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Some Fixed Point Theorems of the Mappings
of Partially Ordered Sets.

ANTONIO PASINI (Firenze) (*)

1. Introduction.

In this paper we give new simple proofs of some fixed point
theorems, and strengthen others. The methods we shall use base them-
selves on two « strong » induction principles, we stated and utilized
in [5]. We shall show, moreover, that one of them is equivalent to

Axiom of Choice.
Let’s now recall some results on the fixed points of a function de-

fined from a partially ordered set P; &#x3E; into itself.

PROPOSITION A. Let P; nonempty partially ordered set

every well ordered subset of which has an upper bound. And let f be a
functions P such that x ~ f (x) for every x; then f has a

point.

The preceding result is proved in [2] by using Axiom of Choice.
As a corollary we get:

PROPOSITION P;  &#x3E; be a nonempty partially ordered set

ezery well ordered subsets of which has a least upper bound, and let f be
ac just like propositon A’s one; then f has a fixed point.

The preceding proposition, however, may be proved indipendently,
and without using Axiom of Choice. (see [1] ] and [2]).

(*) Indirizzo dell’A.: Istituto Matematico  U. Dini » dell’Università di
Firenze.

Lavoro eseguito nell’ambito dei gruppi di ricerca matematica del C.N.R.
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PROPOSITION C (see [3]). Let P;  &#x3E; be a nonempty partially
ordered set every well Jrdered subset B of which has an upper bound
which i s minimal in the set of upper bounds of B. Let f be a mapping
from P into P such that for some a in P, that xf(x) y
implies f (x) c f ( y), for every x and y in P; moreover {x, f (~) ~ has a great-
est lower bound in P; c~ ; then f has a fixed point.

PROPOSITION D (see [1]; see also [2]). Let P; &#x3E; be a non-empty
partially ordered set every well ordered subset of which has It least upper
bound. And let f be ac mapping from Pinto P such that a

in P, and such implies f (x) ~ f (y), for and y P. Then

f has a f ixed point.

Proposition .I) is proved in [1] and in [2] without using Axiom
of Choice.

PROPOSITION E (see [4]). Let P;  &#x3E; be a nonempty well ordered
set every subset of which has a least bound. Let f be just like in
proposition D; then set = pl is nonempty and has a ma-
ximal element.

Proposition .E is proved in [4] without any use of Axiom of Choice.
But this is possible because P; &#x3E; is well ordered.

We shall prove (but postpone the proofs):

THEOREM A. Let P; ) be a nonempty partially ordered set every
well ordered subset B of which has an upper bound which is minimal
in the set of upper bounds of B. And lot f be a function f rom P into P
such that :

(I) implies for every x and y in P.
(2) 1 x, has a greatest lower bound P, for every x in P.

(3) There is acn element a of P such that 

Then the set is non-empty ccnd has a maximal element.

Theorem ~-1 strengthens proposition C. Theorem A’s proof makes
use of Axiom of Choice.

THEOREM B. Let P;  &#x3E; be a nonempty partially ordered set every
well ordered subset of tvhich has a least upper bound. And let f be a map-
ping f rom P into P such implies f or every x
and y in P. And let be a  f(a) f or some a in P. Then the set ~~
(is nonempty and) has a maximal element.
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REMARK. Theorem B generalizes propositions E and D: in the

fact (we require on P more general conditions than in E and) what
we require on f is less strong than isotonicity: clearly if f is isotone

implies but there are non isotone functions f such
that implies f (~) c f (y), and is for a convenient a
in P. Let consider, for instance, the ordered set {I, 2, 3}; ), where
1  2  3, and let’s pose f(l-)== 3, f (~ ) = 3, /(2) == 1.

In theorem B we doesn’t need Axiom of Choice in proving
ip ~ f ( p ) = p~ ~ ~. So we get a proof of proposition D which doesn’t
use Axiom of Choice. Moreover if we assume P; c ~ is a well ordered
set (as in proposition .E), our methods give a proof of the existence
of a maximal element in - pl, which doesn’t use Axiom of
Choice.

THEOREM ~~.°; c ~ and f be just lil;e .I% proposition A. Then

(i s nonempty maximal element.

