ANTONIO PASINI

Some fixed point theorems of the mappings of partially ordered sets

<http://www.numdam.org/item?id=RSMUP_1974__51__167_0>
1. Introduction.

In this paper we give new simple proofs of some fixed point theorems, and strengthen others. The methods we shall use base themselves on two « strong » induction principles, we stated and utilized in [5]. We shall show, moreover, that one of them is equivalent to Axiom of Choice.

Let's now recall some results on the fixed points of a function defined from a partially ordered set \(P; < \) into itself.

Proposition A. Let \(P; < \) be a nonempty partially ordered set every well ordered subset of which has an upper bound. And let \(f \) be a function from \(P \) into \(P \) such that \(x < f(x) \) for every \(x \); then \(f \) has a fixed point.

The preceding result is proved in [2] by using Axiom of Choice. As a corollary we get:

Proposition B. Let \(P; < \) be a nonempty partially ordered set every well ordered subset of which has a least upper bound, and let \(f \) be a function just like proposition A's one; then \(f \) has a fixed point.

The preceding proposition, however, may be proved independently, and without using Axiom of Choice. (see [1] and [2]).

Lavoro eseguito nell'ambito dei gruppi di ricerca matematica del C.N.R.
PROPPOSITION C (see [3]). Let \(\langle P; \leq \rangle \) be a nonempty partially ordered set every well ordered subset \(B \) of which has an upper bound which is minimal in the set of upper bounds of \(B \). Let \(f \) be a mapping from \(P \) into \(P \) such that \(a \leq f(a) \) for some \(a \) in \(P \), and such that \(x \leq f(x) \leq y \) implies \(f(x) \leq f(y) \), for every \(x \) and \(y \) in \(P \); moreover \(\{ x, f(x) \} \) has a greatest lower bound in \(\langle P; \leq \rangle \); then \(f \) has a fixed point.

PROPPOSITION D (see [1]; see also [2]). Let \(\langle P; \leq \rangle \) be a non-empty partially ordered set every well ordered subset of which has a least upper bound. And let \(f \) be a mapping from \(P \) into \(P \) such that \(a \leq f(a) \) for some \(a \) in \(P \), and such that \(x \leq y \) implies \(f(x) \leq f(y) \), for every \(x \) and \(y \) in \(P \). Then \(f \) has a fixed point.

Proposition \(D \) is proved in [1] and in [2] without using Axiom of Choice.

PROPPOSITION E (see [4]). Let \(\langle P; \leq \rangle \) be a nonempty well ordered set every subset of which has a least upper bound. Let \(f \) be just like in proposition \(D \); then the set \(\{ p | f(p) = p \} \) is nonempty and has a maximal element.

Proposition \(E \) is proved in [4] without any use of Axiom of Choice. But this is possible because \(\langle P; \leq \rangle \) is well ordered.

We shall prove (but postpone the proofs):

THEOREM A. Let \(\langle P; \leq \rangle \) be a nonempty partially ordered set every well ordered subset \(B \) of which has an upper bound which is minimal in the set of upper bounds of \(B \). And let \(f \) be a function from \(P \) into \(P \) such that:

1. \(x \leq f(x) \leq y \) implies \(f(x) \leq f(y) \) for every \(x \) and \(y \) in \(P \).
2. \(\{ x, f(x) \} \) has a greatest lower bound in \(P \), for every \(x \) in \(P \).
3. There is an element \(a \) of \(P \) such that \(a \leq f(a) \).

Then the set \(\{ p | f(p) = p \} \) is nonempty and has a maximal element.

Theorem \(A \) strengthens proposition \(C \). Theorem \(A \)'s proof makes use of Axiom of Choice.

THEOREM B. Let \(\langle P; \leq \rangle \) be a nonempty partially ordered set every well ordered subset of which has a least upper bound. And let \(f \) be a mapping from \(P \) into \(P \) such that \(x \leq f(x) \leq y \) implies \(f(x) \leq f(y) \), for every \(x \) and \(y \) in \(P \). And let be \(a \leq f(a) \) for some \(a \) in \(P \). Then the set \(\{ p | f(p) = p \} \) (is nonempty and) has a maximal element.
REMARK. Theorem B generalizes propositions E and D: in the fact (we require on P more general conditions than in E and) what we require on f is less strong than isotonicity: clearly if f is isomone \(x < f(x) < y \) implies \(f(x) < f(y) \), but there are non isomone functions f such that \(x < f(x) < y \) implies \(f(x) < f(y) \), and is a \(< f(a) \) for a convenient a in P. Let consider, for instance, the ordered set \(\langle 1, 2, 3 \rangle ; \langle \rangle \), where \(1 < 2 < 3 \), and let’s pose \(f(1) = 3, f(3) = 3, f(2) = 1 \).

