VICTOR ALEXANDRU
NICOLAE POPESCU

On subfields of $k(x)$

Rendiconti del Seminario Matematico della Università di Padova,
tome 75 (1986), p. 257-273

<http://www.numdam.org/item?id=RSMUP_1986__75__257_0>
On Subfields of \(k(x) \).

VICTOR ALEXANDRU and NICOLAE POPESCU

Let \(k \) be a field and let \(k(x) \) be the field of rational functions of one variable over \(k \). By intermediate field we understand a field \(K \) between \(k \) and \(k(x) \) and such that \(K \neq k \). If \(K \) is an intermediate field, it is well known that \(k(x)/K \) is a finite extension and \(K = k(\alpha) \), \(\alpha \in k(x) \); i.e., \(K \) is also the field of rational functions of the « variable » \(\alpha \) over \(k \) (Lüroth's Theorem; see [2]). A discussion of the lattice of intermediate fields seems to be interesting.

In what follows we consider some problems related to intersections of intermediate fields. A somewhat surprising remark is that for every field \(k \) there exists simple examples of intermediate fields \(k(\alpha_1) \) and \(k(\alpha_2) \) such that \(k(\alpha_1) \cap k(\alpha_2) = k \) (Proposition 1.8). Our Theorem 1.3 shows that the problem of intersections of intermediate fields can be reduced to the case when \(k \) is algebraically closed. Also in Theorem 1.4, we show that separability over intermediate fields is preserved by intersections. Another results (such as Theorem 2.1) refer to index of ramification of a valuation on \(k(x) \) relative to intermediate fields. Particularly we show that the main result of [3] (Section 2, Theorem) is somewhat true in positive characteristic but in a weak formulation (Corollary 2.2 and Remark 2.5). Some results on Galois extensions \(k(x)/k(x) \) are given in Section 3.

In section 4 one shows that some subfields of \(k(x) \) are uniquely represented as a reduced intersection of indecomposable fields.

Indirizzo degli AA.: V. ALEXANDRU: University of Bucharest, Faculty of Mathematics, Str. Academiei nr. 14, 70109 Bucharest, Romania; N. POPESCU: Department of Mathematics, INCREST, Bdul Pacii 220, 79622 Bucharest, Romania.
In what follows we shall utilise standard notations. However we remind these notations for more clarity.

By a valuation on $k(x)$ we shall mean every valuation which is trivial over k. These valuations are defined by irreducible polynomials of $k[x]$ and by $1/x$, the prime at infinity (see [2], Ch. I).

If G is a set, $|G|$ means the cardinality of G. If n, m are natural numbers, then $[n, m] = \text{l.c.m.}$ and $(n, m) = \text{g.c.d.}$ of n and m.

If L/K is a finite extension, then $[L:K]$ means, as usual, the « degree of L over K ».

1. Some general results.

Let k be a field and let x be an element of $k(x)$, $x \notin k$. We shall say that x is a separable element of $k(x)$ if $k(x)/k(x)$ is a separable extension.

Lemma 1.1. Let $x = f(x)/g(x)$, where $f(x)$ and $g(x)$ are relatively prime polynomials. The following assertions are equivalent:

- a) x is a separable element.
- b) $f(x)$ or $g(x)$ is a separable polynomial.
- c) The formal derivative $x' = (f'(x)g(x) - f(x)g'(x))/g^2(x)$ is a non-zero element of $k(x)$.

Proof. $a) \Rightarrow b)$. Since $k(x)/k(x)$ is a separable extension, the minimal polynomial of x over $k(x)$ is separable. But the minimal polynomial of x over $k(x)$ is $h(y) = f(y) - axg(y)$, and so $h'(y) = f'(y) - ag'(y)$.

The condition $h'(y) \neq 0$ implies $f'(y) \neq 0$ or $g'(y) \neq 0$.

$b) \Rightarrow c)$. If $x' = 0$, then $f'(x)g(x) = f(x)g'(x)$ and so $f(x)/g(x) = f'(x)/g'(x)$. The conditions $\deg f'(x) < \deg f(x)$, $\deg g'(x) < \deg g(x)$ and the irreducibility of x, lead us to a contradiction. Hence $b)$ implies $x' \neq 0$.

The other implications are obvious.

In what follows we shall utilise the following result.

Lemma 1.2. Let k be a field and \bar{k} the algebraic closure of k. Let $f_1(x), \ldots, f_n(x)$ be elements of $k[x]$ and a_1, \ldots, a_n elements (not all 0) of \bar{k}, such that $a_1f_1(x) + \ldots + a_nf_n(x) = 0$. Then there exists ele-
The proof is straightforward.

