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The Group of Projectivities in Free-Like Geometries.

A. BARLOTTI (*)
E. SCHRFRBFR - K. STRAMBACH (**)

Introduction.

Since the time of the masterly work of von Staudt the group of
projectivities of a line onto itself has played an important role in
geometry; from the ideas of von Staudt and F. Schur we know that
if in a geometry every element (# 1) of this group has only a few
fixed points the geometry has a classical representation. If, for in-
stance, the geometry is a projective plane or a Benz plane and the
group is sharply 3-transitive, then the plane is pappian, or miquelian
respectively (see [5], [12] and [13]); if the geometry is an affine plane
and if the group II of affine projectivities is sharply 2-transitive, then
the plane is desarguesian.

It is not the case that by progressive weakenings of the number
of fixed points of projectivities different from the identity we get clas-
ses of non-classical « nice» geometries in which some characteristic
configurational propositions hold. For example, Barlotti [2] showed
on the one hand that in a free projective plane (which contains no
confined configurations) the stabilizer in 1I of any 6 distinct points
consists only of the identity; Schleiermacher [14] proved on the other
hand that if the stabilizer in II of any 5 distinct points is always the
identity, y no element (~ 1 ) can have more than two different fixed
points, and the plane is pappian.

(*) Indirizzo dell’A.: Universith di Bologna.
(**) Indirizzo degli A.A.: Universitat Erlangen - Niirnberg, Rep. Fed.

Tedesca.
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With respect to the number of fixed points for elements (~ 1) of
H it is interesting to note that the free projective planes are nearer
to the pappian planes than the desarguesian (non pappian) projective
planes are, since in the latter planes there are stabilizers of sets of in-
finite points which are different from the identity (Schleiermacher [15],
lemma 2.8). This goes in the same direction as a result of Joussen (3)
which states that a finitely generated free projective plane has an
archimedean order whereas no desarguesian non pappian projective
plane possesses an archimedean order (see [13] p. 243).

One of the purposes of the present paper is to initiate the study
of the group of projectivities of a line (block) onto itself for geometries
different from projective planes, such a study there being already
underway. From this points of view it is interesting to determine
the number n of points on a block in a free Benz plane (or free afhne
plane) for which the stabilizer in II of every (n + 1)-tuple of points
consist of the identity, but there exist n-tuples whose stabilizer in II
is different from the identity. Funk discovered that for free Benz
planes this number n is 6. In section 1 we study this problem for the
affine planes, and we prove that in a free affine plane n = 4. Results

(similar to Schleiermacher’s above quoted result [14] for projective
planes) for the gap between n = 3 for the miquelian Benz planes and
the group of projectivities [n = 2 for the desarguesian afhne planes
and the group of affine projectivities] and n = 6 [n = 4] for the cor-
responding free geometries, are as yet unknown.

Another aim of the present paper is to show that in the classes
of projective and Benz planes (or in the class of affine planes) we can
find a geometry in which the stabilizer in II of (m + 1 )-tuples consists
only of the identity for every m with 6  m  Ko (or respec-

tively), but there are stabilizers of m distinct points which are not
the identity. The construction of these geometries takes place by ex-
tending a closed configuration which increases as m grows. This may
give us a first insight into the fact that the group of projectivities in
the classical geometries is further from the group in a geometry with
closed configurations than from the group in a free geometry.

Another result, which is worthy of mention, is proved here: Con-
trary to the cases of both the classical and the free geometries, for
every type of geometry, we construct examples in which the group
of projectivities is transitive on (ordered) n-tuples for every finite n.

(3) Result not yet published.
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This negative result indicates how large and unwieldy the group of
projectivities can be.

Although our constructions in § 2 and § 3 are dependent on a line
[circle] chosen in advance, the properties of the group of projectivities
of a line [circle] onto itself are the same for every line [circle] since
groups of projectivities on different lines [circles] are isomorphic as
permutation groups (see [1]).

0. Basic notions.

In this paper we shall deal with projective and afhne planes and
with Benz planes. For the definitions of projective and affine planes
see [11] or [13]; we work with the definition of a Benz plane given
in [7], (12. 3). In a Minkowski plane we shall call two points non-
parallel if they are neither plus nor minus parallel.

