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On Translation Transversal Designs.

MAURO BILIOTTI - GIUSEPPE MICELLI (*)

SÜ’MMAR,Y - A translation transversal design is a transversal design with a
point-regular group of automorphisms mapping each non-fixed block
into a disjoint block. Such designs are investigated by making use of
group partitions and a new construction method for those related to Fro-
benius groups is given.

Transversal designs and their dual structures, the so called nets, y
have been extensively investigated in the last years. Several authors
devoted some attention to those, among these structures, possessing
a group of automorphisms which acts regularly on the point-set
(e.g. [6] for a survey and also [7]). In this connection recently
Schulz [9], [10] considered transversal designs admitting a group of
translations acting transitively-and hence regularly-on the point-set.
In [9], after pointing out that the study of such designs, called transla-
tion transversal designs (TTD’s), essentially turns into that of some
special group partitions, y he proves that Frobenius groups possess
two different classes of partitions which are suitable for the construc-
tion of TTD’s and carried out several investigations on one of these
classes, the other being already considered by Jungnickel in [7].
[10] is devoted to TTD’s arising from partitions of Hughes-Thompson
groups. In this paper we give a further contribution to the study
of TTD’S. After giving a classification of those groups which possess

(*) Indirizzo degli AA.: Dipartimento di Matematica, Università, Via Ar-
nesano, 73100 Lecce, Italia,
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partitions connected to TTD’S, we concentrate our attention to the
partitions of Frobenius groups already investigated by Schulz [9]
in order to settle some open questions. A construction method of
Schulz’s partitions is given which allows us to produce examples
of such partitions also for Frobenius groups with non-abelian Frobe-
nius kernel. Schulz’s partitions of Frobenius groups with abelian Fro-
benius kernel may be obtained for any admissible value of parameters.

TTD’s are very useful for producing examples of the so called
« regular transversal designs » which are closely related to difference
matrices and so to orthogonal arrays and Latin squares [4], [5].

1. Let d = ( ~’, 93, E) be an incidence structure. We shall denote
by [p, q] the number of blocks joining p and q. d is called a transver-
sal design of order s and degree k (or briefly an (s, k)-TD) if the follow-
ing conditions are satisfied:

(i) the relation  ~ » on P defined by

is an equivalence relation;

(iii) each block meets each point class (equivalence class of ~) ;

(iv) there are k point classes each containing s points.

It is easy to prove that for a (s, k)-TD we have

(v) ~B~ = k for each B E 93 and there are exactly - blocks
through each point;

A translation of a transversal design d is a fixed-point-free auto-
morphism g of d such that B = Bu or B f1 Bu = 0 for each block B E 93.
The identity map is also regarded as a translation. Clarly a transla-
tion maps point classes onto themselves. A (s, k)-TD with a transla-
tion group T acting transitively-and hence regularly-on the point-set

(1) The more general case of (s, k, ~,)-TD’s (where [p, q] = A for p t1J q)
will not be considered in this paper.
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is called a translation transversal design (or briefly a (s, k)-TTD) . As

pointed out in [9], a (s, possesses a natural resolution, that
is an equivalence relation « Il » on the block-set such that each equiva-
lence class (parallel class) is a partition of the point-set. Indeed it

is enough to put B11IB2 if and only if Bi = B2 for some translation
g E T. It is well known that for a (s, k) -TTD we have k ~ s.

We recall that a partition of a group G is a set D = {Gi}iEI of proper

subgroups of G such that Gi n Gj = 1&#x3E; for G, and G = U Gi .
icI

Translation transversal designs may be described by means of

group partitions.

PROPOSITION 1.1. -Let 8 == {To, Ti,..., Tj be a partition of a group T
satis f ying the condition

Then the incidence structure Y(T, T 0’ S) defined as f oltows :

1) points are the elements of T;

2) blocks are the right cosets of the components o f 

3) point classes are the right cosets of To;

4) the incidence is the E-relation;

is a translation transversal design of order s and degree k, where k = 1 Ti 1, ,
1 c i ~ s. The translation group T* consists of the maps a* : T -~ T de-

f ined by x H xa with a E T and we have T* ,...., T.