2. « transfinite induction principles.

Let be given a class A and a limit ordinal number «o. Let a be a

nonzero ordinal number less than «o , and 0, be a function from the set
[0~x) (i.e.: the set of all ordinal numbers less than a) into A. Let

P(x, y) be a first order quantification scheme free on x, y, belonging
to a language which formalizes set theory. And let be the

sentence we give from P(x, y) by substituting x with a and y with 0,
Moreover let P(a, ø x) be of the form:

where y1, ... , yn vary on [0, oc) and ’.’,Yn) satisfies the fol-

lowing condition:

CONDITION A. Fo7° any choice of y1, ... , yn less than a, Q y1, ... , yn)
is true only if for every # than zero, less than a, and such that is
an upper bound f or true (where

the restriction o f to [0, 

We proved in [5] (section 2, corollaries 2.1 and 2.2) the following
results:
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LEMMA A. If for every 0153 less than ao and greater than 0, for every
function 0, such that P(a, is true, there is only one function 
such that P(« -~- 1, ~~+1) is true and (P"" and if there is a
function tP1 such that 01) is true, then for every # (less than ao and
greater than 0) there exists a ~~ such that tP p) is true.

Lemma A’s proof doesn’t need Axiom of Choice. Let’s now sup-
pose A is a set. Then we have:

LEMMA B. If for every « less than «o and greater than 0, for every
function ØIX such that P(oc, is true, there is a function Ga+1 such
that pea + 1, is trite and - and if there is ac f nne-
tion ø1 such that P(l, lfJ1) is true, then for every ~ (less than ao and greater
than 0) there exists a fitnetion such that P(f3, is true.

In lemma B’s proof yve made use of Axiom of Choice (formulated
as well ordering principle); conversely we shall see now that lemma B
implies the well ordering principle, and then the Axiom of Choice.
Let A be a nonempty set, and a an element of A ; let’s consider
the set A* = A u fAl, and let ao be a limit ordinal of power greater
than 2’A*’ (where IA*1 ] is the cardinality of A*) (1). Let P(a, be the

following statement:

For every if ~~a ( ~ ) J ~ C y~ is properly contained in A,
then and for 

It’s easily seen that this statement satisfies condition A. Let now
be a function from .A~ into A* such that jP(Xy is true. If

~a ( ~ ) _ ~A~ for a 6  Lx, then let 30 be the least 6 such that

tPlX( 0) === ly  bol C A.; let’s suppose ly  bol ~ A. Then
by proposition so we get a contradiction, and

have to admit So we can define by:
and) ~a+1( «) _ JAI. And it’s easily seen that

.P(« + 1, ~a+1) is true. Now we have to consider the second case, that’s
when ~A~ ~ ~~5a ( ~ ) i ~ ~ «~ . We have two subcases : 
and In the first subcase we pose 
in the second subcase we equate to an arbitrary element of
J.2013{~(~)~x}. And it’s trivial to see that ~a~~ ) is true
(in the first as well as in the second subcase). So, by lemma B, if fl

(1) It’s known that this can be done without any use of Axiom of

Choice.
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is an ordinal of power greater tha 2’A*’ and less than Cfo (Cobviously
we can always choose «o such that such a f3 exists), there is a ø{J such
that P(f3, is true. Let’s suppose, by absurde, pro-

perly contained in A . Then GB is inj ective, and so has as many va-
lues as the power of f3; this gets a contradiction. So we must have

~~ ~ A . And it’s trivial to check that ø/J defines a well or-
dering on A ; as we wished to prove. Then:

Lemma B ,is Ax’iom o f 

3. Proofs.

PROOF OF THEOREM A. Let a be an element of P such that

/(~)~6t. Let ao be a limit ordinal whose power is greater than 21P’

(IPI is .P’’s cardinality) . Let øoe. indicate a function from [0, 0153)(O 0153
C «o) into P, and let øoe.) be the following statement :

= a . And for every ordinal numb er y, if y C ex, then is

~ + 1  x,

~a ( y -~- 1 ) = f ( ~~ ( y ) ) , and if y is a limit ordinal, then the set

.By of upper bounds of (W~X(3) ]3  y~ is nonempty and has a minimal
element, and is such an element.