Geometries which are defined by free extension processes play a
very important role in our considerations. For free extensions in the

class of projective planes see, e.g. [13]; in the class of affine, M6bius
and Laguerre planes see [17]; and for free extensions which lead to
Minkowski planes see [9]. For the class of Benz planes, M. Funk [6]
unifies the procedure of the preceding authors; we use his steps to
unify the extension process.

yve shall prove theorems about the group of projectivities of a line
or a circle onto itself in all the above geometries. Every projectivity
of a line (or a circle) onto a line (or a circle) is defined as a product
of perspectivities.

In a projective plane a perspectivity oc = [G, 3E~ H] of a line G

onto a line .g is defined in a natural way by the pencil 3i of lines incident
with the point p, with G, H ([13], p. 9). The point p is called the
center of a.

In an affine plane an (ainne) perspectivity « = [G, 3~ H] of a

line G to a line H is defined naturally by the lass * of parallel lines
with G, ([4] p. 161; [5]): in what follows an affine perspectivity
of an affine plane will be simply called a perspectivity.

In a Benz plane we consider perspectivities of the following three
types.

A proper perspectivity of a circle .gl onto a

circle K2 is defined in a natural way by the pencil * of circles incident
with different non-parallel points p, and p, (which are called the cen-
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ters of a) for which PiE Xi, p. 2). The fixed

points of a are exactly the points of gl r1 X2 . We note also that in
the case of a Minkowski plane the point on I~1 which is plus parallel
(minus parallel) to P2 is mapped by a onto the point of -K2 which is
minus parallel (plus parallel) to p, (see [12]).

An affine perspectivity a = [Ki , X, .K2] of a circle .K1 onto a circle X2
with K1 r1 K, 0 is defined in a natural way by a pencil X of circles
which are tangent at a point p (called the center of a) with p E K1 r1 X2
and -Ki 0 3E (i = 1, 2). The fixed points of a are the points of Ki r1 X2.

A Funk perspectivity a = [Kl , ~, of a circle I~1 onto a circle .1~2
with _K1 r1 _K2 # 0 is defined by a pencil 3E of circles which are incident
with the different non-parallel points P, and ps (called the free center
and the intersection center) with and in
the following way: If x E and x is not parallel to p~, then we con-
sider the circle .K incident and ps, and intersect .K with K2.
If K2B = 2 we define a(x) to be the point of K2 which is
different from ps. If K2 ~ = 1, then a(x) = p,. If the plane is
a M6bius plane a is well defined. If the plane is a Laguerre plane and x
is the point on .Kl which is parallel to then its image under a is
the point on K2 which is parallel to Pt. If the plane is a Minkowski
plane and x the plus parallel (minus parallel) point on K1 to p f, then
a(x) is the point on K2 which is plus parallel (minus parallel) to p~.
A Funk perspectivity has only one fixed point, namely the intersection
of Ki and .K2 different from ps if K21 &#x3E; 1, and p, otherwise.
Every Funk perspectivity is a product of two proper perspectivities
with the same pencil 3E (see [6]).

Given a line (circle) G in one of the above geometries we can con-
,sider all products:

with Go = Gn = G. This set of mappings forms a group in a natural
way: the group II = II(G) of projectivities of G onto itself (4). This

group is invariant for a given geometry since different lines (circles)
give isomorphic groups II (as permutation groups).

A projectivity a can have several representations. The most

relevant among the representations of a are the irreducible rep-

(4) We remark explicitly that in the case of an affine plane a projectivity
is a product of affine perspectivities.
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resentations

in which 
In a Benz plane the group II can be generated by proper and af-

fine projectivities, but there are projectivities in classes of Benz planes
(e.g. in free Benz planes, see [6]) in whose irreducible representation
Funk perspectivities are needed. Therefore if we consider irreducible

representations of projectivities in Benz planes we have to work with
all three types of perspectivities.

Let

(with be an irreducible representation of a pro-
jectivity of a line (or a circle) onto itself in one of the above geometries.

