EDOARDO BALLICO
GIORGIO BOLONDI

On the homology groups of q-complete spaces

Rendiconti del Seminario Matematico della Università di Padova,

<http://www.numdam.org/item?id=RSMUP_1983__69__19_0>
On the Homology Groups of q-Complete Spaces.

EDOARDO BALLICO - GIORGIO BOLONDI (*)

SUNTO - Sia \(X \) uno spazio complesso q-completo n-dimensionale; allora \(H_k(X, \mathbb{Z}) = 0 \) per ogni \(k > n + q \). Sia poi \((X, Y) \) una q-coppia di Runge di spazi q-completi e \(Y \) privo di singularità; allora \(H_k(X \text{ mod } Y, \mathbb{Z}) = 0 \) per ogni \(k > n + q \).

It is known (Sorani [8]) that if \(X \) is a q-complete manifold then \(H_k(X, \mathbb{Z}) = 0 \) for \(k > n + q \) and \(H_{n+q}(X, \mathbb{Z}) \) is a free group. The proof of this theorem comes from ideas of Serre, Thom and Andreotti-Frankel; but it does seem to be easily generalizable to the singular case. In this paper we prove that if \(X \) is a q-complete n-dimensional complex space then \(H_k(X, \mathbb{Z}) = 0 \) if \(k > n + q \). We don't know if \(H_{n+q}(X, \mathbb{Z}) \) is torsion free or free. We use a lemma (furuncle-lemma) of Andreotti-Grauert and a theorem of Coen which extends the results of Sorani to the case of an open subset of a Stein space. Moreover we apply our theorem to obtain a vanishing theorem for the relative homology of q-Runge pairs.

§ 0. We consider throughout this paper analytic complex spaces countable at the infinity. A complex space \(X \) is said to be q-complete when there exists a \(C^\infty \)-function \(h: X \to \mathbb{R} \) such that \(X(c) = \{ x \in X | h(x) < c \} \) is relatively compact in \(X \) for every \(c \in \mathbb{R} \), and every \(x \in X \) has a neighborhood \(V \) with the following property: there exist an

isomorphism χ of V onto an analytic subset A of an open subset U of \mathbb{C}^n and a C^ω-function $\phi: U \to \mathbb{R}$ such that $h = \phi \circ \chi$ and the Levi form

$$L(\phi, y)(u) = \sum_{i,j=1}^n \left(\frac{\partial^2 \phi}{\partial z_i \partial \overline{z}_j} \right) u_i \overline{u}_j$$

has at least $n - q$ positive eigenvalues at every point $y \in U$; the function h is said to be strongly q-plurisubharmonic.

If X is a complex space and Y an open subset of X, the pair (X, Y) is said to be a q-Runge pair if the natural homomorphism

$$q^Y_!: H^q(X, \Omega^p_X) \to H^q(Y, \Omega^p_Y)$$

has dense image for every $p = 0, 1, \ldots, n$, where Ω^p_X is the sheaf of holomorphic p-forms (see for instance [5]).

We recall the following theorem that we will use in the proof of our result:

Theorem 0.1 (Coen, [4]). Let X be a q-complete open subspace of a Stein space S; let $\dim X = n$. Then

$$H_k(X, \mathbb{Z}) = 0 \quad \text{if } k > n + q \quad \text{and}$$

$$H_{n+q}(X, \mathbb{Z}) \quad \text{is torsion free.}$$

A similar theorem was known for manifolds:

Theorem 0.2 (Sorani, [8]). Let X be a q-complete manifold, and let $\dim X = n$. Then

$$H_k(X, \mathbb{Z}) \quad \text{if } k > n + q \quad \text{and}$$

$$H_{n+q}(X, \mathbb{Z}) \quad \text{is free.}$$

By means of the results of Ferrari ([5] and [6]) and Le Potier [7] we know something else about these groups:

Theorem 0.3. Let X be a q-complete complex space, and let $n = \dim X$. Then $H_k(X, \mathbb{C}) = 0$ and $H_k(X, \mathbb{Z})$ is a torsion group for each $k > n + q$.

§ 1. In order to prove the theorem we need the following

LEMMA 1.1 (Benedetti, [2]). *Let X be a reduced q-complete complex space. Then the function h defining the q-completeness of X can be chosen such that the set \{local minima of h in X\} is discrete in X.*

The proof of our theorem requires, besides this result, the Mayer-Vietoris sequence and the furuncle-lemma ([1], p. 237).

THEOREM 1.2. *Let X be a q-complete complex space, and let \(\dim X = n \). Then \(H_k(X, \mathbb{Z}) = 0 \) if \(k > n + q \).*

Proof. Without loss of generality we can suppose \(X \) reduced. Let \(h \) be a non-negative function chosen as in 1.1. For every \(t \in \mathbb{R} \) we put \(X(t) = \{x \in X | h(x) < t\} \) and \(B(t) = \{x \in X | h(x) = t\} \). Every open set \(X(t) \) is a q-complete space. Let \(t_0 = \min h(x) \); it follows that \(B(t_0) \) is finite and then, thanks to the property of \(h \), it is possible to find \(d \in \mathbb{R}, d > t_0 \), such that \(X(d) \) is contained in an open Stein set. Therefore (theorem 0.1.) \(H_k(X(t), \mathbb{Z}) = 0 \) if \(k > n + q \) and \(t < d \).

