S. Bazzoni

On the algebraic compactness of some complete modules

Rendiconti del Seminario Matematico della Università di Padova, tome 56 (1976), p. 161-167

<http://www.numdam.org/item?id=RSMUP_1976__56__161_0>
On the Algebraic Compactness of Some Complete Modules.

S. Bazzoni (*)

Introduction.

Let R be a commutative ring with unit.

An R-module M is algebraically compact if every finitely soluble family of linear equations over R in M has a simultaneous solution.

If R is a noetherian ring and \mathcal{Q} is the set of the maximal ideals of R, we can define over any R-module M the \mathcal{Q}-adic topology, by taking as a base of neighborhoods of 0 the submodules IM, where I is a finite intersection of powers of the maximal ideals.

If R is any ring and M is any R-module, we can define on M the R-topology, by taking as a base of neighborhoods of 0 the submodules rM with $0 \neq r \in R$.

Warfield [W.] has proved that any algebraically compact R-module is complete in the \mathcal{Q}-adic topology, if R is a noetherian ring, and in the R-topology if R is any ring.

Moreover, Warfield has raised the problem to see if any complete Hausdorff module over a noetherian ring is necessarily algebraically compact.

In this work we answer in the affirmative to the question posed by Warfield and we characterize the neotherian rings R such that

(*) Indirizzo dell'A.: Istituto di Algebra e Geometria dell'Università di Padova.

Lavoro eseguito nell'ambito dell'attività dei gruppi di ricerca matematici del C.N.R.
any R-module which is complete and Hausdorff in the R-topology is algebraically compact.

1. Complete modules in the Ω-adic topology.

Let R be a noetherian commutative ring with unit, M a topological R-module equipped with the Ω-adic topology.

We denote by \hat{M} the Ω-adic completion of M.

("Complete module" means "Hausdorff complete module").

The purpose of this section is to prove that, for any R-module M, \hat{M} is an algebraic compact R-module.

First of all, we recall that M is topologically isomorphic to the product $\prod_{m \in \Omega} M_m$ where \hat{M}_m denotes the m-adic completion of the localization of M at m, so since the class of algebraically compact modules is closed under direct products, we shall have to settle the problem only with respect to the m-adic completion of a module.

By a suitable definition of pure submodule, Warfield has proved that the class of algebraically compact modules coincides with the class of pure-injective modules. Therefore we now recall the principal definitions concerning the concept of purity and pure-injectivity.

Definition 1. Let R be a ring, S a class of R-modules. N is an S-pure submodule of an R-module M, if every element of S is projective for the exact sequence:

$$0 \to N \to M \to M/N \to 0.$$

An equivalent definition to definition 1 is the following: ([W₂])

Definition 1'. Let S be a class of R-modules. N is an S-pure submodule of an R-module M if it is a direct summand of any module H such that: a) $N \leq H \leq M$, b) $H/N \in S$.

Walker ([W₂]) has introduced the notion of S-copure submodule by dualizing the definition 1' in the following way:

Definition 2. A submodule N of an R-module M is S-copure in M, if for every submodule H of N such that $N/H \in S$, N/H is a summand of M/H.

We are interesting with a particular class of modules, namely we consider the class F of all finitely presented modules, so that we give the following definition:

Definition 3. A submodule of a module M is pure (copure) in M if it is F-pure (F-copure).

Moreover we say that a module is pure-injective if it is injective for any pure exact sequence.

Remark. If R is a noetherian ring; the class F is the class of all finitely generated modules.

Lemma 1. Let R be an artinian local ring. If N is a pure submodule of M, then it is also copure in M.

Proof. Let H be a submodule of N such that $N/H \in F$. We have to prove that N/H is a summand of M/H.

Since N is pure in M, N/H is pure in M/H ([W₂], Theor. 2.1); moreover, since the maximal ideal of R is nilpotent, the Ω-adic topology over any R-module is the discrete topology, so N/H is a finitely generated and a complete module in the Ω-adic topology.