PROOF. For the proof of conditions (i) and (ii) see [9], Prop. 3.2.
Note that condition (t) implies 1 Ti _ ~ 1 for all i, j with 1 ~ i, j ~ s.
Let To v be a point class and a block. By (t) we may suppose
v E T i , u E To and we get

where uv = To , VE Ti i (we have made still use of (t)) . So

(iii) is verified. We have
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since, by (t), [T : To] = k. These relations give 1 T, = s and (iv) holds.
It is easy to verify that maps a* are the required translations (see [9],
Prop. 3.2.).
A partition 8 = {To, T1, will be called an (s, k)-partition

if it satisfies (t) and ( To ~ = s, ~ - k, 
Proposition 1.1 can be reversed as follows.

PROPOSITION 1.2. Let d = (P, 93, E) be an (s, with transal-
tion group T and o a point of d, {TB: 0 E B E B}, together
with the stabilizer To in T of the point class containing o, is a (s, k)-parti-
tion of T and we have T(T, To , 8) = LI.

For the proof see [9], Prop. 3.6. Note that condition (t) easily
follows from conditions (iii), (v) and (vi) for a (s, k)-TD.

So the study of translation TD’s is essentially reduced to that
of (s, k)-partitions.

We assume the reader is familiar with the theory of group parti-
tions due to Baer, Kegel and Suzuki. We only recall that given a
prime p and a group G we denote by Hl’(G) the subgroup of G generated
by the elements of order different from p. If ~1~ ~ # G for some

prime p and G is not a p-group, then [G :.H~(G)] = p and G is called
a group of Hughes-Thompson (regard to p). A group G with a proper
subgroup .g such that H r1 H = ~1~ for G-H is called a Frobe-

nius group. The elements of G which do not lie in any .Hx, x E G, make
a subgroup .K and the subgroups G, together with K, make
a partition of is called the Frobenius kernel, Hx a Frobenius
complement and the above mentioned partition the Fro-
benius partition of G.

Except perhaps for the case of Frobenius groups, the following
theorem is a fairly immediate consequence of the classification of

groups with partitions.

THEOREM 1.3. partition of T
satisfying condition (t), then one of the following holds :

I) T is a p-group and  To ;

II) T is a group of .Hnghes-Thompson, To = g~(T) and Ti is
cyclic of order p for with 1 c i c s ; ,

(III) T is a Frobenius group and

1) lil is the Frobenius partition of T or
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2) the Frobenius kernel of T is a p-group, To  K, Ti - .Ki.g,
 K and H is a Frobenius complement of T, and

g = T,,Ti i with 

PROOF. If @ ph&#x3E;3, then among the components
of every partition of T there are cyclic groups of order ph -1, ph -j- 1
and also p-groups, so no partition of T verifies (t). Similarly we cannot
have T = PSL(2, ph), p’~ ~ 4. If T = Sz(q), q = 22r+l, every partition
of T contains components of order q2, q - 1, q + r + 1, where r =
_ y2q, and hence condition (t) is unsatisfied. If T is a p-group and

Hf)(T) =F (1), then IHp(T)1 &#x3E; [T:Hp(T)] (see [8]. Satz 2), and so we must
have since 1 and does not admit any parti-
tion. A group of Hughes-Thompson admits exactly one partition
whose components are Hp(T) and the cyclic groups of order p not
contained in Hp(T) and II easily follows. For the proof of III see [9],
Th. 4.4. Since we have listed all the groups with partitions, the proof
is then accomplished.

2. Theorem 1.3 gives some restriction on parameters s and k for
the existence of a (s, k)-partition. Every Hughes-Thompson group
as well as every p-group Q with Hf)(Q) = ~1~ or Hf)(Q) ~ 1&#x3E; and
[Q : Hf)(Q)] = p is suitable for the construction of (s, k)-partitions (see
also [10]). Nevertheless every Frobenius group is suitable for the con-
struction of a (s, k)- partition of type III.1. The case of Frobenius

groups with partitions of type 111.2. seems to present many more
difficulties. Schulz deals with this case in [9] and his results will
be mentioned during our subsequent investigation on this subject.
We need some definitions.

Let K be a group, A == {Ko, a set of subgroups of K
and 0 a one-to-one map between the set K2, ... , and go .
We denote KiO by u, . Assume the following conditions are sa-

tisfied :

(a) - s, - t for all i with 

(~) the elements of K which do not lie in any ui 1 Ki ui, 1  1  s,
make a sugroup TTo of K;

(c) is a partition of K;
(d) K = Ú 0 ... 0 Kiui Ü ... Ü Ksus ( lJ disjunct

union),

then we call (K, A, an admissible triad (of parameters s, t).
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Let .H~ be a group of automorphisms of .K. We say that (g, ~, OE)
is an H-admissible triad if each of the subgroups of A is H-invariant.