Let (i = 1, ..., m) be a set of fixed points of a. With this set
fail and the representation (~) of a we can associate (following Bar-
lotti [2], p. 137) the configuration S~ = S~( ~aa~, a). This configuration
consists of the centers of rx, of the lines (or circles) 6~ i (which we shall

k

call generators) of the points aki = ak (a j) with II aj, and of the
j = 1

projection lines (or projection circles) which belong to the pencil Xk
and which are incident with and Obviously D defines on a

n k 
t

generator Gk a projectivity which has the points a~ as

fixed points. h=k+l j=l

l. The group of projectivities in free affine planes.

LEMMA (1.~ ) . be a free affine plane and G a Zinc in it. Then
there is no projectivity « of G onto itself which has four (distinct) f ixed
points and an irreducible representation:

Go - On === 0 and n ~ 2 .
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PROOF. We can assume that among all the projectivities with
the above property the line G and the projectivity Lx of G onto itself
are chosen in such a way that oc has an irreducible representation LX-

with the shortest o length ». Let 3 = ~c~° : i = 1, ..., 4} be a set of

four distinct fixed points of a and consider the configuration
S2 = S~( ~, d). Since 9t is a free plane, it follows that Sa is an open con-
figuration. Then we can take away the free lines in Jf3 from ,

(see [1’7] ), and obtain a new configuration Then from ~1 we re-
move all the points which are free in D’ and obtain Q2. Proceeding
in the same way, step by step, we reach the empty set. W e shall prove
that if 13 I == 4 this is not possible.

Clearly for any k the four points (i =_ = 1, ... , 4) are all distinct,
and the only free elements of S~ are among the projection lines. Also,
in order that the « removal » procedure may continue, there should be
free projection lines (Ak, which are incident with only one point
(ak = of S2. By removing such lines we get a structure in which
only the points aki (intersections of two generators) can be free. We
notice also that if the points aki are free and if ... 

we have if t is even, or if t is odd. If the point
a~ is different from r1 Gk and Gk n Gk+1, then the lines Ar and Ak+1
are themselves distinct and different from Gk ; so the points a~ different
from r1 Gk and Gk n Gk+1 cannot be free.

Clearly, working on the configuration Q we can consider the in-
dices k modulo n. There must exist a k with # aki since otherwise
we should have only two generators and the configuration 
would be closed since no point a~ is free. If holds
then there exists a smallest j (with such that af -

=1= ai+i+l also holds.
Now the points aki can be free only if the equalities expressed

here hold:

and

ii) Af+°+I or (depending on the parity of j).

If the removal procedure continues we must be able to remove
a generator in the next step since in Q2 no projection line, which is
not at the same time also a generator, can be free. Going from S2’
to Q2 we must obtain a free generator. But a generator Gk can have
at most two free points in Q1, namely Gk n Gk-I and Ok n Gk+1. But

if this is the case, then Gk must also be a projection line; and since
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in every parallel class of projection lines contains at least three
elements our process stops before reaching Q2 . Thus the lemwa
is proved.

COROLLARY (1.2). is a f ree affine plane, then the irreducible
representation of the identity is given only by the empty set.

COROLLARY (1.3). Every projectivity has exactly one irreducible

representation.

(1.4). Let W be a f ree affine plane, G a line in it and If
the group of projectivities o f G onto itself. The stabilizer in II of ccny
four distinct points of G consists only of the identity. For every two

distinct points of G there exists a third point in G such that the stabilizer
of these three points has an element different f rom the identity.

OOF. The first part of the theorem is given by lemma (1.1).
The second statement of the theorem will be proved by exhibiting
a construction. Let us choose on the line G any two points a and b
and one point x not on G. We define, in turn, the following elements
in S2{. The line G2 is the line joining a and x ; the line Ad is the join
of b and x; the line A2 is the parallel to G through x; the line Al is the
parallel to G2 through b ; the point y is equal Al n A2 ; the line G, is
the parallel to A3 through y; the point z is 01 n G2 and the point c
i s G n G1.