Theorem 1.3. Let k be a field and denote by \overline{k} the algebraic closure of k. Let α_1, α_2 be elements of $k(x)$. Then $k(\alpha_1) \cap k(\alpha_2) \neq k$ if and only if $\overline{k}(\alpha_1) \cap \overline{k}(\alpha_2) \neq k$. Moreover, one has $[k(x) : k(\alpha_1) \cap k(\alpha_2)] = [\overline{k}(x) : \overline{k}(\alpha_1) \cap \overline{k}(\alpha_2)]$.

Proof. It is clear that $\overline{k}(\alpha_1) \cap \overline{k}(\alpha_2) \neq k$ whereas $k(\alpha_1) \cap k(\alpha_2) \neq k$. Now let us assume that $\overline{k}(\alpha_1) \cap \overline{k}(\alpha_i) \neq \overline{k}$. Let $\alpha_i = u_i(x)/v_i(x)$, $i = 1, 2$, where $u_i(x)$ and $v_i(x)$, respectively $u_2(x)$ and $v_2(x)$ are relatively prime polynomials. It is easy to see that we can assume the following inequalities are accomplished.

\[(2) \quad \deg u_1(x) > \deg v_1(x), \quad \deg u_2(x) > \deg v_2(x).\]

Let $\overline{k}(\alpha_1) \cap \overline{k}(\alpha_2) = \overline{k}(\beta)$. Then one has

$$\beta = f_1(\alpha_1)/g_1(\alpha_1) = f_2(\alpha_2)/g_2(\alpha_2),$$

where

\[
\begin{align*}
f_1(t) &= a_n t^n + \ldots + a_1 t + a_0, \quad a_n \neq 0, \quad n \geq 1, \\
g_1(t) &= b_m t^m + \ldots + b_1 t + b_0, \quad b_m \neq 0, \quad m \geq 0, \\
f_2(t) &= c_r t^r + \ldots + c_1 t + c_0, \quad c_r \neq 0, \quad r \geq 1, \\
g_2(t) &= d_s t^s + \ldots + d_1 t + d_0, \quad d_s \neq 0, \quad s \geq 0,
\end{align*}
\]

are polynomials of $k[t]$, and such that $f_1(t)$ and $g_1(t)$, respectively $f_2(t)$ and $g_2(t)$ are relatively prime. Let us assume that $n \geq m$. Then necessarily $r > s$. Indeed, let ν be the valuation on $k(x)$ defined by the prime at infinity. Then $\nu(\beta) = (n - m) (\deg v_1(x) - \deg u_1(x)) = (r - s) (\deg v_2(x) - \deg u_2(x))$, and so by (2) and the assumption $n \geq m$ we infer that $r > s$, as claimed.

Moreover, we always can assume that $n > m$. Indeed, if $n < m$ then we change β to $1/\beta$. If $n = m$ we can change β to $1/(\beta - a)$, where $ab_n = a_n$. Hence in what follows we assume $n > m$ and, as we already proved, we have also $r > s$.

On subfields of $k(x)$
Now, the element β can be written as follows
\[
\beta = \frac{a_0 v_1(x)^n + \ldots + a_n u_1(x)^n}{(b_0 v_1(x)^m + \ldots + b_m u_1(x)^m) v_1(x)^{n-m}} = \frac{c_0 v_2(x)^r + \ldots + c_r u_2(x)^r}{(d_0 v_2(x)^s + \ldots + d_s u_2(x)^s) v_2(x)^{r-s}}
\]

and according to hypothesis (the polynomials $u_i(x)$, $v_i(x)$, $i = 1, 2$ and $f_i(t)$, $g_i(t)$, $i = 1, 2$, are relatively prime in pairs) one check that
\[
\begin{align*}
(a_0 v_1(x)^n + \ldots + a_n u_1(x)^n) &= c_0 v_2(x)^r + \ldots + c_r u_2(x)^r, \\
(b_0 v_1(x)^m + \ldots + b_m u_1(x)^m) v_1(x)^{n-m} &= (d_0 v_2(x)^s + \ldots + d_s u_2(x)^s) v_2(x)^{r-s}.
\end{align*}
\]

