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On the B03BB Almost Periodic behaviour

of Certain Arithmetical Convolutions.

PAOLO CODECÀ (*)

0. Introduction.

First of all let us remember the definition of BA almost periodic
function. Let g : [1, + oo) -+ C be integrable on every bounded interval
and let 1 &#x3E; 0. We say that g is a Bx almost periodic function if,
for every E &#x3E; 0, there is a trigonometric polynomial 
== ’2 a; exp with x~ E R such that

Consider now convolutions of the where 
ny(x)

is a bounded variation periodic function, a(n) is a bounded sequence
of real numbers and y(x) is a suitable divergent function. The aim of
the present paper is to prove that such convolutions are always BA
almost periodic for every I &#x3E; 0 (1).

We note that convolutions of the type considered arise naturally
in problems of number theory and Lambert summability of series.

(*) Indirizzo dell’A. : Istituto di Matematica, Università, Via Machiavelli,
44100 Ferrara, Italia

(1) A general result of B~ almost periodicity for convolutions of the type
considered with y(x) = x and suitable a(*) has already been obtained, by a
different method, by the author (cf. [3], [4]).
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Precisely, in connection with questions of summability, Hardy and
Littlewood consider the two functions

and prove that these functions are unbounded (cf. [8] p. 266).
Other examples of such convolutions are given by the remainder

terms of summatory functions of important arithmetical functions.
To be precise put ao(n) = and consider _

din

= :2 ao(n) : it is not difhcult to see that (cf. [12] p. 100)

Now let cp(n) be Euler’s function: if we remember that 99(n)/n =
we have immediately

din

In both cases it is known that the remainder terms

are unbounded (2).
The present paper is divided into two parts; in the first one we-

prove the following two theorems:

(2) For further and more precise information about the functions 
Q(x), and I~2(x) see examples 1), 2) and 3) at the end of this paper.
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THEOREM 1. Let f (x) be a real function, periodic with period 1,
1

of bounded variation on [0,1] and such = 0. Let a(n)
° ° 

0

be a bounded sequence of real numbers and y(x) a strictly increasing
function defined on [1, + oo) satisfying the following conditions :

If J then the limit

exists and is finite for every positive integer k.

THEOREM 2. Let g(x) be as in theorem 1: then g(x) is a Bx almost
periodic function for every real positive A.

In the second part of the paper we will apply theorems 1 and 2
to the functions P(x), Q(x), and R2(x) defined in (0.1), (0.2), (0.5)
and (0.6). To be precise we will prove the following

COROLLARY 1. Let E(x) be any of the functions P(x), Q(x), Rl(x)
and R2(x) : then in each case we can write

where is a B~ almost periodic function for every Â &#x3E; 0. We
have also

for every A &#x3E; 0, though the function E(x) is unbounded in each of
the four cases (see examples 1, 2 and 3).

, 
. 

, .

(3) Obviously the constant implied by 0 in (0.9) depends on 1.
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The proof of corollary 1 is based on theorems 1 and 2 and on well
known estimates for 1’(x), Q(x), Rl(x) and The estimates for

P(x) and Q(x) were obtained by T. M. Flett (see (6.7) of example 1)
by means of Van der Corput’s method and those for .R1(x) and 
by A. Walfisz (see example 2 (7.5) and lemma 6 (8 11)) by means of
Weyl’s and Vinogradov’s methods.

In what follows if a, b, ... , Z are positive integers the symbols
(a, b, ... , Z) and [a,b,...,I] will indicate, respectively, the greatest
common divisor and the least common multiple of a, b, ..., 1.

If x is a real number [x] will denote the integral part of x and (s)
the fractional part i.e. (s) = x - [x]. With p(n) we will indicate the
M6bius function and with Z’ the set of all relative integers without
zero.

Part I. We begin by proving some lemmata.

LEMMA 1. Let al, ... , ak be k positive integers. Put

where the dash indicates that the sum is extended to all k-tuples.
k

such that mj E Z’ f or ~ = 1, ... , k Then

we have 

where the constant ~ is independent of the choice of al, ... , ak and
depends only on the dimension k.

PROOF. Consider the function f (x) _ - lg 12 sin zf2 and its Fourier
series (cf. [11] p. 93)

where c,, = 

It is easy to see, integrating by parts, that f E for every
natural p. If we remember classical results on the product of Fourier
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series (see ~1] vol. 1, p. 76) from (1.1) we obtain the expansion

where

and the dash indicates that the sum is extended to all k-tuples ml ,
k

M2 ... Ink such that mj E Z’ An empty sum means
;=1

obviously that the corresponding bn is zero.
From (1.2) we have

where termwise integration is justified by classical theorems (cf. [ill
vol. 1, p. 116).

Lemma 1 follows immediately from (1.3) if we apply repeatedly

Schwarz inequality and observe that

LEMMA 2. Let ni , ... , nk be k positive integers and put
for j = 1,..., k. Put

where the dash indicates that the sum is extended to all k-tuples m1, y
k

ln2 ..., 7 Mt such that mJ E Z’ for i = 1, ..., k and 0. Then we
;=1
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have the estimate

where the constant M is independent of the choice of nl , n~ , ... , nx
and depends only on the dimension k.

PROOF. Let us consider the equation in integers

Put we have obviously ’V;INi for every i, ~ = 1, ... , k.
This implies that every solution m2 , ... , mk of (2.1) must also be
a solution of .

for j =1, 2, ... , k.
We note that =1 and, if i # j, From

this we conclude that if (2.2) is satisfied then we must have 
for j = 1, 2, ..., k. But this implies that condition (2.1) can be written
equivalently

and Lemma 2 follows from (2.3) and Lemma 1.