The configuration Q consisting of G, G1, G2 , AI, ~2’ A 3 , ac, b, c, x,
y, z is free. The projectivity

with

leaves b fixed and interchanges ac and c. The projectivity n2 has the
three fixed points a, b, c and their irreducible representation is non-
trivial. This proves the theorem.

THEOREM (1.5). The group II and the stabilizers of one and of two
points are free rank ~o .

PROOF. The projective completion of the free afhne plane 9t is
a free projective plane 51i and the group II can be regarded as a sub-
group of the group 77 of projectivities of the line of 
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Since II is a free group of rank No (see [16]), the group IT is also a
free group. The generators of II are the irreducible words (5)
[G, ~1J [£1’ 01] ... [£n, G] (with Gi_1 ~ Gi and ~i-1 ~ ~ i ) . Since W has

~o different directions 2i and lines Gi the rank of II is ~o’ A stabilizer
in II of one or of two points is contained in a stabilizer in II of two or
of three points and the assertion follows in a similar way.

THEOREM (1.6). In a free affine plane 5H no projectivity of
a line H on a line G which has a non trivial irreducible representations
can be induced by automorphisms o f il.

PROOF. Like the preceding, the proof follows from theorem 5 of [16]..

2. Groups of projectivities which are co-transitive.

DEFINITION. A permutation group G is called (o-transitive on an
infinite set M if for every pair of ordered n-subsets 81 and S2 oí M
(where is any natural number), there is an element in G which
map s 81 onto 82.

PROPOSITION (2.1 ). Let G be a group o f permutations on a set S
such that G acts transitively on ordered disjoint n-subsets of S. Then G
is n-transitive on 8 if 

PROOF. Let a = and b = be two ordered n-subsets

with a n b # 0. Since |S| &#x3E; 3n - 1, there is an n-subset 

which is disjoint from both a and b. Then in G there are elements y
and 6 such that aY = c and c6 - b and we have a&#x3E;’6 = ó.

THEOREM 2.2. There exist atfine projective] planes in which the
group II o f atfine projectivities [or projectivities] o f a line G onto itsel f
is at least t-transitive for t &#x3E; 2 [t ~ 3] ; there are planes in which the group IT
is w-transitive.

PROOF. Let ~o be an affine incidence structure (see [17]) which
consists of a line G and of different points on G.

Starting from ~o we define a suitable extension process which con-
sists of the following steps :

(5) We use here the notation given in Scheiermacher und Strambach [16]
and notice that a parallel class 2i of 5l( is a point in &#x3E;$1.
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We assume that the affine incidence structure W,i has already
been defined. On there are points (where ~7,
can be chosen in any way that satisfies the inequality 
for 

Starting from we define in the following way. We divide
the n7i points on G in all possible (ordered) m71-tuples Ck 
To every pair of disjoint ordered m7i- tuples we adjoin a pair-
) of (distinct) pencils of parallel lines, such that

E {1, 21) consists exactly of the lines which are chosen
in such a way that the line is incident with exactly the point
eft and is parallel to only the lines of In this way we obtain 

The affine structure ~~i+2 arises from by simply adjoining
the points of intersections 8~lk2 of the lines and 

Now we obtain ~7i+3 by adjoining, for every pair ( 1~1, h~2 ) such that
the two ordered m7i-tuples are disjoint, a line Sklk2 which in this stage
is incident exactly with the points of the set In 2(7i+3 there
exists for every pair k9) of disjoint ordered 1n7i-tuples an

affine projectivity which maps ckl onto (namely the product
[G, 58kl’ [Sklk2’ ~~:Q, G] ). The structure W7i+3 contains lines which
are neither parallel nor intersecting. (For instance and

for h). 
~ ~

For this reason ~~ i+3 is a proper substructure of the structure

which arises from ~.7i+3 when we adjoin, for every pair of lines
of 2(7i+3 which are neither parallel nor intersecting, a point of inter-
section which is incident only with the two lines used to define it.

The structure is obtained from ~7 i+4 by adding new lines in
the following way: for any two points which are not joined by a line
in W7i+l we define a new line incident in W7i+l with exactly these twa
points.