Then let us consider the set \(A = \{t \in \mathbb{R} | \forall r < t \text{ and } \forall k > n + q \text{ } H_k(X(r), \mathbb{Z}) = 0 \} \neq \emptyset \).

We will see that \(A = [t_0, +\infty[\) by means of the furuncle-lemma. Let \(t \in A \); we claim that there exists \(\epsilon > 0 \) such that \(t + \epsilon \in A \).

We cover \(\partial X(t) \) with a finite family \(\{U_i\}_{t \leq i \leq p} \) of open relatively compact Stein sets for which there exist closed embeddings \(\psi_i: U_i \to V_i \), with \(V_i \) open subset of \(\mathbb{C}^n \), and non-negative strongly q-plurisubharmonic functions \(h_i: V_i \to \mathbb{R} \) such that \(h_i \circ \psi_i = h \). Then we consider a family \(\{W_i\} \) of open sets covering \(\partial X(t) \) and such that \(W_i \subset U_i \) for every \(i \), and a family \(\{g_i\} \) of \(C^\infty \)-functions, non-negative, such that \(g_i \) has compact support in \(U_i \) and \(g_i(x) > 0 \) for every \(x \in W_i \).

It is possible to choose \(p \) constants \(c_i > 0, 1 \leq i \leq p \), such that the functions \(f_i = h - \sum_{k=1}^i c_k g_k \) are strongly q-plurisubharmonic ones and the sets \(C_i = \{x \in X | f_i(x) < 0\} \) q-complete.

Since \(B(t) \setminus \partial X(t) \) is a finite set, by lessening if necessary the constants \(c_k \) we can suppose that no point \(x \in B(t) \setminus \partial X(t) \) is in \(C_p \); then there exist an open Stein set \(V \subset X \) and an \(\epsilon > 0 \) such that \(V \cap C_p = \emptyset \) and \(X(t + \epsilon) \subset C_p \cup V \). Moreover, from the construction we see that, if we put \(C_0 = X(t), C_i \setminus C_{i-1} \subset U_i \) for \(1 \leq i \leq p \).
Let now \(t' < t + \varepsilon \). For every \(i = 0, 1, \ldots, p \), \(C_i \cap X(t') \) is \(q \)-complete too. Indeed, \(f_i \) is constructed from \(h \) through small perturbations, and therefore the Levi forms of \(h \) and of \(f_i \) in a point \(x \) are positive definite on the same \(q \)-codimensional subspace. Then the following function determines the \(q \)-completeness of \(X(t') \cap C_i \).

\[
g(x) = \frac{1}{t - f_i(x)} + \frac{1}{t' - h(x)}.\]

Now, put \(Y_i = X(t') \cap C_i \); in particular \(Y_0 \) is \(X(t) \). We show by induction that \(H_k(Y_i, Z) = 0 \) for \(k > n + q \) for every \(i \). It is true (by assumption) for \(i = 0 \). Let now \(i > 1 \) and let us consider the Mayer-Vietoris sequence of the pair \((Y_{i-1}, Y_i \cap U_i) \):

\[
H_k(Y_{i-1} \cap U_i, Z) \rightarrow H_k(Y_{i-1}, Z) \oplus H_k(Y_i \cap U_i, Z) \rightarrow H_k(Y_i, Z) \rightarrow H_{k-1}(Y_{i-1} \cap U, Z)
\]

\(Y_{i-1} \) and \(Y_i \) are \(q \)-complete and therefore \(Y_{i-1} \cap U_i \) and \(Y_i \cap U_i \) are \(q \)-complete open subsets of the Stein space \(U_i \). Applying 0.1. and the induction we find \(Z) = 0 \) if \(k > n + q + 1 \) and

\[
0 \rightarrow H_{n+q+1}(Y_i, Z) \rightarrow H_{n+q}(Y_{i-1} \cap U_i, Z) \quad \text{if} \quad k = n + q + 1.
\]

Thanks to 0.3 \(H_{n+q+1}(Y_i, Z) \) is a torsion group; on the other hand \(H_{n+q}(Y_{i-1} \cap U_i, Z) \) is torsion free; therefore \(H_{n+q+1}(Y_i, Z) = 0 \). Then in particular \(H_k(X(t') \cap C_i, Z) = 0 \) if \(k > n + q \); since finally \(X(t') = (X(t') \cap C_i) \cup (X(t') \cap V) \), and this union is disjoint, also \(H_k(X(t'), Z) = 0 \) for each \(k > n + q \).