In theorem B we doesn’t need Axiom of Choice in proving \(\{ p | f(p) = p \} \neq 0 \). So we get a proof of proposition D which doesn’t use Axiom of Choice. Moreover, if we assume \(\langle P; \rangle \) is a well ordered set (as in proposition E), our methods give a proof of the existence of a maximal element in \(\{ p | f(p) = p \} \), which doesn’t use Axiom of Choice.

THEOREM C. Let \(\langle P; \rangle \) and f be just like in proposition A. Then \(\{ p | f(p) = p \} \) (is nonempty and) has a maximal element.

2. «Strong» transfinite induction principles.

Let be given a class A and a limit ordinal number \(\alpha_0 \). Let \(\alpha \) be a nonzero ordinal number less than \(\alpha_0 \), and \(\Phi_\alpha \) be a function from the set \([0, \alpha) \) (i.e.: the set of all ordinal numbers less than \(\alpha \) into A. Let \(P(x, y) \) be a first order quantification scheme free on \(x, y \), belonging to a language which formalizes set theory. And let \(P(\alpha, \Phi_\alpha) \) be the sentence we give from \(P(x, y) \) by substituting \(x \) with \(\alpha \) and \(y \) with \(\Phi_\alpha \). Moreover let \(P(\alpha, \Phi_\alpha) \) be of the form:

\[
(\forall \gamma_1) \ldots (\forall \gamma_n) \left((\gamma_1 < \alpha) \land \ldots \land (\gamma_n < \alpha) \right) \rightarrow Q(\Phi_\alpha, \gamma_1, \ldots, \gamma_n)
\]

where \(\gamma_1, \ldots, \gamma_n \) vary on \([0, \alpha) \) and \(Q(\Phi_\alpha, \gamma_1, \ldots, \gamma_n) \) satisfies the following condition:

CONDITION A. For any choice of \(\gamma_1, \ldots, \gamma_n \) less than \(\alpha \), \(Q(\Phi_\alpha, \gamma_1, \ldots, \gamma_n) \) is true only if for every \(\beta \) greater than zero, less than \(\alpha \), and such that is an upper bound for \(\gamma_1, \ldots, \gamma_n \), \(Q(\Phi_\alpha[0, \beta), \gamma_1, \ldots, \gamma_n) \) is true (where \(\Phi_\alpha[0, \beta) \) is the restriction of \(\Phi_\alpha \) to \([0, \beta) \)).

We proved in [5] (section 2, corollaries 2.1 and 2.2) the following results:
LEMMA A. If for every α less than α_0 and greater than 0, for every function Φ_α such that $P(\alpha, \Phi_\alpha)$ is true, there is only one function $\Phi_{\alpha+1}$ such that $P(\alpha + 1, \Phi_{\alpha+1})$ is true and $\Phi_{\alpha+1}[0, \alpha] = \Phi_\alpha$, and if there is a function Φ_1 such that $P(1, \Phi_1)$ is true, then for every β (less than α_0 and greater than 0) there exists a function Φ_β such that $P(\beta, \Phi_\beta)$ is true.

Lemma A’s proof doesn’t need Axiom of Choice. Let’s now suppose Λ is a set. Then we have:

LEMMA B. If for every α less than α_0 and greater than 0, for every function Φ_α such that $P(\alpha, \Phi_\alpha)$ is true, there is a function $\Phi_{\alpha+1}$ such that $P(\alpha + 1, \Phi_{\alpha+1})$ is true and $\Phi_{\alpha+1}[0, \alpha] = \Phi_\alpha$, and if there is a function Φ_1 such that $P(1, \Phi_1)$ is true, then for every β (less than α_0 and greater than 0) there exists a function Φ_β such that $P(\beta, \Phi_\beta)$ is true.