Then, according to Lemma 1.2, there exist elements $a'_0, \ldots, a'_n, c'_0, \ldots, c'_r$ in k, not all 0, such that
\[
a'_0 v_1(x)^n + \ldots + a'_n u_1(x)^n = c'_0 v_2(x)^r + \ldots + c'_r u_2(x)^r
\]

and such that $a'_n \neq 0$. But then necessarily $c'_r \neq 0$, since the degree of the polynomial in the left member of (4) is $n \deg u_1(x) = r \deg u_2(x)$ (see (2) and (3)). In the same manner we obtain that there exist elements $b'_0, \ldots, b'_m, d'_0, \ldots, d'_s$ in k, not all 0, such that
\[
(b'_0 v_1(x)^m + \ldots + b'_m u_1(x)^m) v_1(x)^{n-m} = (d'_0 v_2(x)^s + \ldots + d'_s u_2(x)^s) v_2(x)^{r-s}
\]

and such that $b'_m \neq 0 \neq d'_s$.

Furthermore, according to (4) and (5) we infer:
\[
\alpha = \frac{a'_0 + \ldots + a'_n x_1^n}{b'_0 + \ldots + b'_m x_1^m} = \frac{c'_0 + \ldots + c'_r x_2^r}{d'_0 + \ldots + d'_s x_2^s}.
\]

The hypotheses $n > m$, $r > s$ and also $a'_n \neq 0 \neq c'_r$, $b'_m \neq 0 \neq d'_s$ show that α is an element of $k(x)$ and $\alpha \notin k$. Since $\alpha \in k(x_1) \cap k(x_2)$ we see that $k(x_1) \cap k(x_2) \neq k$. Now it is easy to see that one has:
\[
[k(x) : k(\alpha_1)] \leq [k(x) : k(\beta)] \leq [k(x) : k(\alpha)]
\]

and so $[k(x) : k(\alpha)] = [k(x) : k(\alpha_1)]$. But then $[k(x) : k(\alpha_1) \cap k(\alpha_2)] \leq [k(x) : k(\alpha)] = [k(x) : k(\alpha_1)] \cap
Hence finally

\[k(x) : k(\alpha_1) \cap k(\alpha_2) = \left[\bar{k}(x) : \bar{k}(\alpha_1) \cap \bar{k}(\alpha_2) \right]. \]

Theorem 1.4. Let \(k \) be a field and let \(\alpha_1, \alpha_2, \alpha_3 \in k(x) \) be such that \(k(\alpha_1) \cap k(\alpha_2) = k(\alpha_3) \neq k \). Then \(\alpha_1 \) and \(\alpha_2 \) are separable elements if and only if \(\alpha_3 \) is a separable element.

Proof. It is enough to show that \(\alpha_1 \) and \(\alpha_2 \) separable imply \(\alpha_3 \) separable. Let:

\[\alpha_3 = \frac{f_1(\alpha_1)|g_1(\alpha_1) = f_2(\alpha_2)|g_2(\alpha_2)}{g_1(\alpha_1)} \]

where \(f_1(y) \) and \(g_1(y) \), respectively \(f_2(y) \) and \(g_2(y) \) are relatively prime polynomials of \(k[y] \). For the moment let us assume that \(k \) is a perfect field. If \(\alpha_3 \) is not separable, then one has (see Lemma 1.1):

\[\alpha_3' = \frac{f_1'(\alpha_1)g_1(\alpha_1) - f_1(\alpha_1)g_1'(\alpha_1)}{g_1(\alpha_1)} \alpha_1' = 0. \]

Because \(\alpha_3' \neq 0 \), by hypothesis, one sees that

(6) \[f_1'(\alpha_1)g_1(\alpha_1) = f_1(\alpha_1)g_1'(\alpha_1). \]

If \(g_1'(\alpha_1) \neq 0 \), then \(f_1(\alpha_1)|g_1(\alpha_1) = f_3'(\alpha_1)|g_3'(\alpha_1) \), a contradiction because \(\deg f_1'(y) < \deg f_1(y), \deg g_1'(y) < \deg g_1(y) \), and \(f_1(y), g_1(y) \) are relatively prime. Hence (6) imply \(f_1'(\alpha_1) = g_1'(\alpha_1) = 0 \) and so \(\alpha_3 = (\bar{f}_1(\alpha_1))^p, g_1(\alpha_1) = (\bar{g}_1(\alpha_1))^p \), \(p \) is the characteristic of \(k \), \(k \) being a perfect field. In the same manner one sees that \(f_2(\alpha_2) = (\bar{f}_2(\alpha_2))^p, g_2(\alpha_2) = (\bar{g}_2(\alpha_2))^p \) and so

\[\alpha_3 = \left(\frac{\bar{f}_1(\alpha_1)}{\bar{g}_1(\alpha_1)} \right)^p = \left(\frac{\bar{f}_2(\alpha_2)}{\bar{g}_2(\alpha_2)} \right)^p. \]

