GIULIANO BRATTI

A density theorem about some system

Rendiconti del Seminario Matematico della Università di Padova, tome 57 (1977), p. 167-172

<http://www.numdam.org/item?id=RSMUP_1977__57__167_0>
A density theorem about some system.

GIULIANO BRATTI (*).

Introduction.

Let A be an open subset of \mathbb{R}^n; suppose $P = P(x, D)$, $Q = Q(x, D)$ linear partial differential operators with $C^\infty(A)$ coefficients.

Definition 1. We say that the system

\[(+) \quad \{ Pu = f, \quad Qu = 0 \} \quad f \in C^\infty(A) \]

is $C^\infty(A)$-locally solvable in A if for every $p \in A$ there is a neighbourhood, V_p, of p and a function $u_p \in C^\infty(V_p)$ such that the $(+)$ is satisfied in V_p.

Definition 2. If B is an open subset of A, we say that the above system $(+)$ is $C^\infty(B)$-globally solvable if for every $f \in C^\infty(A)$ for which $(+)$ is locally solvable in A, there is a function $u \in C^\infty(B)$ such that $(+)$ is satisfied in B.

In (2) there is the following conjecture:

let $(B_n)_{n \in \mathbb{N}}$ be a sequence of open subsets of A such that: $B_n \subset B_{n+1} \subset \bigcup B_n = B$ and the $(+)$ is $C^\infty(B_n)$-globally solvable for every $n \in \mathbb{N}$. Then $(+)$ is $C^\infty(B)$-globally solvable.

(*) Indirizzo dell'A.: Seminario Matematico, Via Belzoni 7, 1-35100, Padova.
It is already known, (4), the conjecture is false in the case in which P and Q have constant coefficients and Q is semi-elliptic, but the conjecture is still open when Q is an elliptic operator.

It seems to the A. that to solve the above conjecture it is important to have some example of system like (\dagger) without $C^\infty(A)$-globally solutions for $f \in C^\infty(A)$ for which (\dagger) is $C^\infty(A)$-locally solvable.

First of all, by a Lojasiewicz-Malgrange's theorem, see (1), it is easy to show that: if P and Q are prime between them, the subspace of $C^\infty(A)$ of the functions for which the system (\dagger) is $C^\infty(A)$-locally solvable is $\ker Q_A = \{ f \in C^\infty(A) : Qf = 0 \}$.

The object of this paper is that to characterize the open subset A of \mathbb{R}^n for which there are systems like (\dagger), with Q elliptic, such that:

$$P(\ker Q_A)$$

is not $C^\infty(A)$-dense in $\ker Q_A$.

1) Let A be an open subset of \mathbb{R}^n and let $b(A)$ be its boundary.

Let G be the subset of $b(A)$ so defined:

$$G = \{ p \in b(A) : \text{the connexe component, } Z_p, \text{ of } E^n - A \text{ with } p \in Z_p \text{ is compact} \}$$

$P = P(D)$ and $Q = Q(D)$ are linear partial differential operators, with constant coefficient; Q will always be elliptic.

Lemma a). If we put: $Z_A = \bigcup_{p \in G} Z_p$ and $L = A \cup Z_A$, we have: L is an open set. Proof. It is sufficient to see that every compact component, Z, of $\mathbb{R}^n - A$, is such that: $Z \cap b(A) \neq \emptyset$. Then the proof of the Lemma a) is in (5), pag. 235.

Lemma b). Let n be a distribution with compact support: $n \in E'(\mathbb{R}^n)$. If $m = Q(D)n$ has its support in A, then $n \in E'(L)$.

Proof. If $p \notin A$ and Z_p, the connexe component of $E^n - A$ with $p \in Z_p$, is not bounded then there exists a neighbourhood of Z_p in which n is an analytic function. Because n has compact support, in such neighbourhood n must be zero. This shows that: if $p \in \text{supp } (n)$ and $p \notin A$, then $p \in Z_A$.

Theorem. If $n \in E'(\mathbb{R}^n)$ and is orthogonal to all exponential solutions of the equation $Pu = 0$, then there exists $m \in E'(\mathbb{R}^n)$ such that: $n = P(-D)m$.

Proof. See Lemmas 3.4.1 and 3.4.2. of (3) pagg. 77/78.
LEMMA c). Let $g \in C_0^\infty(L)$ be a function such that: $P(-D)g \in C_0^\infty(A)$. If $P(-D)g$, with P hypoelliptic, is orthogonal to $\ker P_{/A}$, then: if $p \in \text{supp}(g) \cap Z_A$, $g(p) = 0$.

Proof. If δ_p is the Dirac distribution at the point p, the distribution $E_p \delta_p$ is in $\ker P_{/A}$ if E_p is a fundamental solution of P: $PE_p = \delta$. Then: $\langle (E_p \delta_p)_{/A} \cdot P(-D)g \rangle = \langle \delta_p \cdot g \rangle = g(p) = 0$.