In lemma B’s proof we made use of Axiom of Choice (formulated as well ordering principle); conversely we shall see now that lemma B implies the well ordering principle, and then the Axiom of Choice. Let A be a nonempty set, and a an element of A; let’s consider the set $A^* = A \cup \{a\}$, and let α_0 be a limit ordinal of power greater than $2|A^*|$ (where $|A^*|$ is the cardinality of A^*) (1). Let $P(\alpha, \Phi_\alpha)$ be the following statement:

For every $\gamma < \alpha$, if $\{\Phi_\alpha(\delta)|\delta < \gamma\}$ is properly contained in A, then $\Phi_\alpha(\gamma) \in A$, and $\Phi_\alpha(\delta) \neq \Phi_\alpha(\gamma)$ for every $\delta < \gamma$;

It’s easily seen that this statement satisfies condition A. Let now Φ_α be a function from A^* into A^* such that $P(\alpha, \Phi_\alpha)$ is true. If $\Phi_\alpha(\delta) = \{A\}$ for a $\delta < \alpha$, then let δ_0 be the least δ such that $\Phi_\alpha(\delta) = \{A\}$. Then $\phi_\alpha(\gamma) \in A^*$, by proposition $P(\alpha, \Phi_\alpha)$; so we get a contradiction, and have to admit $\{\Phi_\alpha(\gamma)|\gamma < \delta_0\} = A$. So we can define $\Phi_{\alpha+1}$ by:

$(\Phi_{\alpha+1}[0, \alpha] = \Phi_\alpha$, and $\Phi_{\alpha+1}(a) = \{A\}$. And it’s easily seen that $P(\alpha + 1, \Phi_{\alpha+1})$ is true. Now we have to consider the second case, that’s when $\{A\} \notin \{\Phi_\alpha(\delta)|\delta < \alpha\}$. We have two subcases: $\{\Phi_\alpha(\delta)|\delta < \alpha\} = A$ and $\{\Phi_\alpha(\delta)|\delta < \alpha\} \neq A$. In the first subcase we pose $\Phi_{\alpha+1}(\alpha) = \{A\}$; in the second subcase we equate $\Phi_{\alpha+1}(\alpha)$ to an arbitrary element of $A - \{\Phi_\alpha(\delta)|\delta < \alpha\}$. And it’s trivial to see that $P(\alpha + 1, \Phi_{\alpha+1})$ is true (in the first as well as in the second subcase). So, by lemma B, if β

(1) It’s known that this can be done without any use of Axiom of Choice.
is an ordinal of power greater than 2^{λ^*} and less than σ_0 (Obviously we can always choose σ_0 such that such a β exists), there is a Φ_β such that $P(\beta, \Phi_\beta)$ is true. Let's suppose, by absurd, $\{\Phi_\beta(\gamma) | \gamma < \beta\}$ properly contained in A. Then Φ_β is injective, and so has as many values as the power of β; this gets a contradiction. So we must have $\{\Phi_\beta(\gamma) | \gamma < \beta\} \supseteq A$. And it's trivial to check that Φ_β defines a well ordering on A; as we wished to prove. Then:

Lemma B is equivalent to Axiom of Choice.

3. Proofs.

Proof of Theorem A. Let a be an element of P such that $f(a) > a$. Let α_0 be a limit ordinal whose power is greater than $2^{|P|}$ ($|P|$ is P's cardinality). Let Φ_α indicate a function from $[0, \alpha)(0 < \alpha < \sigma_0)$ into P, and let $P(\alpha, \Phi_\alpha)$ be the following statement:

$\Phi_\alpha(0) = a$. And for every ordinal number γ, if $\gamma < \alpha$, then is $\gamma + 1 < \alpha$,

$\Phi_\alpha(\gamma + 1) = f(\Phi_\alpha(\gamma))$, and if γ is a limit ordinal, then the set B_γ of upper bounds of $\{\Phi_\alpha(\delta) | \delta < \gamma\}$ is nonempty and has a minimal element, and $\Phi_\alpha(\gamma)$ is such an element.

It's easily seen that $P(\alpha, \Phi_\alpha)$ satisfies condition A. Let's now suppose Φ_α is a function verifying $P(\alpha, \Phi_\alpha)$. Now we prove that there is a function $\Phi_{\alpha+1}$ such that $P(\alpha + 1, \Phi_{\alpha+1})$ is true and $\Phi_{\alpha+1}(0, \alpha) = \Phi_\alpha$. We have to distinguish two cases: $\alpha = \delta + 1$ for some ordinal number δ, or α is a limit ordinal. First we verify $\{\Phi_\alpha(\gamma) | \gamma < \alpha\}$ is a well ordered subset of $\langle P; < \rangle$. We start by proving (by transfinite induction on $\gamma < \alpha$) the following statement $S(\gamma)$:

$\Phi_\alpha(\delta) < \Phi_\alpha(\gamma)$ for every δ, with $\delta < \gamma$.