In ~?i+~ there are pairs (p, A), p a point, A a line, uTith p 0 A.
We consider the set of all such pairs, and for any element of this set
such that there is no line through p and parallel to A add a new
line to the parallel class of A and incident, in this stage, exactly with p.
In this way we get the structure 

The structure is obtained from ~7i+6 by adjoining a point
of intersection for every two lines which are neither parallel norm

intersecting. Each one of these new points is incident with only the
two lines used for its definition. It is clear that in ~7(i+l) for the numbers
of points belonging to the line G we have the strict inequality:
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In the previous steps an extension process is well defined. Let us
00

consider the incidence structure 5t Let us denote by t the
~=o

lim sup m7i. It is very easy to prove that % is an affine plane in which
»

the group 77 of afnne projectivities acts in such a way that for any
two ordered t-tuples of points, if t is finite, (or for any two finite
m-tuples if t = NO) there is in II an element mapping one of these tuples
on the other. The theorem for the affine case follows now from prop-
osition (2.1 ).

Consider now the projective completion of % and the group II
of projectivities of the projective line G = G u ~p ~~. Since Poo is not
a fixed point of II, the degree of transitivity of 7? is not less than the
degree of transitivity of II. Thus the theorem holds also in the pro-
jective plane.

THEOREM 2.3. There are Benz planes in which the group II of pro-
jectivities of a circle K onto itself is at least t-tracnsitive, for t ~ 3. There
are Benz planes in tvhich the group II is w-transitive.

PROOF. Let 9to be a circle structure which consists of a circle K
and no + 1 &#x3E; 3mo ~ 6 distinct points on I~ none of which are parallel.
Among these points we select one point, which we denote by oo.

Starting from 9to we define a suitable extension process which consists
of the following steps:

We assume that the circle structure 5l(Si has already been defined
where s =- 7, 8, 9 according to whether we construct IVIobius, Laguerre
or Minkowski planes. On there are n,i + points
(where msi can be chosen in any way that satisfies the inequality

for 

Starting from we define A,i+, in the following way. We divide
the nsi points on K different from oo into all possible ordered msi-tuples

(cj~)~8j. To every pair of disjoint ordered msi-tuples we
.adjoin a pair £klks - of distinct pencils of tangent circles :
The pencil (t E {1, 21) consists precisely of the circles O:t(£klkJ
such that the circle is incident with exactly the points cft t
and oo, touches the circles of at oo, and in this stage is tangent
to no other circle. Therefore the circles C~ and C~ in this stage have
only the point co in common and are not tangent. In this way we
obtain 5l(Si+l’

The circle structure arises from by simply adjoining the
points of intersections of the circles and Each
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point in this stage is incident only with the two circles 
and and is parallel to no other point. 

’ ’

Now we obtain by adjoining for every pair ( kl , k2 ) such that
the two m;-tuples are ordered and disjoint, a circle which in this

stage is incident exactly with the points of the set U 

and is non-tangent to the other circles. In WSi+3 there exists a projec-
tivity for every pair (kl, k2 ) of disjoint ordered msi-tuples 
which maps ckl onto Ck, (namely the product [.K, 58kz, g] ;
each of these two perspectivities is well defined since X, 58kJ.
The structure l.~.si+3 contains in this stage some circles which have
only oo in common and are not tangent (for instance and

O:’(£klkz) 
For this reason is a proper substructure of the structure 

which arises from when we adjoin a new point of intersection
for every pair of circles of ~$i+3 which have only oo in common but
are not tangent; the new point is incident only with the two circles
used to define it and is not parallel to other points.

The structure 5l(Si+5 is obtained from if we add a circle for

every three distinct non-parallel points of 5l(si+4’ which are not incident
with a circle; the new circle is incident only with these three points
and is not tangent with any other circle in ~8$+5.

In W,i+, there are triples (p, q, A) p, q points, A a circle, with p 0 A,
q E A and p not parallel to q. We consider the set of all such triples,
and for any element of this set such that there is no circle through p
tangent to A at q, we add a new circle belonging to the tangent pencil
determined by q and A and which has no other tangency in this stage.
In this way we get the structure 

The structure ~8a+? arises from in the following way. If L1, L2
are distinct circles out of which are not tangent with ~Ll n L2 ~ =1,
we add a second point of intersection incident only with Ll and L2.
To two circles which are not tangent and disjoint we can add, as we
like, either zero or two different points of intersection which are only
incident with these two circles. In this stage these new points are
not parallel to any other point. If the plane we are constructing is
a M6bius plane, then in the previous steps an extension process is
well defined.