Now let G be a group and a an automorphism of G. For each

g E G define

If .H~ is a group of automorphisms of G, put

F(G, H) is nothing but the holomorph of G, with respect to .g. The

following Proposition holds.

PROPOSITION 2.1. Let 1 == (K, A, be an H-admissible triad of
parameters s, t, where H is a group of f.p.f. automorphisms o f K of order h;
then

(i ) .I’(.K, .HH) is a Frobenius group with Frobenius kernel

K = ~~k,l: k E K) isomorphic to K and Frobenius complement

H = E H) isomorphic to H;

(ii) the stabilizers F(K, H)KiUi’ 1 c i c s, of .Ki ui in F(K, H),
together with Vo = E make a (s, k)-partition H) of
F(K, H) with k = th and therefore of type III.2.

PROOF. We point out that if ex E H, ex =1= I, and k E K, then the
equation k = (xa)-1 x admits exactly one solution x since oc is f.p.f..
From this (i) easily follows. Now let (1k,a E F(K, H) and assume ex =1= I.
Take x E K such that k = (xa)-lx; by (d) we may find Kiui such
that x = vui E Ki ui and thus we get

since Ki is a-invariant. Therefore ~~,a E F(K, H)KiUi.
Assume a = I. By (c) either k E for a suitable i with

or k E V’o and we have resp. Vo.
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Suppose E F(K, H)KiUi r1.I’(K, H)KjUj f with i =1= j and ex =1= I. From
we infer that 

with v E Ki . Since .Ki is a-invariant there exists exactly one element
such that and hence 

Similarly we get with It follows

v’ ui == a contradiction by (d) . If ce = I we have k E n

and therefore k = 1 by (c). Lastly suppose Yo n
r’1.I’(g, then oc = I and, as before, k = 1 by (c). This prove
that {F(K, H)KiUi: 1  1  s) is a partition of F(K, H). From that
we have seen so far we get F(K, H)KiUi == oc E H, k E 
and hence H)Kiuil = IHllKil and this completes the proof.

If g is abelian, and hence elementary abelian, for it possesses
the it is straightforward to show
that the construction of Prop. 2.1 yields the same result of Schulz’s [9],
Prop. 2.4, 2.6 and 2.7. Indeed it is enough to observe that in this
case K may be regarded as a vector space over any subfield of the
kernel of A (for the definition of « kernel » see [1]), so that K and A
are nothing but the group T and the partition Z) of Def. 2.3
in the Schulz’s work, while g is that Schulz calls « an admissible Fro.
benius group ». This situation is of some special interest since we have
the following.

PROPOSITION 2.2 (Schulz [9]). Let F be a Frobenius group with
abeliani kernel and let 8 be a (s, k)-partition of F of type 111.2,
then there exists a suitable H-admissible (K, .~, 0) and an
isomorphism from F to F(K, H) mapping 8 into H).

Obviously the main problem is how find,ing H-admissible triads.
To do this Schulz makes use of a suitable spread in a projective space,
thus limiting himself to the case  k abelian» (for details see [9]).
In this paper we give a procedure which tourns out to be more powerful
than Schulz’s method and includes also the non-abelian case.

If 8 is a partition of a group G and K is a subgroup of G such that
for each then we 

An 8-automorphism of a group G is an automorphism of G leaving
invariant each component of S.

The following proposition is fundamental for our construction.

PROPOSITION 2.3. Assume we have

(I) a group G and a Ul, ... , U,l of G satis-
fying condition ( t ) ;
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(II) ac subgroups K of G such that Uo  G;

(III) a non-trivial group H of K.

Let g fixed element o f G-K, then

1 ) ~ Uoi == 1 with 

2 ) i f we and 

1 c i ~ s, where Ui is the unique element of Uo lying in Ui g, then
(K, A, is an H-admissible triad of parameters s, t with t = J-Kil,
1  i  s.