Then, by Theor. 3 of [W₁], N/H is pure-injective and therefore it is a summand of M/H.

Lemma 2. Let R be a ring satisfying the hypotheses of the preceding lemma. If N is a copure submodule of a module M, then it is a summand of M.

Proof. Let:

$$F(N) = \{N_x \triangleleft N: N/N_x \in F\}$$

$$N^F = \bigcap_{N_x \in F(N)} N_x$$

For each $0 \neq x \in N$, let H_x be a submodule of N maximal with respect to the property of not containing x.

It is easy to verify that the submodule generated by $x + H_x$ is simple and essential in N/H_x.

Therefore the injective envelope $E(N/H_x)$ of N/H_x is isomorphic to $E(R/m) = E$. Now, by [M] Theor. 3.4 and 3.11, $E = \bigcup E_k$ where E_k is an increasing sequence of finitely generate submodules of E with $E_k = \{x \in E: m^k x = 0\}$. Therefore, since $m^h = 0$, for a convenient integer h, we have $E = E_h$; then N/H_x is finitely generated since it is
a submodule of the noetherian module E and then we have:

$$0 = \bigcap_{\alpha \neq \emptyset} H_{\emptyset} \cap N = N^F.$$

Now, ([W₂], Corollary 2.9') the group $\text{Coper}(L, N)$ of the copure extensions of N by a generical module L, is the image of the homomorphism $f: \text{Ext}(L, N^F) \to \text{Ext}(L, N)$ induced by the inclusion $N^F \to N$. Then, since $N^F = 0$, N is a summand of every module in which it is a copure submodule. //

Theorem 1. Let R be a noetherian ring, m an element of Ω and M an R-module. For every $k \in \mathbb{N}$, $M/m^k M$ is an algebraically compact R-module.

Proof. $M/m^k M$ is an R/m^k-module, then by lemmas 1 and 2, it is an algebraically compact R/m^k-module. Moreover we can easily deduce from the definition of algebraically compactness, that $M/m^k M$ is also an R-module algebraically compact //.

Let M be an R-module, we denote by $B(M)$ the Bohr compactification of M, that is:

$$B(M) = \text{Hom}_2(\text{Hom}_2(M, K), K)$$

where K is the circle group ([W₁], § 3).

Let ω_M be the natural homomorphism of M in $B(M)$; then $\omega_M(M) = \hat{M}$ is canonically isomorphic to M.

Warfield ([W₁], § 3), has proved that $B(M)$ is a topological compact R-module and that M is a pure (and dense) submodule of $B(M)$.

Now we have the following:

Theorem 2. Let R be a noetherian ring, m a maximal ideal of R. The m-adic completion of any R-module M is an algebraically compact R-module.

Proof. Let $M = M/m^k M$ and π^k_h the natural homomorphisms $\pi^k_h: M_k \to M_h$ ($k > h, h, k \in \mathbb{N}$); then we have:

$$\hat{M} \cong \lim_{\leftarrow} \{ M_k, \pi^k_h \mid k > h \}_{k \in \mathbb{N}}$$

Let B_k be the Bohr compactification of M_k for every $k \in \mathbb{N}$, \hat{M}_k the copy of M_k in B_k and let π^k_h be the homomorphisms induced by the π^k_h.

Then M is isomorphic to $\lim \{ M_k, \pi^k_h \}$ since ω_k are natural isomorphism for every $k \in \mathbb{N}$.

Therefore it will suffices to prove that $\lim \{ M_k, \pi^k_h \}$ is algebraically compact. Let's consider the following diagram:

\[
\begin{array}{cccc}
\tilde{M}_k & \xrightarrow{i_k} & B_k & \\
\downarrow{\pi^k_h} & & \uparrow{f^k_h} & \\
\tilde{M}_h & \xrightarrow{i_h} & B_h & \\
\end{array}
\]

The universal property of B_k, assures the existence of a unique continuous homomorphism f^k_h such that the diagram commutes.