Otherwise from 5l(Si+7 we get the circle structure 5l(si+8 by considering
the equivalence classes of parallel points: If A is such a parallel class
and L is a circle not containing a point of then we add a new point
which belongs to A (and to no other parallel class) and which is incident
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exactly with L. If the geometry we are constructing is a Laguerre
plane in the previous steps an extension process is well defined. Other-
wise from we get the circle structure ~si+9 in the following way.

If p and q are two distinct non-parallel points of for which one
of the two points r, s (or both of them) in for which and

rll-q or and does not exist, we add the missing point (or
points) with the prescribed parallelism. These new points in this stage
are not parallel with any other point and are not incident with

any circle.

Now in the previous steps an extension process is also well defined
for Minkowski planes. In we have (by virtue of step si -f- 6)
the strict inequality for the number of points belonging to the circle .K:

n

Let us consider the incidence structure U = UUi, and denote
2=0

by t -1 the lim sup mSi . It is very easy to prove that U is a Mbbius,
i - oo

Laguerre or Minkowski plane according as s = 7, 8 or 9. Now let H_
be the stabilizer of the group of projectivities of K onto itself. Because
in every 5l(si+3 the projectivities have 00 as a fixed point, Ih acts on

K’ and so II 00 is (t - I)-transitive on .K’ if t is finite or
60-transitive on K’ if t = Since oo is no fixed point of II it follows

. that lI acts t-transitively on .K and the theorem is proved.

REMARK (2.4). The affine perspectivities of a circle K in a Benz
plane generate in general a proper subgroup T o f the group II o f all pro-
j ectivities o f K onto itself.

PROOF. Funk [6] showed that the stabilizer in T of four points
in a free Benz plane consists of the identity only, whereas the stabilizer
in the whole group II of projectivities of every four distinct points is
always different from the identity.

REMARK (2.5). There are Benz planes in which the group IF is at
least k-transitive for k&#x3E;3. There are Benz planes in which P is
co-transitive.

PROOF. The property follows from the fact that the projectivities
used in the proof of theorem (2.3) are always afhne projectivities.
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3. Groups of projectivities with the identity as stabilizer of n+ 1 points:

THEOREM 3.1. For every [or n ~ 3] there exists a projective
[affine] plane 0152, such that the group o f projectivities [affine projectivities]
of a line [affine line] G has the following propert2es :

The stabilizer in II of n + 1 distinct points consists of the identity
only, but there are n di f f erent points - 17 ... , n, on G such that the
stabilizer contains elements di f f erent f rom the identity.

PROOF. First we shall prove the theorem for the projective case.
If n = 5, we take a free projective plane for 0152, and the theorem holds.
(see [16] ) . Let us assume n ~ 6. We denote by ~o the following con-
figuration. The points of ~o are:

the lines are:

and the incidences are:

The free extension of 9to (see e.g. [8], [13]) is a projective plane 0152.
Each closed configuration in 0152 is contained in the closed subconfig-
uration 9to of Wo which arises from Wo by deleting the points *

We consider the projectivity sl, .K] ~.g, 82’ .g] [H~, 83,G] and can
easily check that a has a1, ...., an as fixed points. Since every fixed

point ai of a belongs to a closed subconfiguration of 0152, the point f
is contained in 2(~ r1 G and so it is one of the points ac2, ... , an . There-
fore 1 and it has exactly n fixed points.
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Now let T be a projectivity with n + 1 &#x3E; 7 distinct fixed points
and with an irreducible representation

If we assume T =1= 1 it follows that m ~ 3.
With the set 6 of the fixed points of z we associate the configuration