PROOF. Note that we have Ko = Uo. 1) Assume x, x’ E Uig r1
n Uo , then x = kg = u, x’ - k’ g = u’ for s ome k, k’ E Ui , u, u’ E Uo .
We have = g and so k’ W 1 = But Ui,

Uo , hence k’k-1 = u’u-1 - 1, that is k’ = 1~ and u’ == u.
Therefore Nevertheless the number of distinct right
cosets of Ui in G is 1 Uol and so the equality holds. 2) At first we point
out that S|K is a (s, t)-partition with t = J-Kil, 1is. Indeed let
i E ~1, ... , s~ and f E .K, then f = uk with u e Uo and k E Ui , but k E K
since and hence So K UOKi. On the other
hand and the equality holds. Now we shall prove that

(K, ~, is an H-admissible triad of parameters s, t. Clearly condi-
tion (a) is verified. Let u, = gg with g E Ui , then =

== g-l Kg since 9-’-Kig = g-1( Ui n K) g = Ui n -K = Ki.
So condition (b) and (c) are satisfied if we put Vo = g-l Kog. Since

is a (s, t)-partition, (d) is verified if we show that Kiuin 
== 0 whenever i ~ j. Assume x E r1 Kjuj and hence x = kgg =
- k’ g’ g where k’EKj and with g E Ui ,
g’ E U~ . It follows kg = k’g’ == 1, a contradiction since it is easily
seen that g, g’ 0 _K.

3. This section is devoted to the construction of sets (G, K, H)
satisfying conditions (I), (II) and (III) of Prop. 2.3.

The abelian case. Assume:

F == p a prime, n &#x3E; 1;

.h’o = any proper subfield of F;
V a (u + 1)-dimensional vector space over .Z’, u&#x3E; 1 ;

Uo a u-dimensional subspace of V.



225

Let consider the = pnu, of V( + ) ,
where TI~, ... , Us are the 1-dimensional subspaces of V, not contained
in Uo . Trivially 8 satisfies condition (t). Now take a set i

of elements of Ul such that

- vi, ... , Vz are independent over but they do not generate Ul,
as a vector space over Fo , 7

additive groups). If H is any subgroup of the multiplicative group
Fô of let denote by H the group of automorphisms of K of the form
v 1--+ vo(; with oc c- 17. It is easy to see that each component of 8/K is
H-invariant. Therefore (V, K, satisfies conditions (I), (II), (III)
(with G = V). The associated triad E = (K, A, W) gives rise to a

(s, k)-partition of F(K, H) of parameters pnu, p-lh where h = 

PROPOSITION 3.1. Let (s, k)-TTD where T is a

Frobenius group with abelian Frobenius kernel and 8 a (s, k)-partition
of type III.2. Then s = pa, k = pr h for some prime p, 

h|(pa - 1, pr - 1). For any admissible value of parameters s, k such

a (s, exists.

PROOF. It is enough to observe that by Prop. 2.2 we may suppose
T = F(K, H) and lil = .g) for a suitable H-admissible triad

~ _ (I~, ~, ~) ; furthermore, if and = p r, 
we have IHI/pa-1 and since every .Ki, 1  1  s, is H-

invariant and all elements of .H~ are f.p.f.. Clearly a &#x3E; r since s ~ k.
Now let be given a tern of numbers p r, h) with 1  r  a and 
-1, pr -1). It is well known that where b = (a, r). In

our previous construction assume 1’’ = T’o = GF(pb), ~c = 1,
1 and IHI - h. The last assertion follows.

We point out that Schulz [9] produces examples of such (s, 
only for parameters satisfying some additional assumptions, this
because the author is able to construct the projective spreads on
which his method is founded only under some restrictive conditions.
Actually, if we make use of a result of Bu ([2], Lemma 4) such condi-
tions can be avoided, so that the last assertion of Prop. 3.1 may be
also gained by a direct application of the Schulz’s method.

The non-abelian case. Let E = GF(q), q odd, TT a finite dimensional
vector space over E, W a subspace of V and y an automorphism of E.
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Assume [,]: Y X V - W is a map such that:

Following Herzer [3] we call [,] an « alternative bisemilinear map
vanishing on V x W ». Clearly, with respect to a given basis Vl’ ... , vh of
a complementary space of W, such a map takes the form

where

Using [,] we may define a new operation « o » on V as follows

V(o) is a group of nilpotence class  2 (see [3]).
We point out that whenever for a subspace U of V we have

[ U, U]  U, then U is also a subgroup of V(o) ; so, because of [vE, vE] _
= 0 for all v E Y, the 1-dimensional subspaces of V are subgroups
of V(o). Moreover if then U is a normal subgroup of V(o).

Now suppose there exists 0 ~ ac ~ 1, such that a2y = a

and let S be a partition of V(o) whose components are subspaces
of V, then it is easily seen that the map ~ : F 2013~ V, v H vac is an

8-automorphisms of V(o). In a field E = GF(q), q = p-1, p an odd
prime, there exists such a pair (y, a), where a is an element of E* of
(odd) order n and y : x H xpr, 0  r C s, if and only if for t = (n + 1)/2
we have p r --- t mod n. For the construction of pairs ( y, a) we may
refer to [3]. Here we only recall that, for instance, such pairs exist
for n - 3, r odd, s even and p --- 2 mod 3, 5, 11, 17, 23, 29....