DEFINITION 3). We say that a compact subset K of L disjoins Z_A if there exists a partition of G, $G = G_1 + G_2$, $G_1 \neq \varnothing$, and an open subset B of L such that $\sqcup_{p \in G_1} Z_p \subset K \subset B$ and $B \setminus (\sqcup_{p \in G_2} Z_p) = \varnothing$.

DEFINITION 4). We say that an open subset A of \mathbb{R}^n has the b-propriety if (or $Z_A = \varnothing$ or) there is no compact K of L which disjoins Z_A.

THEOREM. The following two propositions, p_1 and p_2, are equivalent:

p_1) A is an open subset of \mathbb{R}^n which has the b-propriety;

p_2) for every couple, (P, Q), of partial differential operators with constant coefficients, prime between them, with Q elliptic, we have:

\[P(\ker Q_{/A}) \text{ is } C^\infty(A)\text{-dense in } \ker Q_{/A}. \]

Proof.

From p_1 to p_2). Suppose there exists P prime with Q such that $P(\ker Q_{/A})$ is not $C^\infty(A)$-dense in $\ker Q_{/A}$; we will show that absurd.

From the Hahn-Banach theorem, we have: there exists $m \in E'(A)$ such that m is not orthogonal to $\ker Q_{/A}$ but m is orthogonal to $P(\ker Q_{/A})$.

By the precedent theorem, there exists, then, a distribution $n \in E'(\mathbb{R}^n)$ such that: $P(-D)m = Q(-D)n$. Because P and Q are prime between them, there exists $n_0 \in E'(\mathbb{R}^n)$ with: $m = Q(-D)n_0$, and, from lemma $b)$, $n_0 \in E'(L)$.

Let K be the support of n_0; we will show that K disjoins Z_A, so we will have the absurd.

In fact: it can't be: $K \cap Z_A = \varnothing$, because, otherwise, $n_0 \in E'(A)$ and so m would be orthogonal to $\ker Q_{/A}$.

Let G_1 be the subset of G, $G_1 \neq \varnothing$ with: if $p \in G_1$, $Z_p \setminus K \neq \varnothing$, (so that $Z_p \subset K$); we will show that there exists an open subset B of L with: $K \subset B$ and $B \setminus (\sqcup_{p \in G_1 \setminus G_1} Z_p) = \varnothing$.

Of course, this is the case if \(G = G_1 = \emptyset \). Otherwise, let \((B_n)_{n \in \mathbb{N}}\) a sequence of open subsets of \(L \) such that \(B_n \supset B_{n+1} \) and \(\bigcap_n B_n = K \).

Suppose that \(x_n \in B_n \cap \bigcup_{p \in G - G_1} Z_p \) for every \(n \in \mathbb{N} \); we can suppose, directly, \(\lim_n x_n = x_0 \), with, of course, \(x_0 \) in \(K \).

It is impossible that infinite terms of the sequence \((x_n)\) are in the same component \(Z_q \), \(q \in G - G_1 \); in fact if it is so, we have \(x_0 \in Z_q \cap K \); absurd.

It is easy to see that \(x_0 \in b(A) \), because every segment \((x_n, x_{n+1})\) has a point of \(A \); it comes out that \(n_0 \) must be an analytic function in a neighbourhood \(V \) of \(x_0 \). In such \(V \) there is a point \(x_n \in Z_{q_n} \) with \(q_n \in G - G_1 \). Because \(Z_{q_n} \cap K = \emptyset \), in a neighbourhood of \(x_n \), \(n_0 \) is zero; so we can suppose \(n_0 \) equal to zero in all \(V \). Absurd, because \(x_0 \) belongs to \(\text{supp}(n_0) \).

From p.2 to p.1. If \(K \) is a compact subset of \(L \) and \(K \) disjoints \(Z_A \), let \(g \) be a function in \(C^\infty_c(B) \), with \(g = 1 \) on \(B' \): \(K \subset B' \subset \bar{B}' \subset B \). If \(h = Q(-D)g \), \(h \in C^\infty_c(A) \) if \(Q(0) = 0 \); for the lemma c) above, \(h \) can't be orthogonal to \(\ker Q \mid_A \).

But: if \(P = P(D) \) is an operator prime with \(Q \) and \(P(0) = 0 \), \(h \) is orthogonal to \(P(\ker Q \mid_A) \) because \(P(-D)h = Q(-D)P(-D)g \) and \(P(-D)g \in C^\infty_c(A) \).

This completes the proof.