Therefore \(A \) is open. If we suppose \(s = \sup A < + \infty \), we can find a sequence of points of \(A \) \(t_n \rightarrow s \). But then

\[
H_k(X(s), Z) = \lim H_k(X(t_n), Z) = 0
\]

and this is a contradiction, since \(s \notin A \). Then \(\sup A = + \infty \). In particular \(m \in A \) for every \(m \in \mathbb{N} \), and then

\[
H_k(X, Z) = \lim H_k(X(m), Z) = 0 \quad \text{for each} \quad k > n + q.
\]
Remark. This theorem allows us to remove the assumption of a Stein environment in several results; for instance, in the corollaries 2.1 and 2.4 of [4].

§ 2. We recall the following proposition:

Proposition 2.1 (Le Potier [7]). Let X be a complex space, and let $n = \dim X$. Then there exists a canonical homomorphism

$$\theta^{n,q}: H^q(X, \Omega^n_X) \rightarrow H^{n+q}(X, \mathbb{C});$$

moreover, it is surjective if X is q-complete.

If X is a complex manifold $H^{n+q}(X, \mathbb{C})$ has a natural topology, thanks to De Rham’s theorem; moreover we have the following

Lemma 2.2 (see Le Potier [7], Remarque III, 6). Let X be a complex manifold. Then $\theta^{n,q}$ is continuous with respect to the natural topologies.

Proof. We can factorize the map $\theta^{n,q}$, with $q > 0$ (the case $q = 0$ is similar), in the following way:

$$H^q(X, \Omega^n_X) \xrightarrow{\xi} \frac{\text{Ker} \left(\Gamma(X, \mathcal{A}^{n,q}) \rightarrow \Gamma(X, \mathcal{A}^{n,q+1}) \right)}{\text{Im} \left(\Gamma(X, \mathcal{A}^{n,q-1}) \rightarrow \Gamma(X, \mathcal{A}^{n,q}) \right)} \xrightarrow{\kappa} \frac{\text{Ker} \left(\Gamma(X, \mathcal{E}^{n,q}) \rightarrow \Gamma(X, \mathcal{E}^{n,q+1}) \right)}{\text{Im} \left(\Gamma(X, \mathcal{E}^{n,q-1}) \rightarrow \Gamma(X, \mathcal{E}^{n,q}) \right)} \xrightarrow{k} H^{n+q}(X, \mathbb{C})$$

where $\mathcal{A}^{n,q}$ is the sheaf of C^∞-differential forms of type (n, q) and \mathcal{E}^k is the sheaf of C^∞-differential forms of type k. The map g is continuous (with respect to the Fréchet topologies on the modules of sections), since $\mathcal{A}^{n,q}$ is a fine resolution of Fréchet sheaves of Ω^n (by means of the results of [3]); h is continuous since it comes from the natural inclusion of (n, q)-forms into $(n + q)$-forms; k is continuous by definition.

Theorem 2.3. Let (X, Y) be a q-Runge pair of q-complete spaces; let Y be free of singularities. Then $H_k(X \mod Y, \mathbb{Z}) = 0$ for each $k > n + q$.

Proof. If $k > n + q + 1$ the theorem follows from the relative homology sequence of the pair (X, Y) and from theorem 1.2.
Let now $k = n + q + 1$. We begin proving that $H_{n+q+1}(X \mod Y, \mathbb{C}) = 0$. In the following commutative diagram

\[
\begin{array}{ccc}
H^q(X, \Omega^n_f) & \xrightarrow{\partial\phi^q} & H^{n+q}(X, \mathbb{C}) \\
\downarrow v_f & & \downarrow v_f \\
H^q(Y, \Omega^n_f) & \xrightarrow{\partial\phi^q} & H^{n+q}(Y, \mathbb{C})
\end{array}
\]

$\partial\phi^q$ is continuous and surjective (applying lemmas 2.1 and 2.2) and v_f has dense image by hypothesis; thus v_f has dense image too. Moreover, the natural algebraic pairing $\langle H^{n+q}(X, \mathbb{C}), H_{n+q}(X, \mathbb{C}) \rangle$ is also topological (see Sorani [9]); then the natural homomorphism

\[
H_{n+q}(Y, \mathbb{C}) \xrightarrow{j} H_{n+q}(X, \mathbb{C})
\]

is injective. Thus considering the exact sequence

\[
0 \to H_{n+q+1}(X \mod Y, \mathbb{C}) \to H_{n+q}(Y, \mathbb{C}) \xrightarrow{j} H_{n+q}(X, \mathbb{C})
\]

we find $H_{n+q+1}(X \mod Y, \mathbb{C}) = 0$; then $H_{n+q+1}(X \mod Y, \mathbb{Z})$ is a torsion group. But in the natural relative exact sequence

\[
H_{n+q+1}(X, \mathbb{Z}) \to H_{n+q+1}(X \mod Y, \mathbb{Z}) \xrightarrow{j} H_{n+q}(Y, \mathbb{Z})
\]

j is injective, applying theorem 1.2; moreover $H_{n+q}(Y, \mathbb{Z})$ is a torsion free group (proposition 0.2). Therefore $H_{n+q+1}(X \mod Y, \mathbb{Z}) = 0$.

REFERENCES

On the homology groups of q-complete spaces

Manoscritto pervenuto in redazione il 15 ottobre 1981.