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Approximation of Eigenvalues
and a Koehler’s Type Method.

CESARE DAVINI (*)

SUMMARY - A new deduction of a Koehler’s type method is presented that
emphasizes the general properties required of a problem for the technique
to work. Suggestions on strategies to follow when applying the method
are also given.

1. Introduction.

In mechanics the most important examples of eigenvalue problems
arise in the study of the dynamics of bodies and in stability or bifur-
cation problems. Eigenvalue-eigensolution pairs describe, respectively, y
either natural frequencies and modes of the body or critical values
of the data and the corresponding non-trivial equilibrium configurations.
Examples from different areas are flutter phenomena in aeroelasti-

city [1], Sensenig and Ericksen’s problems in finite elasticity [2] [3], and
the Taylor cells [4] or the Benhrd problem [5] in fluid mechanics.
At some stage of their development all of these problems are phrased
as eigenvalue problems whose solution singles out transition points
between behaviors with completely different features.

The dramatic physical nature of these transitions highlight the

(*) Indirizzo dell’Autore: Istituto di Elaborazione dell’Informazione, Via
S. Maria 46, Pisa.
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importance of obtaining solutions to such eigenvalue problems, pri-
marily for practical purposes. Therefore, as the evaluation of the

eigenvalues is in general obtained by approximate methods, it is

extremely useful in the applications to have a direct estimate of the
error from techniques providing two-side bounds for the eigenvalues.

The study of this quantitative aspect is largely lacking for non-
linear problems; on the contrary, there is a rather large litterature
concerning linear problems, covering wide classes of operators of

interest in mechanics. Here we fix our attention on linear problems.
To obtain lower bounds for the eigenvalues is the hardest part of the

matter, upper bounds being easily found by the Rayleigh-Ritz method.
The common basis of all techniques is the comparison between
the eigenvalues of the problem under consideration with those of

some other problem whose spectral properties are known. Comparisons
are often mere applications of the monotonicity theorems based upon
the min-max principe [6]. For discussing a specific problem, the
availability of a comparison problem is the basic information that is
always needed in order to start any method.

The early studies on lower bounds are sporadic applications of
the monotonicity theorems in their simpler form, as is the case in
the works of Morrow (1905), Prescott (1920) and Southwell (1921),
see [7]. Systematic studies start only after the paper of Temple was
published (1928) ; the main contributions are due to Weinstein (1935-63),
Aronszajn (1948-51), Weinberger (1959) and Fichera (1965), see [6].
All the methods above differ in the quality and quantity of the basic
informations they require, but are close to each other under several
respects, as shown in [6] for the methods of Weinstein and Aronszajn,
and in [8] for Weinstein and Weinberger’s. 

,

In what follows we wish to present a method for obtaining lower
bounds to eigenvalues that is the natural development of results
obtained discussing the infinitesimal stability of homogeneously de-
formed plates and shells [9]. Although this method has been worked
out independently, it comes close to a technique proposed by Koeh-
ler [10] dealing with estimates for the eigenvalues of infinite matrices.
The approach is different, however, and is more advantageous in that
it puts in evidence the general properties required of a problem in
order to apply the technique, and facilitates comparison with some
of the methods previously mentioned. Moreover, the proof the method
is based upon does not require a condition, perhaps minor, that is

present in Koehler’s paper.
While the deduction of the method and the comparison with others
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are given in [11] in full detail, in the present article we elaborate upon
it and illustrate through few examples some strategies that can be
used in the applications.

2. Description of the method.

Our aim is to estimate the eigenvalues of the following problem

when A is a lower bounded self-adjoint operator on a dense linear
manifold Z in a Hilbert space with a scalar product ( ~, .). Assume
that

with A’ self-adjoint on Z, B defined on and both
forms ( B * B ~ , ~ ) and ( ~ , ~ ) are completely continuous with respect
to (A’ ~ , .).

