RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIUSEPPE ZAMPIERI

Sistemi del tipo (Pu = f, Qu = g) non globalmente risolubili

Rendiconti del Seminario Matematico della Università di Padova, tome 61 (1979), p. 325-329

http://www.numdam.org/item?id=RSMUP 1979 61 325 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1979, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Sistemi del tipo (Pu = f, Qu = g)non globalmente risolubili.

GIUSEPPE ZAMPIERI (*)

Summary - In the following we present a class of systems of P.D.E. with constant coefficients which are not globally solvable for some compatible data (f, g). We'll make use of this result to give a theoric explanation for a M. Nacinovich's fine example.

1. Introduzione.

Nel seguito si userà il seguente teorema:

siano E ed F spazi di Fréchet e sia $f: E \to F$ un'applicazione lineare e continua; ${}^{t}f: F' \to E'$ sia la trasposta di f fra i duali forti.

TEOREMA. Le seguenti proposizioni a), b) e c) sono equivalenti:

- a) f è suriettiva;
- b) ^{t}f è iniettiva e $^{t}f(F')$ è chiuso in E';
- c) per ogni seminorma continua p su E esiste una seminorma continua q su F tale che:
- c_1) per ogni y in F esiste x in E tale che: q(f(x)-y)=0;
- $c_{\mathbf{2}}) \ \ \text{se} \ \ y' \in F' \ \ \text{e} \ \ \text{se} \ \ {}^{t}\!f(y') \in E'_{p}, \ \ \text{allora} \ \ y' \in F'_{q}.$
- (*) Indirizzo dell'A.: Seminario Matematico dell'Università Via Belzon 7 I-35100 Padova.

Lavoro eseguito nell'ambito dell'attività dei Gruppi di Ricerca Matematica del C.N.R.

 $(E'_{p}$ è lo spazio dei funzionali lineari e continui su E rispetto alla seminorma continua p; analogamente per F'_{q} .)

SIMBOLI. E(A) indicherà lo spazio delle funzioni indefinitamente differenziabili sull'aperto A di R^n ; E'(A) il suo duale.

2. In R^{n+1} la variabile si indicherà con (x, t), $x = (x_1, ..., x_n)$. Sia A_0 un aperto in R^n e sia $A = A_0 \times R_t$ il cilindro aperto di R^{n+1} di base A_0 . Sia $P = P(D_x)$ un operatore differenziale, a coefficienti costanti, in n variabili; sia $Q = Q(D) = D_t^k + P(D)$ un secondo operatore.

Si indicherà con D il sottospazio chiuso di $E(A)^2$ dei dati compatibili per P e Q, i.e. D = (f, g) : Qf = Pg); D abbia la topologia di spazio di Fréchet ereditata da $E(A)^2$.

Si supponga che A_0 non sia P-convesso; i.e. esiste un aperto relativamente compatto, K, in A_0 tale che l'insieme delle h in $C_{\mathfrak{o}}^{\infty}(A_0)$ tali che ${}^{t}P(h)$ ha il supporto in K, non abbia supporto in un medesimo aperto relativamente compatto K' di A_0 (qui ${}^{t}P = P(-D)$).

TEOREMA 1. Esiste (f, g) in D tale che il sistema: (Pu = f, Qu = g) non ha soluzione in E(A).

DIMOSTRAZIONE. Si consideri l'applicazione: $(P,Q): E(A) \to D$, definita da: (P,Q)(u)=(Pu,Qu). L'applicazione è lineare e continua; poichè gli spazi in oggetto sono spazi di Fréchet, se essa fosse suriettiva (ovvero se il sistema: Pu=f, Qu=g fosse risolubile in E(A) per ogni dato ammissibile), applicando il teorema nell'introduzione si dovrebbe aver soddisfatta la condizione c_2).

Dimostriamo che ciò è impossibile.

Se $(h,h') \in E'(A)^2$ ed è ortogonale a D, deve essere: ${}^tPh + {}^tQh' = 0$, ovvero: ${}^tP(h+h') = -(-1)^kD_t^kh'$. Per il fatto che P e D_t sono primi fra di loro risulta:

$$h + h' = -(-1)^k D_t^k h_0$$

con h_0 distribuzione a supporto compatto in A, visto che una soluzione fondamentale dell'operatore D_t può esser scelta del tipo: $\delta \otimes h''$ con $D_t h'' = \delta_t$, e visto che A è un cilindro.