It’s easily seen that Ø0153) satisfies condition A. Let’s now suppose

ø~ is a function verifying P(«, Now we prove that there is a

function ØIX+l such that is true and 

We have to distinguish two cases: a = b + 1 for some ordinal num-
ber ð, or 0153 is a limit ordinal. First we verify ~~a(y) iy ~ «~ is a well

ordered subset of P; ~). We start by proving (by transfinite induc-
tion the following statement S (y) :

~a ( ~ ) c ~a (Y ) for every b, 

Let’s now suppose S(y) true for any (p is a given ordinal number
less than 0153). We shall prove is true. We must distinguish two
cases: there is an ordinal number v such that 
limit ordinal. If ~u = v --~-1, then ~a (~u ) = f (~a (v) ~ , We have two
subcases : a limit ordinal; if v = ~, -~-1, ~a(v) _

and then ~a(,u) _ ~(f (~a(~))~. 
then we get

j(Ga(X))f(Ga(v)), that’s Ga(03BC)&#x3E; Ga(v). And this suinces to prove 
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Let’s now consider the second subcase: that’s when v is a limit

ordinal. We hav e for every ~.  v, and f ( ~a ( a ) ) -
- ~a(~. -~---1) c ~a(v) (by inductive hypothesis). And ~a(~~} c f ~~a(~,)~
(by inductive hypothesis). So ~a(~.)  f {~~(~.))c ~a(v) : then we get
t(~~(~~)) Cf(~a(y)) ~ then ~a(~) c ~a(,u). So: O~ ( p) &#x3E; W~* ( h ) for every
~.  v; hence is an upper bound of {~(/(.)~~}. But ~a(~u) _
_ ~ ( ~a (v) ~ ; then does exists the greatest lower bound of ~~~ (v), 
and it’s clearly an upper bound of ~~a(~.) ~~, C v~ ; but is a minimal

upper bound of {~(/L); h  v~ . Then = g.l.b. ~~a (v}, that’s

~a(v) c ~a(,p, as we wished to prove; finally we have 
Let’s now consider the second case, that’s when 03BC is a limit ordinal;

then, by .~’(«, ~a), ~a(~c) is an upper bound for {~(~))~~ and
is trivially verified; then S(y) is true for every This

implies øe.; is a monotone function from [0, «) into .~; and therefore
(W«(y) [y  a) is a well ordered set; then, by hypothesis, does exists a
minimal upper bound b of ~~a(y} ‘y  and we can pose = b.

And so, by lemma B, f or every @  rxo is definable a øp such that
is true. We have already seen that ø{1 is a monotone funtion

from [o, ~) into ~P; ). Let’s now suppose x ~ f (x) for every x;
in .P; then has as many values as the power of fl. And we get an
absurde because we can choose B with power greater than So
we must for a convenient pEP.

We remark that we can choose 15 greater than (or equal to) a.
We shall now prove that the set of fixed points of f has a maximal

element. Let’s consider another proposition ø:) as follows:

for every yi and Y2 less than a, if yi  then, if is maxi-
mal in = p~, is And, if it isn’t maximal in

is ~a ( y, ) C ~a (y2 ) . Moreover, for every y less than «,
W£y) is a fixed point for f. And is (where fi is the before
found fixed point of f ).

It’s a trivial question to check that condition A is satisfied by pl(a, 
Now we must see that, if there’s a function Wl such that Ø~)
is true, then we can construct a function such that P’ (« + 1~ ~a+1)
is true and ~a+100.1= ø~: We distinguish two cases: when is
x= 5 + 1 for a convenient 9y and when a is a limit ordinal.