Let .F’, V and Uo as in the abelian case. Suppose there exists
a pair (y, a) with y e Aut(Fo) and a e such that a2Y = a. Clearly y
extends to an automorphism of F which will be still denoted by y.
Now fix a subspace W of Tr with ~0~ ~ W  Uo and a non-trivial
alternative bisemilinear map [,] vanishing on V X W, with associated
automorphism y, and let 1Tt o ) be the related group. Furthermore
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assume, 8 and K are defined as in the abelian case. Note that Uo and K
are normal subgroups of V(o)-they both contain -W-and 8 is a parti-
tion of V(o ) consisting of subspaces of TT. Moreover K is non-abelian

whenever [,Jlxxx is non-trivial. Put H = ~~a~, then .g is a group
of 81,,-automorphisms of K and (V, K, satisfies conditions (1),
(II) and (III). So we have constructed (s, k)-partitions of type III.2
in a Frobenius group with non-abelian Frobenius kernel.

4. Assume we have a TTD 5- - To, 8) with the property
that is invariant under the inner automorphisms of T and

hence Toa T. In this case the left translations of T a_lso make a group
H ax~ of automorphisms of Y. The group T is point-regular

and respects the parallelism induced in J7 by T*_, moreover it is easily
seen that T is a (s, k)-TTD with respect to T, the new resolution
« ,~’ » being

We recall that two resolutions are called orthogonal if any two

of their parallel classes have at most one block in common. We have
the following

PROPOSITION 4.1. == To, S) has the property that
is invariant under Inn(T), then the resolutions Il and Il’ induced

in Y by T*, resp. T, are orthogonal i f and only if T is a Frobenius group
with Frobenius kernel To and 8 is the Frobenius partition o f T.

PROOF. Suppose ]] and Il’ are orthogonal. Let Ti E k E T

and assume Tk r1 Ti ~ ~1~. Since T: E we have Ti and
so = kT i . But the right cosets of T, make a parallel class of Il,
while the left cosets of Ti make a parallel class of ~~’ and these classes
have exactly the block T, i in common, so we must have k E T,. It

follows without clifficulty that T is a Frobenius group and the compo-
nents of 8-(To) are the Frobenius complements, while To is the Frobe-
nius kernel. For the converse see [7], Theorem 2.2 (III).

TTD’s arising from Frobenius groups with partitions of type III.1
was widely investigated by Jungnickel in [7]. Another interesting
case of TTD’s To, such that is invariant under Inn (T)
occurs when T is a group of Hughes-Thompson, To = and 8 is
the unique partition of T. It this connection we remark that a group T
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of Hughes-Thompson is also a Frobenius group with Frobenius kernel
H1J(T) if and only if 1 (see [11]).

We conclude with a remark concerning G-regular TD’s [4]. Let LI
be a (s, k)-TD and 6 a group of order s. d is called G-regular if G acts
as a collineation group of d wich is regular on each point class and
semiregular on the block-set. Let To, S) be a TTD. Set any
subset SZ, ~&#x3E;2y of a component Ti E 8-(To) and define a new inci-
dence structure as follows:

1) the point-set (T consists of the elements of T lying in some
To s with s E Si ;

2) the blocks are the intersections of the blocks of Y with y;

3) the incidence is that induced by the incidence of Y;

4) the point classes are the cosets Tos with s E ~S’i .

It is an easy exercise to show that 4(Y, is a (s, with

k’ = 

PROPOSITION 4.2. Assume Si ç NT(To), then the transversal design
4(Y, Si) is T:-regular.

PROOF. Let s E Si and t E To . We have To st = To ts with 1 e To
and so Tost = Tos, therefore Tô acts regularly on each point class.
Now let B be a block of 4(Y, Si), then B = Bir for a suitable sub-
set B~ of T, E and a suitable r E To . Suppose for some t E To
we have Birt - Bir, then since IBi/ ~ 2, we have also Tirt - T,r
and hence t E T~ ; but t E To = T’ and so t = 1. It follows that To
acts semiregularly on the blocks of and this completes the
proof.

Note that the hypothesis of Prop. 4.2 is satisfied for any choice of
the set Si when T is abelian, T is a group of Hughes-Thompson or T
is a Frobenius group and S is of type III.1, since Toa T in all these
cases.
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