Allora è:

$$-(-1)^k({}^tP(D_t^kh_0))+(-1)^kD_t^kh'+{}^tPh'=0$$

che dà: $h' = {}^{t}Ph_0$, e quindi: $h = -{}^{t}Qh_0$.

La proposizione in c_2) dimostra che: per ogni compatto K in A e per ogni n, numero naturale, esiste K_n , compatto in A, tale che: se $(h, h') \in E'(A)^2$, se ${}^tPh + {}^tQh'$ ha il suo supporto in K e se l'ordine di ${}^tPh + {}^tQh' \leq n$, allora esiste r in E'(A) tale che:

supp
$$((h-tQr), (h'+tPr)) \subseteq K_n \times K_n$$
,

sempre che (P, Q) sia suriettiva su D.

Sia allora K_0 un compatto di A_0 e si consideri l'insieme delle funzioni g in $C_c^{\infty}(A_0)$ tali che:

$$\operatorname{supp}({}^tPg)\subseteq K_0$$
.

Se $z \in C_c^{\infty}(R_t)$ e se $\int z(t) dt = 1$, ovviamente:

$$\operatorname{supp}({}^tP(g\otimes z))\subseteq K_0\times L,\qquad \operatorname{con}\ L=\operatorname{supp}(z).$$

Allora: per ognuna delle g di sopra, dovrebbe esistere r in E'(A), tale che:

$$\mathrm{supp}\;(g\otimes z-{}^tQr)\subseteq K_0'\quad \ \mathrm{e}\quad \ \mathrm{supp}\;({}^tPr)\subseteq K_0'\;,$$

con K'_0 compatto in A dipendente esclusivamente da $K_0 \times L$.

Per ogni $h \in E'(R^{n+1})$ si consideri la distribuzione $\overline{h} \in E'(R^n)$ così definita:

$$\langle \overline{h}, f \rangle = \langle h, f \rangle$$
.

È facile dimostrare che: $\overline{h}=0$ se e solo se $h=D_th'$ per qualche h' in $E'(R^{n+1})$. Si ha inoltre:

$$\overline{{}^{t}Ph} = {}^{t}P\overline{h} \quad \text{ e } \quad \overline{{}^{t}Qh} = {}^{t}P\overline{h} ,$$

di facile verifica; come è facile verificare che:

$$\overline{g\otimes z}=g$$
,

per la particolare scelta di z.

Se \overline{K} indica la proiezione di K_0 in R^n , per il fatto che supp (\overline{h}) è contenuto nella proiezione in R^n del supporto di h, la suriettività dell'applicazione (P,Q) implicherebbe che: per ogni g come sopra, i.e. tale che: supp $({}^tPg)\subseteq K_0$, esiste un compatto \overline{K} in A_0 , indipendente da g, tale che: $g-{}^tP(\overline{r})$ e ${}^tP(\overline{r})$ hanno il loro supporto in \overline{K} con \overline{r} in $E'(A_0)$; e questo per ogni compatto $K_0\subset A_0$.

Ciò è assurdo poichè A_0 non è P-convesso.

Il teorema è concluso.

Viceversa è immediato dimostrare il seguente teorema:

TEOREMA 2. Se A è un cilindro a base P-convessa allora i sistemi del tipo $(Pu = f, (D_t^k + P)u = g)$ sono risolubili in E(A) per ogni coppia di dati compatibili.

OSSERVAZIONE. Comunque siano scelti gli operatori P e Q e l'aperto A, se il sistema ($Pu=f,\ Qu=g$) non ha soluzioni in E(A) per qualche dato compatibile, allora il medesimo sistema non è « quasi mai» risolubile, nel senso che l'insieme dei dati compatibili per il sistema per i quali il sistema non è risolubile costituisce, in D, un insieme di seconda categoria; ciò è conseguenza immediata del teorema della « mappa aperta », [2], pag. 99.

Sia A un aperto di \mathbb{R}^n ; siano P e Q operatori differenziali a coefficienti costanti.