Let’s suppose is x == (5 + 1; we have two subcases : is maximal
in {~/(p)=~}y or net. If W§(3) is such a maximal element, then
we set ~a+1(«) _ ‘~a(U) (and ~’a.+1~LO,a) _ ~a). It’s easily seen that

+ 1~ Ø~+l) is true. Let’s now consider the subcase when 
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isn’t maximale in ~p ~ f ( p ) = p~ : then there is a fixed point q such

that q &#x3E; ~a ( ~ ) . If we set (and we get a
function satisfying 1, 0’+,). Let’s now consider the case

when « is a limit ordinal. We have two subcases : there is an ordinal y
less than « such that is maximal in ~p ~ f ( p ) = p~, or there’s no
such ordinal. In the first subcase is 0,’ , (y) for every J,

(less than a and) greater than k. So we can set and)
~a+1(«) _ 0" a (y) - ~a+1~ so defined, verifies P(a + 1, Ø~+l)’ In the se-
cond subcase ~~a (y) ~Y c al is a well ordered set. Then by hypothesis,
it has a minimal upper bound b. We shall see now that there is a

fixed point q greater than (or equal to) b . We have 

and b &#x3E; ~« ( y), for every y less than a. That’s: 
We get: f ( ~a(y)) c f (b); that’s for every y less than a.

So f (b) in an upper bound for the set ~~~(y) ~y c but the set

~b, f (b)~ has a greatest lower bound. This, and the minima.lity of b
in the set of upper bounds of ~~a (Y) ~Y  xl, give By the first
part of the proof of this theorem, we can find a fixed point (of f ) q,
such that q &#x3E; b. If we set WJj and) G’a+1(a) = q, we have
a function satisfying P ( « -~- 1, ~a+1 ) . Then, by lemma B, for

every nonzero ordinal ~ less than «o , we have a function W) such that
P’ (fJ, Øp) is true. Let’s choose B of power greater than IPI. If no

W)(y) is maximal in the set of fixed points of f , øp is an injection, and
therefore has as many values as the power of fl ; therefore we get an
absurde. And we have to admit that there is an ordinal y such that
0 (y) is maximal in As we wished to prove.

PROOF OF THEOREM B. The proof is quite similar to theorem A’s
one; then various details will be omitted. oco is an ordinal number of

power greater than 2~p~, 0’ a function from [0, oc) into P, a an ele-
ment of P such that a  f(a), and 0’) is the following statement:

0’(0) -a. And for every ordinal number y, if Y C «, then if

y -~- 1  «, W£(y + 1) == and if y is a limit ordinal, then

does exists in P the least upper bound of  yl, say it l.u.b.
(~a(~,) ~aL c y), and is l.u.b. (Oa (2)12  Y) = Oa (y).

It’s easily seen that P(«, W#) satisfies condition A. Let be
a function verifying P(«, Oa,). We shall show that there is (only)
one function such that P(rx + 1, ø:+1) is true and is 
We have to distinguish two cases: « _ ~ + 1 for some ordinal num-
ber 6, or a is a limit ordinal. If we define ø:+1 by pos-

12
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And it’s easily seen that
ø:+1) is true. Let’s now suppose a is a limit ordinal. We

have to see ~~a(a4) ~~,  a~ is a well ordered subset of 1P; c s. As we
did do in theorem A, let’s consider the following statement S(y):

Now, let’s suppose that S(y) is true for every 
We shall prove that is true. We must distinguish two cases:

limit ordinal. Let’s now suppose ,u = v -~- 1. If

v = a~ -;- 1, S(fl) is proved in quite a similar manner as in theorem A’s
proof. Let’s now suppose v is a limit ordinal. As in Theorem A’s

proof, we get for every 2  v; then 0,,(,a) &#x3E; 
. 12  v), that’s ~a(~cc) ~ 0,-,(v). Hence S(fl) is true. Let’s now con-
sider the second case, that’s when p is a limit ordinal: now S(lz) is

trivial, by 0,’,). So S(It) is true in any case. Hence S(y) is true

for every y  a; this implies that fl§§ is a monotone function from

the well ordered set [0, ex) into .~’; ) ; then ~0’ (y) jy  a) is a well

ordered subset of ~P; c ~, and l.u.b. ~~(y) [y  a) does exists. So we

ifies Obviously there is only one such By
lemma A it follows that for every fl  ao is definable a function øp
such that P(~, Øp) is true. Now the fact that f has a fixed point p fol-
lows as in theorem A’s proof. (condition a  p may be required on p).
In this first part of the proof no use of Axiom of Choice is done.