The method is based on the knowledge of the following:

a) The spectral properties of A’ ;

b ) A pair of numbers o  1 and with the property

REMARK 1. The existence of such a pair is a consequence of the
assumption on B*B, as (B ~, ~ ) also is completely continuous with re-

spect to (A I ., .).
Under the hypotheses above, A’ has an unbounded and discrete

spectrum ... ~, and any corresponding family of eigenfun-
ctions ~c2, U39 ... } is a basis for SJ. Let un be the subspace spanned
by U2’ ... , 1

and call Pn the orthogonal projection onto 

The method is founded on the lemma:
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LEMMA. A is positive if and only if 3n such that

where

REMARK 2. As un is finite-dimensional, (Bu, v) is weakly con-
tinuous in with respect to the norm induced by (’y ~ ) .
If we extend it to Un X U* by continuity, the extended form (Bu, V) 2
achieves a maximum on Un r1 r1 ~ (1 ) . Then we can write

and, by using the projection theorem:

Hence computation of all quantities in (3) involves finite algebra only.
In particular, the following inequality

holds. This can provide a cruder, but still valuable, estimate of ~8n
to be used in (3).

we will not dwell upon the proof, see [11], but rather emphasize
that sufficiency of (3) hinges upon the inequality

whereas necessity requires in addition that

The former follows from (2); the latter is a consequence of the com-
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plete continuity of B*B :

By restricting our attention to (5) and (8) imply in fact

and hence (7).
Now if we put A,, = A + y1 with y E R, it follows that

By the lemma, y then, A is positive if and only if for some n the ine-
qualities

hold true. For any figed n, we may regard (10) as a condition on y.
Thus, from (9) and by simply discussing a second grade equation, y
we obtain

where = min (Au, u) is the Rayleigh-Ritz approximation of fll.
Un n B(1)

On the other hand, since for any y such that - y bounds III from
below (10) are satisfied for some n, it follows that

Consideration of the higher order eigenvalues is only slightly more
difficult, see [11]. However, y it is possible to show that formula (11)
carries over to all the eigenvalues Ilk’ kn, by proper use of the
min-max principle, y obtaining the estimate
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Here it does not follow from the lemma - Ilk when
n -7 oo, as shown in [11]; however convergence follows from the

property

being upper bounds of Ilk. Equality (14) still depends upon (7).

REMARK 3. Incidentally, (13) and (14) state the convergence of
the Rayleigh-Ritz approximations.

3. Comments and conclusions.

Dealing with estimates for the eigenvalues of infinite matrices
in [10], Koehler finds estimates that are similar to the ones given
above. However, our proof seems to be more convenient. Rephrased
in the present terms, in fact, Koehler’s proof asks for A to be positive
whereas ours does not require it, showing that estimates (11) and (13)
provide lower bounds for the eigenvalues of A anyhow. Moreover,
the approach here emphasizes the role of certain properties that are
sufhcient in order to apply the method.

In this paper we will not present any numerical application of
formulae (11) and (13); simple example has been considered in [11].
It is perhaps more interesting to give a brief discussion of the range
of validity of the method and, also, to outline some simple strategies
which make it applicable.

Convergence of the estimates based on conditions (3) depends
upon (7) either directly, as for the higher order eigenvalues, or indirectly
through the lemma, as for Ill. Complete continuity of B*B is suf-
ficient for (7) to hold.

The condition of B*B occurs, for instance, in the intermediate
problems both of Weinstein and Aronszajnls methods, where B is a
finite-dimensional perturbation of A’. Therefore, the use of formulae
(11) and (13) is an alternative to the study of Weinstein’s determinants
in order to obtain lower bounds to the eigenvalues of A.

Another important class of problems where complete continuity
of B*B is amenable to standard results in analysis is when A is an
elliptic differential operator. In this case, a classical interpolation
theorem implies the complete continuity of B*B if the order of B is
less than m; 2m being the order of A’, see [11].
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Finally, it is also worth mentioning that (7) holds true when the
approximate the analogous spans of the eigenvectors of A, roln,

in the following sense:
«There exist two finite-dimensional subspaces C and 0 such

that for any given n there is some m with the property

Under this hypothesis B2a  are v equiboundedy , no matter whether B*B
is completely continuous. Unfortunately, y however, properties involv-
ing comparisons between eigenspaces are difficult to recognize and
thus this is not an explicit characterization of the operator B.