Let us denote \(\bar{\alpha}_3 = \bar{f}_1(\alpha_1)/\bar{g}_1(\alpha_1) \). Then \(\bar{\alpha}_3 \in k(\alpha_1) \cap k(\alpha_1) \), and obviously \([k(x) : k(\alpha_3)] > [k(x) : k(\bar{\alpha}_3)] \), a contradiction. Therefore \(\alpha_3' \neq 0 \) and so \(\alpha_3 \) is separable (Lemma 1.1).

Now let us assume that \(k \) is not necessarily perfect, and let \(\bar{k} \) be the algebraic closure of \(k \). Since \(k(\alpha_1) \cap k(\alpha_2) = k(\alpha_3) \neq k \), it follows that \(\bar{k}(\alpha_1) \cap \bar{k}(\alpha_2) = \bar{k}(\beta) \neq \bar{k} \), and \(\beta \) is a separable element. But
according to Theorem 1.3, one sees that $\bar{k}(\beta) = \bar{k}(x_3)$ and so x_3 is also a separable element, as claimed.

COROLLARY 1.5. Let k be a field and let x_1, x_2, x_3 be elements of $k(x)$ such that $k(x_1) \cap k(x_2) = k(x_3) \neq k$. Let us assume that the extensions $k(x)/k(x_i), i = 1, 2$ have the same degree of inseparability, namely p^s. Then the degree of inseparability of the extension $k(x)/k(x_3)$ is also p^s.

PROOF. Let $x_1 = f_1(x)/g_1(x)$, where $f_1(x), g_1(x)$ are relatively prime polynomials. The minimal polynomial of x relative to $k(x_3)$ is $h(t) = f_1(t) - x_1g_1(t) \in k(x_3)[t]$. Since the degree of inseparability of $k(x)/k(x_1)$ is p^s, we have $h(t) = \bar{h}(t')$, where $\bar{h}(t)$ is an irreducible polynomials of $k(x_3)[t]$. But then $f_1(t) = \bar{f}_1(t'), g_1(t) = \bar{g}_1(t')$. Hence one has: $x_1 = \bar{f}_1(x')/\bar{g}_1(x')$. In the same way we see that $x_2 = \bar{f}_2(x')/\bar{g}_2(x')$. The extensions $k(x_3)/k(x_1)$ and $k(x_3)/k(x_2)$ are separable by hypothesis; according to Theorem 1.4, the extension $k(x'/x_3)$ is also separable. Hence the degree of inseparability of the extension $k(x)/k(x_3)$ is also p^s, as claimed.

REMARK 1.6. Utilising the same idea as in the proof of Theorem 1.4, one can prove the following result: "Let k be a field and let $x_1, x_2, x_3 \in k(x)$, be such that $k(x_1) \cap k(x_2) = k(x_3) \neq k$. Let p^{s_i} be the degree of inseparability of the extension $k(x)/k(x_i), i = 1, 2$. Then the degree of inseparability of the extension $k(x)/k(x_3)$ is $\max(p^{s_1}, p^{s_2})$.

REMARK 1.7. Let \bar{k} be the algebraic closure of k. In ([3], Sect. 2, Proposition) is proves that if $f_1(x), f_2(x)$ are polynomials over k such that $\bar{k}(f_1) \cap \bar{k}(f_2) \neq \bar{k}$ and k is an infinite field, then $k(f_1) \cap k(f_2) \neq k$. Now according to Theorem 1.2, this result follows without any hypothesis on k.

At the end of this section we give the following result: (see [2], Added in Proof).

PROPOSITION 1.8. Let k be a field of characteristic $p > 0$. Let n be a natural number such that $n > p$ and $(n, p) = 1$. Then $k(x^n) \cap k(x^n + x^p) = k$.