The existence of a maximale element in is proved
similarly as in theorem A; therefore we omit this proof; it needs

Axiom of Choice.

REMARK. If we suppose ~.P; ) is well ordered, we don’t need
Agiom of Choice. First we note that in the preceding proof we get
a unique øp, for every fl less than a,,. Let ~3o be the first ordinal number
~ such that f(45§(y)) = 0’(y) for a convenient l~ . And let yo be the
first ordinal y such that let’s pose p(~c) _ 
So we define a mapping p from the set into the set

fxlx = Clearly is x ~ p (x} for every x. Let’s now consider a pro-
position as follows:

For every y, and Y2 less than a, if y, c y2, then, if is maxi-
mal in xl, is V. _ ~a(y~), and, if it isn’t such a maximal
element, is  Moreover, for every y less than ex, 
is a fixed point of j. And is ~a{o) = p(c~), And if y + 1  « if 
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is not maximal in

And if y is a limit ordinal, then i

It may be seen that P(«, so defined verifies condition A, and eve-
ry "Pex such that P(a, is true may be extended in a unique manner
to a such that 2013 1, is true. So we can find, by lemma A
(and, therefore, without using Axiom of Choice) a "Pp for every #  «o .

If is maximal in for an ordinal y is

the power of 

PROOF oF THEOREM C. Let czo be a limit ordinal whose power is

greater than 21PI. Let ØiX indicate a function from 
into P. Let W)~ be the following statement:

for every ordinal number y in if y -[- I  oc, ~(y2013l)=
- /(~(~))~ and, if y is a limit ordinal, then does exist an upper bound
of , and is such an upper bound.

It’s easily seen that P(a, verifies condition A. Moreover, given ø(X.
verifying there is a Øat+l verifying and such

that we must distinguish two cases: for a

convenient ordinal 6, or a is a limit ordinal. we pose

W~z+~(a) = f(fl~*(6)) ; if a is a limit ordinal, then we set equal
to an upper bound of and such an upper bound does

exist because is whenever is and so ø(X realizes
an order-homomorphism from the well-ordered set [0, Lx) into P; ),
and then is a well-ordered subset of ~P; ). Then it
follows from lemma B that for every #  ao there is a function Oft
such that P(f3, is true. As ao has power greater than 2 ~P ~, we can
choose @ in [0, of power greater than to 2’Pl. Let’s now suppose
(by for every x in P; then we get 0. (y)  for

every choose of %, p such that So is injective, and there
fore has more than 21PI values. But, as values are in P, Op has-
at most |P| values; we get an absurde. This constrains us to admit
there is a fixed point of f, say it p.

Now we shall prove that the nonempty set of fixed points of f
has a maximal element. Let’s consider the statement WJI)
as follows:

For every y less than a, is a fixed point for f . And is

W[(0) = p. And, for every y,,, y2 less than Cl, if y~  Y~ - Then, if
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is maximale in
such a maximal element, y is 

P’ a, Ø~) verihes condition A. Now we shall see that, given a function
0’ such that P’ (a, ø:) is true, we can construct a function ~a+1 which
extends 0’ and such that P’(a + 1, Ø~+l) is also true. If a isn’t a
limit ordinal, proof is just like in theorem A. If oc is a limit ordinal,
but there’s a y less than a and such that 0’(y) is maximal in

= xl, proof is just like in theorem A. The only case we must
check is when (cc is a limit ordinal and) isn’t maximal in the set
of fixed points of f , for every y less than cc. In this case the set

oc~ is a well ordered set. Then there exists an upper bound b
of it. In the ordered set Q of all elements of .P greater or equal 
has a fixed point c~. If we set ~~+1(cc) = q, we get a function as we

required. Now the existence of a maximal element in = xl
follows as in theorem A.

As we wished to prove.

REMARK. Let’s assume on P and f the hypothesis of proposition B.
Then, if we substitute in the preceding proof the statement P(a, ~a)
with the statement:

for every ordinal y in [
and, if y is a limit ordinal,
we have a proof of proposition A which lltilizes only lemma A, and
therefore doesn’t need Axiom of Choice.
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