Let's now suppose $S(\gamma)$ true for any $\gamma < \mu$ (μ is a given ordinal number less than α). We shall prove $S(\mu)$ is true. We must distinguish two cases: there is an ordinal number ν such that $\mu = \nu + 1$, or μ is a limit ordinal. If $\mu = \nu + 1$, then $\Phi_\alpha(\mu) = f(\Phi_\alpha(\nu))$. We have two subcases: $\nu = \lambda + 1$ or ν is a limit ordinal; if $\nu = \lambda + 1$, $\Phi_\alpha(\nu) = f(\Phi_\alpha(\lambda))$, and then $\Phi_\alpha(\mu) = f(\Phi_\alpha(\nu))$. But $f(\Phi_\alpha(\lambda)) = \Phi_\alpha(\nu) > \Phi_\alpha(\lambda)$ (by inductive hypothesis). So $\Phi_\alpha(\lambda) < f(\Phi_\alpha(\lambda)) = \Phi_\alpha(\nu)$; then we get $f(\Phi_\alpha(\lambda)) < f(\Phi_\alpha(\nu))$, that's $\Phi_\alpha(\mu) > \Phi_\alpha(\nu)$. And this suffices to prove $S(\mu)$.
Let's now consider the second subcase: that's when v is a limit ordinal. We have $\Phi_\alpha(v) > \Phi_\alpha(\lambda)$ for every $\lambda < v$, and $f(\Phi_\alpha(\lambda)) = \Phi_\alpha(\lambda + 1) > \Phi_\alpha(v)$ (by inductive hypothesis). And $\Phi_\alpha(\lambda) < f(\Phi_\alpha(\lambda))$ (by inductive hypothesis). So $\Phi_\alpha(\lambda) < f(\Phi_\alpha(\lambda))$: then we get $f(\Phi_\alpha(\lambda)) < f(\Phi_\alpha(v))$: then $\Phi_\alpha(\lambda) < \Phi_\alpha(\mu)$. So: $\Phi_\alpha(\mu) > \Phi_\alpha(\lambda)$ for every $\lambda < v$; hence $\Phi_\alpha(\mu)$ is an upper bound of $\{\Phi_\alpha(\lambda) | \lambda < v\}$. But $\Phi_\alpha(\mu) = f(\Phi_\alpha(v))$: then does exists the greatest lower bound of $\{\Phi_\alpha(\nu), \Phi_\alpha(\mu)\}$, and it's clearly an upper bound of $\{\Phi_\alpha(\lambda) | \lambda < v\}$; but $\Phi_\alpha(v)$ is a minimal upper bound of $\{\Phi_\alpha(\lambda) | \lambda < v\}$. Then $\Phi_\alpha(v) = \text{g.l.b.} \{\Phi_\alpha(v), \Phi_\alpha(\mu)\}$, that's $\Phi_\alpha(v) < \Phi_\alpha(\mu)$, as we wished to prove; finally we have $S(\mu)$.

Let's now consider the second case, that's when μ is a limit ordinal; then, by $P(\alpha, \Phi_\alpha)$, $\Phi_\alpha(\mu)$ is an upper bound for $\{\Phi_\alpha(\lambda) | \lambda < \mu\}$, and $S(\mu)$ is trivially verified; then $S(\gamma)$ is true for every $\gamma < \alpha$. This implies Φ_α is a monotone function from $[0, \alpha)$ into \mathbb{P}; and therefore $\{\Phi_\alpha(\gamma) | \gamma < \alpha\}$ is a well ordered set; then, by hypothesis, does exists a minimal upper bound b of $\{\Phi_\alpha(\gamma) | \gamma < \alpha\}$, and we can pose $\Phi_{\alpha + 1}(\alpha) = b$.

And so, by lemma B, for every $\beta < \alpha$ is definable a Φ_β such that $P(\beta, \Phi_\beta)$ is true. We have already seen that Φ_β is a monotone function from $[0, \beta)$ into $\langle P; < \rangle$. Let's now suppose $x \neq f(x)$ for every x; in P; then Φ_β has as many values as the power of β. And we get an absurd because we can choose β with power greater than $|P|$. So we must admit $\Phi_\beta = f(\Phi_\beta)$ for a convenient $\Phi_\beta \in P$.

We remark that we can choose Φ_β greater than (or equal to) α.