PROOF. According to Theorem 1.3 we can assume that k is perfect. Let us assume that $k(x^n) \cap k(x^n + x^p) \neq k$. This means (see [3], Lemma 2) that there exist two polynomials $f(t), g(t) \in k[t]$ such that $f(x^n) = g(x^n + x^p)$ and f and g have minimal degree > 1 with this
property. Now passing to derivatives one has:

\[nx^{n-1}f'(x^n) = nx^{n-1}g'(x^n + x^p) \]

and so \(f'(x^n) = g'(x^n + x^p) \), since \((n, p) = 1\). Let us remark that the polynomial \(g(t) \) does not contain the terms of degree 1 (since in this case \(g(x^n + x^p) \) contains \(x^p \) and \(f(x^n) \) does not contain \(x^p \)). Thus, by (7) one check that \(f'(t) = g'(t) = 0 \) (otherwise the minimality of the degree of \(f(t) \) is violated). Therefore \(f\) and \(g \) are \(p \)-powers in \(k[t] \), and also the minimality of the degree of \(f(t) \) is violated. The contradiction obtained shows that \(k(x^n) \cap k(x^n + x^p) = k \), as claimed.

2. Remarks on valuations.

Theorem 2.1. Let \(k \) be an algebraically closed field. Let \(k(\alpha_i), i = 1, 2, 3, \) be intermediate subfields of \(k(x) \) such that \(k(\alpha_3) \cap k(\alpha_1) \subseteq k(\alpha_2) \). Let \(v \) be a valuation on \(k(x) \); denote by \(v_i \) the restriction of \(v \) to \(k(x_i) \) and let \(e_i \) be the ramification index of \(v \) relative to \(v_i \), \(i = 1, 2, 3 \). Denote by \(p \) the characteristic of \(k \). Then:

\[e_3 = \begin{cases} [e_1, e_2] & \text{if } p = 0 \\ p^{e}[e_1, e_2], & \text{if } p > 0 \end{cases} \]

Proof. Case 1. Assume that \(\alpha_1 \) and \(\alpha_2 \) are separable elements. Then, according to Theorem 1.4 \(\alpha_3 \) is also a separable element. Let \(K \) be the completion of \(k(x) \) relative to the valuation \(v \) (see [2], Ch. 3), and let \(K_i \) be the closure of \(k(\alpha_i) \) into \(K \). It is easy to see that \(K_i \) is in fact isomorphic to the completion of \(k(\alpha_i) \) relative to the valuation \(v_i \), \(i = 1, 2, 3 \). Also it is easy to check that \(K/K_3 \) is separable. Let \(L \) be a finite extension of \(K \) which is Galois over \(K_3 \). Denote \(G = \text{Gal}(L/K_3) \) and \(G_i = \text{Gal}(L/K_i), \ i = 1, 2 \). From the general theory of ramification groups (see [5], ch. IV) one knows that \(G \) is the semi-direct product between a \(p \)-group \(H \) and a cyclic group \(\bar{G} \), such that \(|\bar{G}|, p \) = 1; moreover, \(H \) is a normal subgroup of \(G \). Let us write \(G = H \bar{G} \). In the same way we see that \(G_i = H_i \bar{G}_i, \ i = 1, 2, \) i.e. \(G_i \) is the semidirect product between a \(p \)-group \(H_i \) and a cyclic group \(\bar{G}_i \) whose order is prime to \(p \). Now, one has \(H_i \subseteq H, \ i = 1, 2, \) since \(H \) is the unique \(p \)-Sylow subgroup of \(G \). Let \(\varphi: G \to G/H \cong \bar{G} \) be the
canonical morphism. Since \(K_1 \cap K_2 = K_3 \), one sees that \(G_1 \) and \(G_2 \) generate \(G \), and so \(\varphi(G_1) \simeq \bar{G}_1 \) and \(\varphi(G_2) \simeq \bar{G}_2 \) generate \(G/H \simeq \bar{G} \).

Now, since \(\bar{G} \) is cyclic, one sees that \(|\bar{G}| = [\varphi(G_1)], |\varphi(G_2)| = [\bar{G}_1], |\bar{G}_2| \) and so \(|G| = |H| \cdot |\bar{G}| = |H||\bar{G}_1|, |\bar{G}_2| = [H||\bar{G}_1], |H||\bar{G}_2|] \). Furthermore, since \(H \subset H \), one sees that \(|H| = |H||t_i| \), where \(t_i \) is a power of \(p \); hence

\[
|G| = |H||\bar{G}_1|, |H||\bar{G}_2| = [t_1|H_1||\bar{G}_1|, t_2|H_2||\bar{G}_2] = [t_1|G_1|, t_2|G_2|].
\]

On the other hand, one has \(|G| = [L:K_3] = [L:K][K:K_3] = [L:K]e_3 \), and also, \(|G_i| = [L:K]e_i \), \(i = 1, 2 \). Therefore one has \(|G| = [L:K]e_3 = [t_1|G_1|, t_2|G_2| = [t_1[L:K]e_1, t_2[L:K]e_2] = [L:K]t_1e_1, t_2e_2 \), and so \(e_3 = [t_1e_1, t_2e_2] \). Now, since \(t_1 \) and \(t_2 \) are powers of \(p \), we get that \(e_3 = p^s(e_1, e_2) \), as claimed.