DEFINIZIONE. La quaterna (A, A, P, Q) si dice compatibile se e solo se per ogni $f \in \text{Ker } Q/A$ (= $\{f \in E(A): Qf = 0\}$) il sistema (Pu = f, Qu = 0) ammette soluzione in E(A).

LEMMA. Se l'aperto A è Q-convesso, allora la compatibilità della quaterna (A, A, P, Q) è equivalente alla risolubilità del sistema (Pu = f Qu = g) per ogni dato compatibile.

DIMOSTRAZIONE. Si supponga $P: \operatorname{Ker} Q/A \to \operatorname{Ker} Q/A$ suriettiva; allora se $(h, h') \in E'(A) \times E'(A)$ con ${}^tPh + {}^tQh' = 0$ ne segue che

$$h \in (\operatorname{Ker} Q/A)^{\perp}$$
 (polare).

Perciò, osservato che (Ker $Q/A)^{\perp}={}^tQE'(A)$ per la Q-convessità di A, esiste $h_0 \in E'(A)$ tale che $h={}^tQh_0$, $h'=-{}^tPh_0$. Inoltre ${}^tPE'(A)+$ + (Ker $Q/A)^{\perp}$ (e cioè ${}^tPE'(A)+{}^tQE'(A)$) è chiuso in E'(A). Da ciò segue evidentemente che la mappa (P,Q): $E(A) \to D$ è suriettiva.

Il lemma è concluso.

3. Applicazione all'esempio di M. Nacinovich [4].

Sia
$$A_0 = \{(x, y) \in R^2 \colon y < 8x^2\}; A = A_0 \times R_t.$$

Siano: $P = P(D) = D_x^4 + D_y^2 \in Q = Q(D) = -D_t^6 - P(D).$

a) A_0 non è P-convesso: immediata conseguenza del Teorema 3.7.2 di [3], pag. 89.

Il teorema in 2. dimostra allora che esiste un dato ammissibile, (f, g), per il sistema: (Pu = f, Qu = g) per il quale il sistema non ha soluzione in E(A).

Per dimostrare che la quaterna (A, A, P, Q) non è compatibile, basta dimostrare, secondo il lemma, che $A \notin Q$ -convesso.

Sia K un compatto di A e sia $g \in C_c^{\infty}(A)$ con ${}^tPg \in C_c^{\infty}(K)$; sia \overline{K} la proiezione, in A_0 , di K e sia L un segmento, in R_t , contenente la proiezione, in R_t , di K.

Dimostriamo che supp $(g) \subseteq \overline{K} \times L$, ovvero la Q-convessità di A. Sia p un punto di R^3 tale che $p \notin \overline{K} \times L$; esiste un cono aperto e convesso D, di vertice p ed asse verticale, tale che: $D \cap \overline{K} \times L = \emptyset$. Sia $D_1 = D \cap S$ dove S è, a seconda del caso: $S = \{(x, y, t) : t > t_0, \text{ o } t < t_0\}$, con t_0 determinato in modo che $g|_S = 0$.

Poichè ${}^{t}Pg = 0$ in D e g = 0 in D_{1} , e poichè i piani caratteristici di Q sono paralleli all'asse t, e quindi, se intersecano D intersecano anche D_{1} , il fatto che g sia nulla in D discende dal Teorema 5.3.3 dell'inevitabile [3], pag. 129.

COMMENTO. Essenzialmente in questo lavoro le conclusioni sono raggiunte in virtù del teorema citato nell'introduzione: J. DIEUDONNÉ - L. SCHWARTZ, La dualité entre les éspaces F e LF, Ann. de l'Inst. Fourier, 1949.

BIBLIOGRAFIA

- [1] G. Bratti, Un'applicazione del teorema del grafico chiuso alla risolubilità dei sistemi del tipo: (Pu = f, Qu = g), in stampa.
- [2] J. L. Kelley I. Namioka, Linear Topological Spaces, D. Van Nostrand, (1963).
- [3] L. HÖRMANDER, Linear partial differential operators, Springer (1963).
- [4] M. NACINOVICH, Una osservazione su una congettura di De Giorgi, Boll. U.M.I., (4), 12 (1975), pp. 9-14.

Manoscritto pervenuto in redazione il 12 gennaio 1979.