We shall now prove that the set of fixed points of f has a maximal element. Let's consider another proposition $P'(\alpha, \Phi'_\alpha)$ as follows:

for every γ_1 and γ_2 less than α, if $\gamma_1 < \gamma_2$, then, if $\Phi'_\alpha(\gamma_1)$ is maximal in $\{p | f(p) = p\}$, is $\Phi'_\alpha(\gamma_1) = \Phi'_\alpha(\gamma_2)$. And, if it isn't maximal in $\{p | f(p) = p\}$, is $\Phi'_\alpha(\gamma_1) < \Phi'_\alpha(\gamma_2)$. Moreover, for every γ less than α, $\Phi'_\alpha(\gamma)$ is a fixed point for f. And is $\Phi'_\alpha(0) = \Phi_\alpha(0)$ (where $\Phi_\alpha(0)$ is the before found fixed point of f).

It's a trivial question to check that condition A is satisfied by $P'(\alpha, \Phi'_\alpha)$. Now we must see that, if there's a function Φ'_α such that $P'(\alpha, \Phi'_\alpha)$ is true, then we can construct a function $\Phi'_\alpha(\alpha + 1)$ such that $P'(\alpha + 1, \Phi'_\alpha(\alpha + 1))$ is true and $\Phi'_\alpha(\alpha + 1 | [0, 1]) = \Phi'_\alpha(\alpha)$. We distinguish two cases: when is $\alpha = \delta + 1$ for a convenient δ, and when α is a limit ordinal.

Let's suppose is $\alpha = \delta + 1$; we have two subcases: $\Phi'_\alpha(\delta)$ is maximal in $\{p | f(p) = p\}$, or not. If $\Phi'_\alpha(\delta)$ is such a maximal element, then we set $\Phi'_\alpha(\alpha + 1) = \Phi'_\alpha(\delta)$ (and $\Phi'_\alpha(\alpha + 1 | [0, \alpha]) = \Phi'_\alpha(\alpha)$). It's easily seen that $P'(\alpha + 1, \Phi'_\alpha(\alpha + 1))$ is true. Let's now consider the subcase when $\Phi'_\alpha(\delta)$
isn’t maximal in \(\{ p | f(p) = p \} \); then there is a fixed point \(q \) of \(f \) such that \(q > \Phi_{\alpha}(\delta) \). If we set \(\Phi'_{\alpha+1}(\alpha) = q \) (and \(\Phi'_{\alpha+1}(\delta, \alpha) = \Phi_{\alpha}^{\delta} \)) we get a function satisfying \(P'(\alpha + 1, \Phi'_{\alpha+1}) \). Let’s now consider the case when \(\alpha \) is a limit ordinal. We have two subcases: there is an ordinal \(\gamma \) less than \(\alpha \) such that \(\Phi_{\alpha}(\gamma) \) is maximal in \(\{ p | f(p) = p \} \), or there’s no such ordinal. In the first subcase is \(\Phi'_{\alpha}(\gamma) = \Phi'_{\alpha}(\gamma) \) for every \(\lambda \) less than \(\alpha \) and greater than \(k \). So we can set \((\Phi'_{\alpha+1}(\delta, \alpha) = \Phi'_{\alpha}(\gamma) \). \(\Phi'_{\alpha+1}) \), so defined, verifies \(P'(\alpha + 1, \Phi'_{\alpha+1}) \). In the second subcase \(\{ \Phi'_{\alpha}(\gamma) | \gamma < \alpha \} \) is a well ordered set. Then by hypothesis, it has a minimal upper bound \(b \). We shall see now that there is a fixed point \(q \) greater than \(b \). We have \(\Phi'_{\alpha}(\gamma) = f(\Phi_{\alpha}(\gamma)) \), and \(b > \Phi'_{\alpha}(\gamma) \), for every \(\gamma \) less than \(\alpha \). That’s: \(\Phi'_{\alpha}(\gamma) < f(\Phi_{\alpha}(\gamma)) < b \). We get: \(f(\Phi_{\alpha}(\gamma)) < f(b) \); that’s \(\Phi'_{\alpha}(\gamma) < f(b) \), for every \(\gamma \) less than \(\alpha \). So \(f(b) \) in an upper bound for the set \(\{ \Phi'_{\alpha}(\gamma) | \gamma < \alpha \} \); but the set \(\{ b, f(b) \} \) has a greatest lower bound. This, and the minimality of \(b \) in the set of upper bounds of \(\{ \Phi_{\alpha}(\gamma) | \gamma < \alpha \} \), give \(b < f(b) \). By the first part of the proof of this theorem, we can find a fixed point \(q \), such that \(q > b \). If we set \((\Phi'_{\alpha+1}(\delta, \alpha) = \Phi'_{\alpha}(\gamma) \) and \(\Phi'_{\alpha+1}(\delta, \alpha) = q \), we have a function \(\Phi_{\alpha+1} \) satisfying \(P'(\alpha + 1, \Phi'_{\alpha+1}) \). Then, by lemma \(B \), for every nonzero ordinal \(\beta \) less than \(\alpha \), we have a function \(\Phi'_{\beta} \) such that \(P'(\beta, \Phi'_{\beta}) \) is true. Let’s choose \(\beta \) of power greater than \(\vert P \vert \). If no \(\Phi'_{\beta}(\gamma) \) is maximal in the set of fixed points of \(f \), \(\Phi'_{\beta} \) is an injection, and therefore has as many values as the power of \(\beta \); therefore we get an absurd. And we have to admit that there is an ordinal \(\gamma \) such that \(\Phi'_{\beta}(\gamma) \) is maximal in \(\{ p | f(p) = p \} \). As we wished to prove.