Case 2. Let us assume that \(\alpha_i \) are not separable elements, but the extensions \(k(x)/k(\alpha_i) \), \(i = 1, 2 \), have the same degree of inseparability, namely \(p^s \). Then \(k(x^{p^s})/k(\alpha_i) \), \(i = 1, 2 \) are separable extensions and so the proof can be reduced to Case 1.

Case 3. \(\alpha_1 \) and \(\alpha_2 \) are not separable elements of \(k(x) \) and the degrees of inseparability \(p^s, p^{s_1} \), of \(k(X)/k(\alpha_1), k(x)/k(\alpha_2) \) are not equal. Let us assume that \(e_1 < e_2 \). If we change \(x \) to \(x^{p^s} \), we can assume that \(\alpha_1 \) is separable and \(\alpha_2 \) has degree of inseparability \(p^s, s > 1 \). Since \(k \) is perfect, one has \(\alpha_2 = \beta^{p^s} \). Now,

\[
\alpha_3 = A(\alpha_1)/B(\alpha_1) = C(\alpha_2)/D(\alpha_2)
\]

where \(A(t) \) and \(B(t) \), respectively \(C(t) \) and \(D(t) \) are relatively prime polynomials of \(k[t] \). Hence, passing to derivatives, one has:

\[
\alpha'_3 = \frac{A'(\alpha_1)B(\alpha_1) - A(\alpha_1)B'(\alpha_1)}{B(\alpha_1)^2} \alpha'_1 = \frac{C'(\alpha_2)D(\alpha_2) - C(\alpha_2)D'(\alpha_2)}{D(\alpha_2)^2} \alpha'_2 = 0
\]

and so \(A'(\alpha_1)B(\alpha_1) - A(\alpha_1)B'(\alpha_1) = 0 \), since \(\alpha'_1 \neq 0 \).

This means that \(A'(\alpha_1) = B'(\alpha_1) = 0 \) (see the proof of Lemma 1.1), and so \(A(\alpha_1) = (A(\alpha_1))^p \) and \(B(\alpha_1) = (B(\alpha_1))^p \). By recurrence it follows that \(A(\alpha_1) = (\bar{A}(\alpha_1))^{p^s} \) and \(B(\alpha_1) = (\bar{B}(\alpha_1))^{p^s} \). Therefore one obtains:

\[
\alpha_3 = \frac{A(\alpha_1)}{B(\alpha_1)} = \frac{(\bar{A}(\alpha_1))^{p^s}}{(\bar{B}(\alpha_1))^{p^s}} = \frac{C(\alpha_2)}{D(\alpha_2)} = \frac{C(\beta^{p^s})}{D(\beta^{p^s})} = \left(\frac{\bar{C}(\beta^{p^s})}{\bar{D}(\beta^{p^s})} \right)^{p^s}.
\]
Denote
\[\beta_3 = \frac{\mathcal{A}(\alpha_1)}{B(\alpha_1)} = \frac{\mathcal{C}(\beta_3)}{D(\beta_3)}. \]

Then \(\alpha_1 \) and \(\beta_1 \) are separable elements and so if we denote by \(\bar{e}_2 \) resp. \(\bar{e}_3 \) ramification index of \(v \) relative to \(k(\beta_2) \) resp. \(k(\beta_3) \) respectively, then by case 1 one has \(\bar{e}_3 = p^s[\bar{e}_1, \bar{e}_2] \).

Now we remark that \(k(x)/k(x^p) \) is a purely inseparable extension and, for every valuation \(v \) on \(k(x) \), the ramification index relative to \(k(x^p) \) is just \(p^s \). Therefore one has \(e_3 = \bar{e}_3 p^s \) and \(e_2 = \bar{e}_2 p^s \), and so \(\bar{e}_3 = p^s[\bar{e}_1, \bar{e}_2] = p^s[p^s e_1, p^s \bar{e}_2] = p^s[p^s e_1, e_2] \). Finally, we remark that \([p^s e_1, e_2] = p^s[\bar{e}_1, e_2] \), where \(0 < s' < s \), and so \(e_3 = p^s[p^s e_1, e_2] = p^{s+s'}[e_1, e_2] = p^s[e_1, e_2] \). The proof is complete.