Q = Q(6, T).
Let Qo be the largest closed subconfiguration which is contained

in Q. Do contains all centers zi and all lines Gj for otherwise Q would
be open and the number of fixed points would be at most five ( see [2 ] ) .
Every line Gi contains at least ~C~ ~ - 3 ~ n -r- 1 - 3 ~ 4 different

points of Qo; in f act, going from Q to Qo we can drop at most

3 different points onto 6~ i (that is, at most the points G; n 
Gi m and the intersection of Gi with the line joining Zi and zi+1).
Therefore every center Zi is incident with at least [W5 [ - 3 ~ 4 different
lines of ~3. The configuration Do is a closed subconfiguration of ~o .
Since in S[o only the points y ~2 ? S3 are incident with more than three
different lines, the centers must be chosen from the set of these
three points. Since in 9t~ only the lines are incident with
more than 3 different points, the lines 6~ of r must be chosen in the
set of these three lines. Since in 9t~ there is no line joining S2 with a;
( j ~ 2 ) the center zi must be si or But in ~~ the lines Ai (or A~ have
no points of intersection with .H or .K respectively and this implies that
the line G of r must be g or H respectively. Therefore 7: == and

we have a contradiction since has exactly n fixed points.
If we delete from 0152 the line ~S and all its points we get an affine

plane. Let T be the group of affine projectivities of the affine line
G’ = The stabilizer in G of n different points is always the
identity since Otherwise (X induces an affine projectivity
on G’ with exactly n - 1 fixed points and the theorem holds also for
affine planes if n ~ 4. But if n = 3 we take a free affine plane, and the
theorem holds (see (1.4)).

THEOREM 3.2. For every 1~&#x3E;5 there are Laguerre and Min-
planes K, such that the group o f projectivities 11 o f a circle K onto

itself has the following properties : the stabilizer o f II on n -f- 1 different
points consists o f the identity only but there are n distinct points ai ,
z = 1, ... , n, such that the stabilizer IIG1...Gn contains elements different
f rom the identity.
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PROOF. In case n = 5 we take for K a free Benz plane, and then
the theorem holds (see [6]).

Let us assume n ~ 6. We denote by 9to the following configuration :
the points of 9to are 
the circles are G, L~, .K, {~~3~ {~~3~ {A$ ~ ~ _ , ;

and the incidences are :

Moreover, no two different points of 5to are parallel, and the circles A:
and A i are tangent in 9to at al exactly when k - r ; in 9to no other
tangency among circles exists.

The free extension of 9to is a Benz plane (see [17], [9], [6]). Every
closed configuration of K in which no hyperfree element exists is con-
tained in 9to (see [16], [6]). Note that 9to is the maximal closed config-
uration of K because the circles G, .g, H contain more than 3 points;
each of the circles A~ has 3 distinct points but each is tangent with
some circle because every point is incident with at least 3 distinct
circles. We consider the projectivity y = [G, .KJ [K, $2, gJ [-~, ~3 , G]
where Xi denotes the tangent pencil determined by al and the circles
{A;}f=3. We can easily check that y has al , a2 , ... , a,~ as fixed points.
Since every fixed point f of y belongs to a closed subconfiguration of K,
the point f is contained in 9t r1 G and so it is one of the points aI, ... 
Therefore and has exactly n fixed points.

Now let T be a projectivity with n + 1 &#x3E; 7 distinct fixed points
a,, .... , an+1 and with an irreducible representation

where X; denotes a pencil of circles belonging to a proper, afhne of
Funk perspectivity from G,-i to Gi . The irreducibility of the representa-
tion of z means that and Xi-l =1= Ni for every i (see [6]).

If we assume í =1= 1, it follows that m ~ 2. With the set G of fixed
points of T we associate the configuration Q = 1).

Let ,~’ be the largest closed subconfiguration which is contained in f2.
We describe now Funk’s method which we follow to go from S~

to Q’. The procedure is completed in 3 steps. First we note that the

following number of circles in S~ is incident with a center of the per-
spectivity [Oi-l’ 3i~ , Gj]:
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if a is a proper perspectivity, then a center p! is incident with
at least 6 different circles, and 5 of them are projection circles (6);

if ai is an affine perspectivity, then the center p is incident with
.at least 8 different circles and at least 6 of them are projection circles;

if ai is a Funk perspectivity then the free center P’ f is incident
-with at least 5 different circles which are projection circles; the inter-
section center p§ is incident with at least 7 different circles, of which
at least 5 are projection circles.