Proof of Theorem B. The proof is quite similar to theorem A’s one; then various details will be omitted. \(\alpha_{0} \) is an ordinal number of power greater than \(2^{\vert \beta \vert} \), \(\Phi_{\alpha}^{\beta} \) a function from \([0, \alpha) \) into \(P \), \(a \) an element of \(P \) such that \(a < f(a) \), and \(P(\alpha, \Phi_{\alpha}^{\beta}) \) is the following statement:

\[
\Phi_{\alpha}(0) = a. \quad \text{And for every ordinal number } \gamma, \text{ if } \gamma < \alpha, \text{ then if } \gamma + 1 < \alpha, \Phi_{\alpha}^{\beta}(\gamma + 1) = f(\Phi_{\alpha}^{\beta}(\gamma)), \text{ and if } \gamma \text{ is a limit ordinal, then does exists in } P \text{ the least upper bound of } \{ \Phi_{\alpha}^{\beta}(\lambda) | \lambda < \gamma \}, \text{ say it l.u.b. } (\Phi_{\alpha}^{\beta}(\lambda) | \lambda < \gamma) = \Phi_{\alpha}^{\beta}(\gamma).
\]

It’s easily seen that \(P(\alpha, \Phi_{\alpha}^{\beta}) \) satisfies condition A. Let now \(\Phi_{\alpha}^{\beta} \) be a function verifying \(P(\alpha, \Phi_{\alpha}^{\beta}) \). We shall show that there is (only) one function \(\Phi_{\alpha+1} \) such that \(P(\alpha + 1, \Phi_{\alpha+1}) \) is true and is \(\Phi_{\alpha+1}(\delta, \alpha) = \Phi_{\alpha}^{\delta} \). We have to distinguish two cases: \(\alpha = \delta + 1 \) for some ordinal number \(\delta \), or \(\alpha \) is a limit ordinal. If \(\alpha = \delta + 1 \) we define \(\Phi_{\alpha+1} \) by pos-
And it's easily seen that \(\phi^{++1} \) is true. Let's now suppose \(\alpha \) is a limit ordinal. We have to see \(\Phi_\alpha^\beta(\lambda) \leq \alpha \) is a well ordered subset of \(\{ \Phi; \prec \} \). As we did do in theorem A, let's consider the following statement \(S(\gamma) \):

\[
\Phi_\alpha^\beta(\delta) \prec \Phi_\alpha^\beta(\gamma) \quad \text{for every } \delta(\delta < \gamma < \alpha).
\]

Now, given \(\mu < \alpha \), let's suppose that \(S(\gamma) \) is true for every \(\gamma < \mu \). We shall prove that \(S(\mu) \) is true. We must distinguish two cases:

- \(\mu = \lambda + 1 \) or \(\mu \) is a limit ordinal. Let’s now suppose \(\mu = \lambda + 1 \). If \(\lambda = \alpha \), \(\Phi(\mu) \) is proved in quite a similar manner as in theorem A’s proof. Let’s now consider the second case, that’s when \(\mu \) is a limit ordinal. As in Theorem A’s proof, we get for every \(\lambda < \nu \), then \(\Phi_\alpha^\beta(\lambda) > . \) Hence \(S(\mu) \) is true. Let’s now consider the second case, that’s when \(\mu \) is a limit ordinal: now \(S(\mu) \) is trivial, by \(\Phi(\mu) \). So \(S(\mu) \) is true in any case. Hence \(S(\gamma) \) is true for every \(\gamma < \alpha \); this implies that \(\Phi_\alpha^\beta \) is a monotone function from the well ordered set \(\{0, \alpha\} \) into \(\{ \Phi; \prec \} \); then \(\Phi_\alpha^\beta(\gamma) \prec \Phi_\alpha(\nu) \). Hence \(S(\mu) \) is true. Let’s now consider the second case, that’s when \(\mu \) is a limit ordinal: now \(S(\mu) \) is true. Let’s now consider the second case, that’s when \(\mu \) is a limit ordinal: now \(S(\mu) \) is trivial, by \(\Phi(\mu) \). So \(S(\mu) \) is true in any case. Hence \(S(\gamma) \) is true for every \(\gamma < \alpha \); this implies that \(\Phi_\alpha^\beta \) is a monotone function from the well ordered set \(\{0, \alpha\} \) into \(\{ \Phi; \prec \} \); then \(\Phi_\alpha^\beta(\gamma) \prec \Phi_\alpha^\beta(\nu) \). Hence \(S(\mu) \) is true. Let’s now consider the second case, that’s when \(\mu \) is a limit ordinal: now \(S(\mu) \) is true. Let’s now consider the second case, that’s when \(\mu \) is a limit ordinal: now \(S(\mu) \) is true. Let’s now consider the second case, that’s when \(\mu \) is a limit ordinal: now \(S(\mu) \) is true.
is not maximal in \(\{ x | f(x) = x \} \), is \(\psi_a(\gamma + 1) = \text{g.l.b.} \{ x | f(x) = x \} \) and \(x > \psi_a(\gamma) \). And if \(\gamma \) is a limit ordinal, then \(\psi_a(\gamma) = P(\text{l.u.b.} \cdot \psi_a(\delta)) \).

It may be seen that \(P(\alpha, \psi_a) \) so defined verifies condition A, and every \(\psi_a \) such that \(P(\alpha, \psi_a) \) is true may be extended in a unique manner to a \(\psi_{a+1} \) such that \(P(\alpha + 1, \psi_{a+1}) \) is true. So we can find, by lemma A (and, therefore, without using Axiom of Choice) a \(\psi_\beta \) for every \(\beta < \alpha_0 \). If \(|\beta| = |\beta| \), is \(\psi_\beta(\gamma) \) maximal in \(\{ x | f(x) = x \} \) for an ordinal \(\gamma \) (\(|\beta| \) is the power of \(\beta \)).

Proof of Theorem C. Let \(\alpha_0 \) be a limit ordinal whose power is greater than \(2^{|P|} \). Let \(\Phi_\alpha \) indicate a function from \([0, \alpha) (0 < \alpha < \alpha_0) \) into \(P \). Let \(P(\alpha, \Phi_\alpha) \) be the following statement:

for every ordinal number \(\gamma \) in \([0, \alpha) \), if \(\gamma + 1 < \alpha \), \(\Phi_\alpha(\gamma + 1) = f(\Phi_\alpha(\gamma)) \), and, if \(\gamma \) is a limit ordinal, then does exist an upper bound of \(\{ \Phi_\alpha(\lambda) | \lambda < \gamma \} \) in \(\langle P ; < \rangle \), and \(\Phi_\alpha(\gamma) \) is such an upper bound.