The above theorem permits the construction of system like (\(+\)) without \(C^\infty(A) \)-global solution. So, for the system.

\[(0) \quad \{ D_xu = f \ , \ D_xu + i D_yu = 0 \}\]

in the set \(A \subset \mathbb{R}^2 \) so defined: \(|x| < 1, \ |y| < 1, \ x^2 + y^2 \neq 0 \), for the reason that \(Z_A = (0,0) \), there is a function, \(f_0 \in \ker (D_x + iD_y) \mid_A \) for which there is no global solution in \(A \); on the other hand, by the Lojasiewicz-Malgrange theorem, (\(\ast\)), it is easy to show that there is a sequence, \((B_n)_{n \in \mathbb{N}}\), of subset of \(A \), such that:

\(\ast\) The theorem is the following: if \(A(D) \) is the differential matrix \(A(D) = \|a_{ij}(D)\| \), \(I \leq i \leq p \), \(I \leq j \leq q \), \(u \in E^q(A) \), \(f \in E^p(A) \), respectively \(p \) and \(q \) times product of \(E(A) \), the space of indefinitely differentiable functions over \(A \), the system \(A(D)u = f \) has a solution if and only if: for every \(v = (v_1, ..., v_p) \), \(v_i \) polinomial, for which \(v(x)A(x) = 0 \), we have \(v(D)f = 0 \), if \(A \) is convex.
a) $B_n \subseteq B_{n+1} \subseteq \bigcap_n B_n = A$; b) for every $n \in \mathbb{N}$ there is an open subset $B'_n \subseteq A$ such that: $B_n \subseteq B'_n$ and the system \((0)\) is $C^\omega_c(B'_n) -$ globally solvable.

Of course, this example is very near to show the De Giorgi’s conjecture is false also in the case: Q is elliptic.

2) I like to end this paper giving an abstract condition to have $P(\ker Q \arrow{A}) = \ker Q \arrow{A}$.

We put, over $C^\omega(A)$, the following T_p-topology:

V is a neighbourhood of zero in the T_p-topology if:

$V \ni W + \ker P \arrow{A}$, for some W neighbourhood of zero in the usual topology of $C^\omega(A)$.

So we have: if A has the b-propriety, P and Q are linear partial differential operators, prime between them, and Q is elliptic,

Theorem. The following two proposition, $q_1)$ and $q_2)$, are equivalent:

$q_1)$ $\ker (Q \arrow{A}) = \ker Q \arrow{A}$;

$q_2)$ $\ker (Q \circ P) \arrow{A} = \ker Q \arrow{A} + \ker P \arrow{A}$; $\ker (Q \circ P) \arrow{A}$ is a complete subspace of $C^\omega(A)$ with the T_p-topology and $P: \ker (Q \circ P) \arrow{A} \rightarrow P(\ker (Q \circ P) \arrow{A})$ is an open mapping.

Proof.

$q_1) \Rightarrow q_2)$. The first part of $q_2)$ is simple. For the second part, we have: $\ker (Q \circ P) \arrow{A}$ is a closed subspace of $C^\omega(A)$ with the T_p-topology, so:

$(\ker Q \arrow{A}) \wedge \subseteq (\ker (Q \circ P) \arrow{A})$. On the other hand, $\ker Q \arrow{A} + \ker P \arrow{A} \subseteq (\ker Q \arrow{A}) \wedge$. Because $P: \ker Q \arrow{A} \rightarrow \ker Q \arrow{A}$ is an open mapping, (it is a surjective map between Frechet spaces), we have:

if W is an usual neighbourhood of zero in $C^\omega(A)$, $P(W \wedge \ker Q \arrow{A})$ is open in $\ker Q \arrow{A}$, so: $P(W + \ker P \arrow{A}) \wedge \ker (Q \circ P) \arrow{A}$.

$q_2) \Rightarrow q_1)$. It is sufficient to see that in the diagram

$$
\begin{array}{ccc}
\ker Q \circ P \arrow{A} & \xrightarrow{P} & P(\ker Q \circ P \arrow{A}) \\
\downarrow \quad \quad \quad \downarrow P \quad \ quad
But the last one is also a dense subspace of \(\ker Q_{/A} \); so:
\[
P(\ker Q_{/A}) = \ker Q_{/A}.
\]

Remark 1) It is very easy to see that: if \(A \) is \(P(-D) \) - convex the topological part of \(q_2 \) it is always true. It comes out:

If \(A \) is \(P(-D) \) - convex, (and it has the b-proriety, which is not a consequence if \(P \) is elliptic!), the necessary and sufficient condition to have:

\[
P(\ker Q_{/A}) = \ker Q_{/A}
\]
is:
\[
\ker (Q_{0}P)_{/A} = \ker P_{/A} + \ker Q_{/A}.
\]

Remark 2) The \(P(-D) \) - convexity of \(A \), is not, of course, a necessary condition to have the above result, as we can see by the system \((0)\) in \(A \) like that, without the points: \(x = o, o \leq y \).

BIBLIOGRAPHY