In the first step of the construction we remove all projection circles
-which are free; they are exactly those which are incident with the fixed
points of ai . In such way we obtain S~1.

If al is a proper perspectivity, then a center p! is incident with
at least 4 circles in of which at least 3 are projection circles. In

the case that al is affine, the center p is incident with at least 7 dif-
ferent circles, and at least 5 of these are projection circles. If ai is a
Funk perspectivity, the center p f is incident with at least 4 different
circles which are projection circles, and ps is incident with at least 6 dif-
ferent circles, where at least 4 of them are projection circles.

The structure Q2 arises from S~1 by removing the free points; such
, 

i

points can only be images a) of the fixed points aj of T under IT OCk.
k = 1

On Gi there are at most two free fixed points: either Q has only two
generator circles, and the two points are fixed points under all ak
(k = 1, ... , n), or one of the two points is a fixed point under ai and
the other is a fixed point under ai+,; Funk proves ([6] lemmas 3.1
to 3.3) that beside these points at most two other points on Gi can
be free in 5~1.

One point h on Gi other than the fixed points may be free since a
projection circle of ai can be also a projection circle of rf.-i-1 (or ai+1).
Another kind of free points (of which there turns out to be at most
two) can arise if the generator Ga i is the only circle through them,
and they are parallel to only one center. The two circumstances above
cannot both be present at the same time.

Funk proves (main theorem) that we now get the closed structure Q’
from S22 if we remove free circles in 5~2. In S~2 every circle Gi contains

(6) In this counting of the number of circles (and the same for those
~countings which follows) we must take care of the fact that through a center
and a point parallel to the center there is no projection circle. Also if a

center of an affine projectivity is a point then there is no projection
circle through it.
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at least 3 distinct points ai; the circle Gi contains al so a center pi
of aa : If p is one of the points then we have tangency at p be-
tween Gi and the projection circles Therefore no generator in Q2
can be free. The only free circles in Q2 are projection circles.

Since ,Q1 contains no free projection circles, every free projection
circle of Q2 carries a free point of and this free point h is not a
fixed point of some aa, and the point h is then (by lemmas 3.1 and 3.3
of [6]) the only free point on Gi beside the two free fixed points men-
tioned above. If there are points in on Gi which are parallel to
one of the centers of mi, then there exists no free point h, through
which a projection line passes ( [6], lemma (3.3)). Then no circle through
the centers of ai can become free in Q2. Therefore every center of ai
is incident in Dg with at least 4 different circles.

The same result holds if there does not exist a free projection
circle in ,Q2 through the centers.

If there do not exist points in S~1 on Gi parallel to one of the centers
of ai , but there is the free point h, then there pass at least 5 circles
through the centers of oci.

In every case any center of each perspectivity ai is incident with
at least 4 different circles of 

Funk has proved in his main theorem that the structure S~3 is the
closed subconfiguration S~’. Therefore S2, is a subconfiguration of 5llo
and the parallel classes of every point of Q’ are always trivial.

Since al is the only point of U0 which is incident with 4 different
circles, the point al must be the center of every perspectivity oe,. There-
fore z is a product of affine perspectivities, each of them having the
center acl. Then every point of ,52, different from al is not parallel to al,
therefore IQ’ n Gi I&#x3E;: 4 and only can appear as generators Gi :
Since in Q’ there are no points of intersection between G and A~ or H
and or K and A3j, z must equal y:f:l.

REMARK (3.3). For every n&#x3E;5 there are Mobius, Laguerre and
Minkowski planes lE~ such that the group IF of projectivities generated
by affine perspectivities o f a circle K onto itself (compare remark (2.4))
has the following properties : the stabilizer in II of n + 1 distinct points
consists o f the identity only, but there are n different points such that the
stabilizer in P o f these points is different f rom the identity.

PROOF. The property follows from the fact that the projectivities
used in the proof of theorem (3.2) are always affine projectivities.
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