LEMMA 3. Let nl, n2, ... , nk be positive integers and let, as in the

preceding lemma,
Then the series

where the sum is extended to all k-tuples nl, n2, ..., nk of positive
integers, is convergent. 

_

(4) We remember that (nj, Nj) denotes the greatest common divisor of
nj and Nj.
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Put

then we have

and this obviously implies for i = 1, ... , k. From this follows
that [ni , ng , ... , where [ni , n2 , ... , nk] is the least common multiple
of nl,n2,...,nk.

We conclude that

where d(m) is the number of divisors of m.
From (3.2) obviously follows lemma 3.
We now pass to the proof of theorem 1.

PROOF or THEOREM 1. Let y-i be the inverse function of y. We
have (5)

where

be the Fourier series of t(x) ; put

and t = Nu and consider

(5) Obviously we can suppose = 1 without loss of generality.
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the integral

We observe that

where B(m) is given by

and an empty sum means B(m) = 0.
From (4.2) and (4.3) follows

Obviously B(o) depends on nl, ... , nk so that we write B(0) =
We will now prove that

where the sum is extended to all k-tuples nl, ... , nk of positive integers.
First of all we note that the series on the right of (4.6) is convergent.

00

In fact if f (x) ~ ~ A(n) exp (2ainx) is a bounded variation function
n=-oo

n00

we have A(n) = 0(1/n) (cf. [1] vol. 1, p. 71) so that from (4.4) follows
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If we remember lemma 2 we obtain from (4.7)

The convergence of the series on the right of (4.6) follows immediately
from (4.8) and from lemma 3 if we remember that the sequence a(n) is
bounded.

In the second place we prove that

We have ,

where the dash in the second sum indicates that the sum is extended

to all k-tuples nl, ... , nk of positive integers such that

From the convergence of this last series (see lemma 3) follows (4.9).
In order to complete the proof of (4.6) we observe that

because y(x) = o(x8) for every 8 &#x3E; 0.



382

From (4.1), (4.5), (4,9) and (4.11) follows (4.6) and this completes
the proof of theorem 1.

We now pass to the proof of theorem 2.

PROOF or THEOREM 2. Let N be a natural number and put gN(t) =
If m is a positive integer consider the integral

nN

where the sum is extended to all the 2m-tuples of positive integers
such that and I =

_ I("1 , ... , = max ... , 

We observe that the sum on the right of (5.1) is equal to the sum
on the right of (4.1) with the only difference that in equality (5.1) we
have the limitations N for j =1, 2, ... , 2m.

This evidently implies, if we remember the proof of theorem 1, that

for every 
Now let 0  I  2m and put p = 2m/h and q = 2m/(2m -Â) and

g(t) = gN(t) = 0 for 0 ~ t c 1. By Holder’s inequality we have

from which follows
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From (5.2) and (5.4) follows

that is g(t) is a Bi limit of purely periodic functions. If we remember
that each is a Bi limit of the partial sums of its Fourier series
(cf. [1] vol. 2, p. 138) we obtain the proof of theorem 2.

Part 2. Applications of the theorems 1 and 2 and proof of corollary 1.

EXAMPLE 1. In a paper of 1936 (cf. [8]) Hardy and Littlewood
consider the two functions

They prove the following results

In 1949 T. M. Flett (cf. [7]) obtained the following estimates

More recently these two functions were studied by Segal (cf. [10]) and
by H. Delange (cf. [5]) who proved

and by means of a result of Safari and Vaughan
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In the quoted paper T. M. Flett (cf. [7] p. 6, lemma 2) proves that

where y(t) = exp ((lg t)/(lg lg t)) . The proof of (6.7) is based on Van der
Corput’s method for estimating exponential sums.

At this point we observe that the proof of corollary 1 for the functions
P(x) and is an immediate consequence of the estimate (6.7) and of
theorems 1 and 2.

EXAMPLE 2. Consider, as in (0.3) of the introduction, the error term

cannot be bounded for the obvious reason that a(n)/n = I 1 ~d
din

is not bounded. The best known estimates for .Rl(x) were obtained by
A. Walfisz (cf. [12] p. 88) by means of Weyl’s and Vinogradov’s methods
for estimating exponential sums. Precisely Walfisz proved

and later

Walfisz also studied the mean square behaviour of .Rl(x) and obtained

(cf. [13])

The estimate (7.2) was obtained by Walfisz by proving (cf. [12] p. 94)
that

where = X2/(X+4) with X = 
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As in the preceding example the proof of corollary 1 for the function
R1(0153) follows immediately from (7.5) and from theorems 1 and 2.

EXAMPLE 3. Consider, as in (0.4) of the introduction, the error term

It is known that ,R2(x) is not bounded. Precisely Pillai and Chowla
(cf. [9]) proved that

and Erd6s and Shapiro (cf. [6])

Chowla, following a method of Walfisz, studied the mean square value
of ~2(~) and obtained (cf. [2])

In order to prove corollary 1 for the function R2(x) we need the following

LEMMA 5. The following estimate holds:

PROOF. Put . and consider the sum
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But

Let us remember the prime number theorem in the form
from this follows

and

From (8.6), (8.7), (8.8), (8.9) and (8.10) follows lemma 5.
Let us now remember the following result obtained by Walfisz

(cf. [12] p. 142, lemma 5) by means of Vinogradov’s method:

LEMMA 6. Let X = where ot is an absolute con-
stant. We have the estimate
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At this point the proof of Corollary 1 for the function .R2(x) follows
immediately from lemmata 5 and 6 and from theorems 1 and 2.
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