Corollary 2.2. Let \(k \) be a field of characteristic \(p \) and let \(k(\alpha_i), i = 1, 2, 3, \) be intermediate fields such that \(k(\alpha_1) \cap k(\alpha_2) = k(\alpha_3) \). Let \(v \) be a valuation on \(k(x) \) and let \(e_i \) be the ramification index of \(v \) relative to \(k(\alpha_i), i = 1, 2, 3. \) Then \(e_3 = [e_1, e_2] \) if \(p = 0 \), and \(e_3 = p^s[e_1, e_2] \) with \(e > 0 \), if \(p > 0 \).

Proof. Let \(\bar{k} \) be the algebraic closure of \(k \) and let \(\bar{v} \) be a valuation of \(\bar{k}(x) \) which extend \(v \). Let \(v_i \) (resp. \(\bar{v}_i \)) be the restriction of \(v \) (resp. of \(\bar{v} \)) to \(k(\alpha_i) \) (resp to \(\bar{k}(\alpha_i) \)). Let \(e_i \) be the ramification index of \(\bar{v} \) relative to \(v_i \), \(p^s \) the ramification index of \(\bar{v} \) relative to \(v \) and \(p^s \) the ramification index of \(\bar{v} \) relative to \(v_i \), \(i = 1, 2, 3 \). Then one has \(\bar{e}_i = e_i p^s, i = 1, 2, 3 \) and so the natural numbers \(e_i \) and \(\bar{e}_i \) have the same \(p \)-regular parts (i.e. the greatest divisor which is relatively prime to \(p \)). According to Theorem 2.1, one sees that \(\bar{e}_3 = p^s[\bar{e}_1, \bar{e}_2] \), and so the \(p \)-regular part of \(e_3 \) is in fact the l.c.m. of \(p \)-regular parts of \(e_1 \) and \(e_2 \). Now, since \(e_1|e_3 \) and \(e_2|e_3 \), one sees that \(e_3 = h[e_1, e_2] \) and necessarily \(h \) is of the form \(p^s \), as claimed.

Corollary 2.3. The notations and hypotheses are as in Corollary 2.2. Let \(k(\alpha_4) \) be the subfield of \(k(x) \) generated by \(k(\alpha_1) \) and \(k(\alpha_2) \). Denote by \(e_4 \) the ramification index of \(v \) relative to \(k(\alpha_4) \). If \(e_3 \) is relatively prime to \(p \), then \(e_4 = (e_1, e_4) \).

Proof. The notations are as in the proof of Theorem 2.1. The extensions \(K/K_2 \) is tamely ramified, and so is cyclic, because \(k \) may be assumed algebraically closed. Therefore \(G_1 \) and \(G_2 \) are subgroups of a cyclic group. It is easy to see that \(\text{Gal}(K/K_4) = G_1 \cap G_2 \), and so \(|G_1 \cap G_2| = e_4 = (|G_1|, |G_2|) = (e_1, e_4) \).
COROLLARY 2.4. ([3], Section 2). Let \(k \) be a field of characteristic 0 and let \(\alpha_1, \alpha_2, \alpha_3 \) be polynomials in \(k[x] \) such that \(k(\alpha_1) \cap k(\alpha_2) = k(\alpha_3) \not= k \). Then \(\deg \alpha_1 = [\deg \alpha_1, \deg \alpha_2] \).

The proof follows according to Corollary 2.2, considering the valuation on \(k(x) \) associated to the prime at infinity.

REMARK 2.5. Let \(k \) be a field of characteristic 3 and let \(\alpha_1 = 2x^2 + x; \alpha_2 = 2x^2 + 2x \). Then \(k(\alpha_1) \cap k(\alpha_2) = k(\alpha_3) \) where \(\alpha_3 = 2x^2(x^2 + 2)^2 \).

Indeed, \(k(x)/k(\alpha_i) \) is a Galois extension whose Galois group is \(G_i = \{1, \sigma_i\}, \ i = 1, 2, \) where \(\sigma_1(x) = 2x + 1, \sigma_2(x) = 2x + 2 \). The subgroup \(G \) of \(\text{Aut}(k(x)) \) generated by \(G_1 \) and \(G_2 \) is actually isomorphic to the symmetric group \(\Sigma_3 \) (in fact, \(G \) has as elements \(1, \sigma_1, \sigma_2, \sigma_1\sigma_2, \sigma_2\sigma_1, \sigma_1\sigma_2\sigma_1 \)) and so is a group with 6 elements. This shows that in Theorem 2.1, the factor \(p^a \) does not be generally dropped.