It’s easily seen that \(P(\alpha, \Phi_\alpha) \) verifies condition A. Moreover, given \(\Phi_\alpha \) verifying \(P(\alpha, \Phi_\alpha) \), there is a \(\Phi_{\alpha+1} \) verifying \(P(\alpha + 1, \Phi_{\alpha+1}) \) and such that \(\Phi_{\alpha+1}(0, \alpha_0) = \Phi_\alpha \). We must distinguish two cases: \(\alpha = \delta + 1 \) for a convenient ordinal \(\delta \), or \(\alpha \) is a limit ordinal. If \(\alpha = \delta + 1 \), we pose \(\Phi_{\alpha+1}(\alpha) = f(\Phi_\alpha(\delta)) \); if \(\alpha \) is a limit ordinal, then we set \(\Phi_{\alpha+1}(\alpha) \) equal to an upper bound of \(\{ \Phi_\alpha(\gamma) | \gamma < \alpha \} \); and such an upper bound does exist because is \(\Phi_\alpha(\gamma) < \Phi_\alpha(\lambda) \) whenever is \(\gamma < \lambda \), and so \(\Phi_\alpha \) realizes an order-homomorphism from the well-ordered set \([0, \alpha) \) into \(\langle P ; < \rangle \), and then \(\{ \Phi_\alpha(\gamma) | \gamma < \alpha \} \) is a well-ordered subset of \(\langle P ; < \rangle \). Then it follows from lemma B that for every \(\beta < \alpha_0 \) there is a function \(\Phi_\beta \) such that \(P(\beta, \Phi_\beta) \) is true. As \(\alpha_0 \) has power greater than \(2^{|P|} \), we can choose \(\beta \) in \([0, \alpha_0) \) of power greater than to \(2^{|P|} \). Let’s now suppose (by absurd) \(x < f(x) \) for every \(x \) in \(P \); then we get \(\Phi_\beta(\gamma) < \Phi_\beta(\mu) \) for every choose of \(\gamma, \mu \) such that \(\gamma < \mu \). So \(\Phi_\beta \) is injective, and there fore has more than \(2^{|P|} \) values. But, as \(\Phi_\beta \)'s values are in \(P \), \(\Phi_\beta \) has at most \(|P| \) values; we get an absurd. This constrains us to admit there is a fixed point of \(f \), say it \(p \).

Now we shall prove that the nonempty set of fixed points of \(f \) has a maximal element. Let’s consider the statement \(P'(\alpha, \Phi'_\alpha) \) as follows:

For every \(\gamma \) less than \(\alpha \), \(\Phi'_\alpha(\gamma) \) is a fixed point for \(f \). And is \(\Phi'_\alpha(0) = p \). And, for every \(\gamma_1, \gamma_2 \) less than \(\alpha \), if \(\gamma_1 < \gamma_2 \). Then, if
\(\Phi'_\alpha(\gamma_1) \) is maximal in \(\{ x | f(x) = x \} \), \(\Phi'_\alpha(\gamma_1) = \Phi'_\alpha(\gamma_2) \); and, if it isn’t such a maximal element, \(\Phi'_\alpha(\gamma_1) < \Phi'_\alpha(\gamma_2) \).

\(P'(\alpha, \Phi'_{\alpha}) \) verifies condition A. Now we shall see that, given a function \(\Phi'_{\alpha} \) such that \(P'(\alpha, \Phi'_{\alpha}) \) is true, we can construct a function \(\Phi'_{\alpha+1} \) which extends \(\Phi'_{\alpha} \) and such that \(P'(\alpha + 1, \Phi'_{\alpha+1}) \) is also true. If \(\alpha \) isn’t a limit ordinal, proof is just like in theorem A. If \(\alpha \) is a limit ordinal, but there’s a \(\gamma \) less than \(\alpha \) and such that \(\Phi'_\alpha(\gamma) \) is maximal in \(\{ x | f(x) = x \} \), proof is just like in theorem A. The only case we must check is when \(\alpha \) is a limit ordinal and \(\alpha \) isn’t maximal in the set of fixed points of \(f \), for every \(\gamma \) less than \(\alpha \). In this case the set \(\{ \Phi'_\alpha(\gamma) | \gamma < \alpha \} \) is a well ordered set. Then there exists an upper bound \(b \) of it. In the ordered set \(Q \) of all elements of \(P \) greater or equal to \(b \), \(f \) has a fixed point \(q \). If we set \(\Phi'_{\alpha+1}(\alpha) = q \), we get a function as we required. Now the existence of a maximal element in \(\{ x | f(x) = x \} \) follows as in theorem A.

As we wished to prove.

REMARK. Let’s assume on \(P \) and \(f \) the hypothesis of proposition B. Then, if we substitute in the preceding proof the statement \(P(\alpha, \Phi'_{\alpha}) \) with the statement:

for every ordinal \(\gamma \) in \([0, \alpha)\), if \(\gamma + 1 < \alpha \), \(\Phi'_\alpha(\gamma + 1) = f(\Phi'_\alpha(\gamma)) \) and, if \(\gamma \) is a limit ordinal, \(\Phi'_\alpha(\gamma) = \text{l.u.b.}(\Phi'_\alpha(\lambda) | \lambda < \nu) \)

we have a proof of proposition A which utilizes only lemma A, and therefore doesn’t need Axiom of Choice.

BIBLIOGRAPHY

[3] R. Salinas Baltasar, Fixed points in ordered sets, In Honor of Prof. Dr. Iniguez y Almech on the Occasion of his Seventieth Birthday and