If one gives up convergence of the method, the cases it applies
to increase considerably. In fact, it is easily seen that validity of
inequalities (11) and (13) hinges upon sufficiency of conditions (3)
and then depends on (6) only. From this we infer that Koehler’s

type of lower bounds are deducible whenever a pair (Sy 3n), with
bn &#x3E; 0, is known such that

where c D is some subspace of finite deficiency n. If we decom-

pose # according to § = BOB- and proceed as in the lemma, in
fact, we still find that A is positive if (3) are satisfied with B2n replaced
now by

Hence formulae (11) and (13) keep on giving lower bounds f oz° the

first n eigenvalues. Here no assumption has to be made either on
any previous decomposition of A or on the knowledge of any special
basis of ~, and the quantity of information that is required comes
to a minimum.

It is interesting to observe that, in this case, the required infor-
mation is the same as in the truncated operator method proposed by
Weinberger, see [6].

REMARK 4. Connections with Weinberger’s method are even deeper
in that it is possible to obtain arbitrarily close lower bounds for the
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eigenvalues of the truncated operator by a suitable use of Koehler’s
method, see [11].

The information expressed in (15) is available when the known

part of A is the dominant one, at least asymptotically. In the elliptic
differential problems, y for instance, this occurs if A’ contains the

principal part of A. In that case it is rather easy to obtain perhaps
crude inequalities like (15) in some space Z-L with finite deficiency.
A skillful use of mappings from § to some suitable Hilbert space S)’,
or changes of variables in the domain where the functions u are
defined may help in order to achieve this situation. In conclusion,
we wish to elucidate this by means of two examples.

Consider first Hadamard stability of elastic parallelograms or

cylindrical shells, described by the director model, that are homo-
geneously strained and inequilibrium under given displacements along
a pair of opposite edges. As shown in r9l, if we restrict ourselves to
discuss stability in the class of cylindrical or axisymmetric deforma-
mations, we are led to discuss the positiveness of the second variation
of the total potential energy

Here the R6-vector valued functions V describe the displacements
of the mean surface and of the directors with respect to the gound
state, and the coefficients and E are constant 6 &#x3E;C 6 matrices

depending on stresses and loads in the ground state, with

Strenghtening the Legendre-Hadamard condition, y assume that

Although apparently the problem is not an eigenvalue problem,
it is of the kind discussed in the present paper for lower bounds to the
minimum of J in Hf r1 Z(l) are still of importance.

If we consider the mapping of H’ 0 onto itself defined by the suc-
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cessive changes of variables

with

(16) becormes

where Put it in the terms of the (present paper, we
may regard J as the quadratic form associated with the operator
A = A’ -~-- B where the operators

satisfy the condition required in order to obtain arbitrarily close lower
bounds to the minimum of J from the method described above.

REMARK 5. In particular, y under regularity assumptions on the
coefficients of the principal part, the eigenvalue problems for Sturm-
Liouville operators can always be reduced to a suitable form and be
given convergent estimates of the eigenvalues by Koehler’s method.

As a second example, consider the eigenvalue problem

with I~ = K(x) sufficiently smooth and positive. In mechanical terms

problem (20) describes the study of the natural frequencies of an elastic
beam with bending stiffness K, simply supported at the ends.

Lower bounds to the fundamental frequency aie those values of u
for which
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In order to use conditions (3), we put

and introduce a new variable y = y(x), y c- (0, b), defined by

Accordingly, if U(y) = u(x(y)) and dots denote derivation with respect
to y, problem (21) becomes

The expressions dy is the form associated with the

eigenvalue problem

whose solution can be found by the characteristic exponents method.

contains the principal part of (23), inequalities

like (15) are easily found if we use the eigenfunctions of (24) as a
basis for the space b) in (23) ; then we can write condi-
tions (3) explicitly. Any value of a that satisfies (3) is a lower bound
for the fundamental frequency.

REMARK 6. As the remainder dy contains

the first derivative of U, it is not ensured that we can find arbitrarily
close bounds. It is however interesting to observe that what has been
done for the problem (20) applies to differential problems of any order
provided they are one-dimensional.
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