Now, by Theor. 1, \tilde{M}_k is an algebraically compact R-module, so $B_k = \tilde{M}_k \oplus T_k$ for every $k \in \mathbb{N}$.

Let us consider the following diagram:

\[
\begin{array}{cccc}
0 & \rightarrow \tilde{M}_k & \xrightarrow{i_k} & B_k & \rightarrow T_k & \rightarrow 0 \\
\downarrow{\pi^k_h} & & \downarrow{f^k_h} & & \downarrow{g^k_h} & \\
0 & \rightarrow \tilde{M}_h & \xrightarrow{i_h} & B_h & \rightarrow T_h & \rightarrow 0 \\
\end{array}
\]

with $f^k_h \circ i_k = i_h \circ \pi^k_h$. Since the rows are exact, there is a unique homomorphisms g^k_h such that the diagram commutes.

By the unicity of the g^k_h, the system $\{ T_k; g^k_h \ k \succ h \}$ is an inverse system. Then we have:

\[
\lim \{ M_k; \pi^k_h \} \oplus \lim \{ T_k; g^k_h \} \cong \lim \{ B_k; \pi^k_h \oplus g^k_h \}.
\]

Now, $\lim B_k$ is a compact module in the topology induced by the product topology of the B_k, then by [W1] Theor. 2, $\lim M_k$ is algebraically compact.
2. Complete modules in the R-topology.

Let R be a noetherian commutative ring with unit.

The purpose of this section is to characterize the rings R such that any R-module which is complete and T_1 in the R-topology is algebraically compact.

First of all we consider the case in which the Ω-adic topology on R is the discrete topology.

This hypothesis implies that every R-module is discrete in the Ω-adic topology and so, any R-module is algebraically compact.

In the general case, that is, when the open ideals in the Ω-adic topology on R are always non zero, then the R-topology over any R-module M is finer than the Ω-adic topology.

Now, since R is a noetherian ring, any ideal rR, with $r \neq 0$, contains a finite intersection of powers of prime non zero ideals of R.

Therefore, if R has the following property:

(P) every non zero prime ideal of R is maximal

the Ω-adic topology and the R-topology coincides over any R-module.

Then the results contained in Section 1, allow us to say that (P) is a sufficient condition on R to insure that any complete and T_1 module in the R-topology is algebraically compact.

(The converse has been stated by Warfield, as we have just noted).

Let us suppose that R has a non zero and non maximal prime ideal \mathfrak{p}.

Let m be a maximal ideal of R containing \mathfrak{p} and let T be the localization of R/\mathfrak{p} at m/\mathfrak{p}; we consider the R-module $A = T[x]$ where x is a transcendental element over T.

Clearly the R-topology on A is discrete, so A is complete in such topology, but we shall prove that A is not algebraically compact.

Infact, if A were algebraically compact, Warfield’s results would entail the completeness of A in the Ω-adic topology. But now, it is easy to verify that the Ω-adic topology on A is the same as the m-adic topology, so it suffices to find a nonconvergent Cauchy sequence of elements of A.

We denote by n the maximal ideal of T.

The powers of n give a strictly decreasing chain of ideals of T, since, by Krull Theorem, $\cap n^i = 0$ and by the hypotheses on \mathfrak{p} we cannot have $n^i = 0$ for any $i \in \mathbb{N}$.
Let a_i be an element of $n^i \setminus n^{i+1}$ for every $i \in \mathbb{N}$, and let us consider the following elements of A:

$$s_k = \sum_{i=0}^{k} a_ix_i \quad k \in \mathbb{N}.$$

Now it is easy to prove that $\{s_k\}_k$ is a Cauchy sequence of element of A which cannot converge to any element of A.

BIBLIOGRAPHY

Manoscritto pervenuto in Redazione il 13 maggio 1976.