalues approach the eigenvalues

has a sequence of eigenvalues which we write as 
of Lk ; that is, I k2Àkn(t)-(.1kn I -&#x3E; 0 as n ~ 00 (cf . I 10 1 ). The

eigenvalues of (3.12) are precisely the values Xkn(t) for which
and as such, can be put in one to one correspondence with (1kn

in such a way that 2013&#x3E;0 as n ~ ~ . Using the contour inte-
gral perturbation method one can show as in [ 11 ] that

where ekn are the normalized eigenfunctions of Lk and dk is a constant.
Now, if there were an satisfying (f, for each n&#x3E;O (k still
fixed), then would follow and since Ll/2Wkn spans L2
we would obtain implying 

n&#x3E;o

 dk ~  00 we may appeal to Lemma 2.9 to conclude that 
is an unconditional basis of 1 ~ .

Now a vector ~=(iv, p) perpendicular to .£ certainly satisfies (3.15)
for n &#x3E; 0 yielding
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and since

Since

we obtain

As wkn is an unconditional basis, and hence is « similar &#x3E;&#x3E; to an

orthonormal basis (cf. [ 12] )

yielding (3.16). 
then cr&#x3E;O, sinceReturning to (3.14) we note that then or&#x3E;0, since

for O#0

using the proof of Lemma 2.5. Suppose that C;==(~;, Pi) is a minimizing
sequence for (3.14), with ~;) =1. Inasmuch as 

pj), &#x3E; W;) is bounded by 1 for all j and as
Mk is compact, a subsequence of the vv; , still called M7;, will converge
strongly to WO in L. At the same time we know [[ must be
bounded and since with compact as

map of L2 (cf. [ 2 ] , p. 153), must have a convergent subsequence.
.Since is closed we can choose the subsequence so that it converges
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to From (3.16) we see that pi must converge to some p°E L2
giving P°) with (Qk(DO, tPP)= 1. We may also assume con-giving (DO=(wl, p 

12 0 P112(D, 
- 2k

verges weakly to or that converges weakly to Since
- - 

k 
- 

k

Then letting
have

and

if (T, for all n. It then follows from standard variational

arguments that

Since is bounded, qfl is in Letting 
we see that and But V must then be one of the

eigenvectors obtained from (3.13), requiring (Qkwo, O°)=0, a contradic-
tion. We can conclude, then, that the vectors (properly normalized)
provide an orthonormal basis in 

Suppose now that k=O. As we have already observed, we must have

Suppose Uo(z) and po(z) are given. Then since 8po/8t=0,
_ _ _ z_

po(z, t)=po(z) and Po(z, where co is an arbitrary
constant. The first equation of (3.3) becomes the diffusion equation

where Ao denotes the selfadjoint operator with 

= Hi[ o, 1] and defined by Since Ao I is known to be

compact in L2, it follows from Lemma 2.8 and well-known techniques
(to be used below) that (3.18) has a solution in the L2 sense, given
by an eigenfunction expansion, and that the initial data is assumed
in the sense of S)(~)==~;[0, 1] (cf. [2], p. 153).
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As far as the existence is concerned, we will henceforth consider
the case finished and consider only 

Having we let

The quadruple defined in (3.19) is a solution of (3.1) in the sense
of 2~). Thus, provided it converges in the appropriate derivative
norm, a sum

will also be a solution. Consider now the pair

Since the initial vector ifi= (5, vv) is in S(n, 2~), we can conclude

from the solenoidal property and Lemma 2.2 that 2~). We
can p) as
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convergent in 27c) with each in H2[o, 1].
Since for each k, is an orthonormal basis in ~(Pk 2) -
=~[0, 1 ] &#x3E;C L2, if we let then using lemma 2.4

and inequality 3.8 we have

and hence

convergent in Wen, 2~). It follows immediately that with
akn so defined, w(x, z, t), p(x, z, t) given by (3.20) approaches (iv, p)
in H2(!1, 2~) as t- 0. Further, from the definition of

ukn(x, z, t) we see that £ aknukn(X, z, t) converges in H1(!1, 2~) to

the function u. Thus the functions (V(x, z, t), p(x, z, t))=(u(x, z, t),
w(x, z, t), p(x, z, t)) defined by (3.20) satisfy requirement 4) of the
theorem. As regards item 1) of the theorem we see from (3.19) that

t) will converge in H2(!1, 2~) z, t)
converges in 2~n) and that E aknpkn(x, z, t) will

converge in 2x) z, t) converges in H4(n, 2~)
taking into account that the term t) in the expres-
sion for pkn really has a multiplier ÀkneÀknt which, for each t  0, is

uniformly bounded in k and n and, thus does not effect the 2~)
convergence of the expansion I aknpkn(x, z, t).

For conclusion 2) of the theorem it suffices to observe that a

time derivative merely introduces a factor Xkn which, as we have

noted, is compensated for by eÀknt, at least in the case of time deri-
vatives of w and p. For the time derivative of u to exist in wen, 2~)
the convergence of I aknk-1Àknèf)kn(z)eikx+Àknt in H3(í!, 27c)
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will suffice. Conclusion 3) of the theorem follows form 1) and 2)
since the elementary summands are solutions.

We will show only the convergence in

2~). The convergence of F in

and hence in H3XL2, can be shown in a similar fashion.

Recalling that we have

using Lemma 2.3, and the inequalities (3.9) and (3.11 ). Recalling that
Xkn lies in ( - ~ , - k~/2) or in (0, k-2) one sees that the last expres-
sion in (3.23) is bounded for each t&#x3E; 0 and hence that the series

converges as desired. One can, of course, avoid using the term to

produce convergence and hence obtain convergence for 0  t  T, uni-
formly in t, by placing further conditions on initial data resulting in
a more rapid decreasse of akn to zero. 1’his concludes the proof of
the existence of a solution satisfying items 1 )-4) of the theorem.

The proof of uniqueness is standard. If there were another solu-
tion (u’, w’, p’, p’) then it would have a Fourier expansion satysfying
(3.4) with primes on all the functions. Again we assume the
case k = 0 being similar. Letting = ( ~.vk(z, t), p’(z, t) be the coeffi-
cients we would find
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as before. Expanding t) we would have to have

with Since the ordinary differential equation has a unique
solution, we are finished.
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