3. Galois polynomials.

Let \(k \) be a field and let \(\alpha \in k(x) \). We shall say that \(\alpha \) is a **Galois element** if \(k(x)/k(\alpha) \) is a Galois extension.

THEOREM 3.1. Let \(f(x) \) be a Galois polynomial of \(k(x) \) such that \(\deg f(x) \) and \(\text{char } k \) are relatively prime. Then the extension \(k(x)/k(f) \) is cyclic, i.e. \(\text{Gal}(k(x)/k(f)) \) is a cyclic group.

In proving this result, we shall use the following Lemma:

LEMMA 3.2. Let \(G \) be a finite group. The following assertions are equivalent:

1) \(G \) is a cyclic group;

2) if \(H_1, H_2 \) are subgroups of \(G \), then \(|H_1 \cap H_2| = (|H_1|, |H_2|) \).

PROOF of the LEMMA. Since implication 1) \(\Rightarrow \) 2) is obvious, we shall prove only the reverse implication 2) \(\Rightarrow \) 1). We shall use mathematical induction, relative to \(|G| \).

Let \(p \) be the smallest prime number which divides \(|G| \), and let \(g \in G \) be such that \(g^p = 1 \), i.e. \(\text{ord } g = p \). Then, for all \(a \in G \), \(\text{ord } (aga^{-1}) = p \) and so, by hypothesis \((g) \cap (aga^{-1}) = (g) = (aga^{-1}) \). This means that every element of \(G \) conjugate to \(g \) belongs to \((g) \), and so \(t \), the number of elements of \(G \), which are conjugate to \(g \), is at most \(p - 1 \). Since \(t/|G| \), it follows that \(t = 1 \), and so \(C(g) \), the
centralizer of g, is necessarily G, so that g is in the center of G. Let $\tilde{G} = G/\langle g \rangle$. Since every subgroup of \tilde{G} is of the form $\tilde{H} = H/\langle g \rangle$, where H is a subgroup of G which contains g, it follows that \tilde{G} satifies also the hypothesis $b)$, and so it is cyclic. Now let $h \in G$ be such that $h\tilde{g}$, its image in \tilde{G}, is a generator of \tilde{G}. Then one has $\text{ord}(h) = |\tilde{G}|/p$, or $\text{ord}(h) = |G|$. In the first case, if $(p, \text{ord}(h)) = 1$, it follows that hg is a generator of G; if p divides $\text{ord}(h)$, then $(g) \subset (h)$, by hypothesis, and so $\text{ord}(h) > \text{ord}(\tilde{h})$, a contradiction. Hence G is a cyclic group as claimed.

Now, we are able to give the proof of Theorem 3.1.

According to ([6], Theorem 14) if K is an intermediate field, $k(f) \subset K \subset k(x)$, then $K = k(g)$, where g is a polynomial in x. If K_1, K_2 are two intermediate fields, then $K_1 = k(f_i)$, and so if $G_i = \text{Gal}(k(x)/k(f_i))$, then $|G_i| = \text{deg} f_i(x)$, $i = 1, 2$. Let K be the subfield of $k(x)$ invariate by $G_1 \cap G_2$. One has $K = k(g)$, where $\text{deg} g(x) = \text{deg} f_1(x), \text{deg} f_2(x)$ (see Theorem 2.3 and Corollary 2.3), so that

$$|G_1 \cap G_2| = \text{deg} g(x) = (\text{deg} f_1(x), \text{deg} f_2(x)) = (|G_1|, |G_2|).$$

Finally, according to Lemma 3.2 one sees that G is cyclic, q.e.d.

Remark 2.5 shows that Theorem 3.1 is not generally valid without the assumption that $\text{deg}(f)$ and $\text{char} k$ are relatively prime numbers.

Remark 3.3. The above result allows us to describe all polynomials of $k(x)$ which are Galois. They are invariant under affine automorphisms of $k(x)$ associated to matrices

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \quad a \neq 1$$

where a is a root of unity.

4. Remarks on structure of some subfields of $k(x)$.

Let k be a field and denote by p the characteristics of k. Let $f(x)$ be a polynomial such that $(\text{deg} f, p) = 1$, in case $p \neq 0$. If $k(f) \subset K \subset k(x)$ is an intermediate subfield, then, according to Noether's Theorem (see [6], Theorem 14) one sees that $K = k(g)$ where $g(x)$ is a polynomial. Let $k(f) \subset k(f_i) \subset k(x)$, $i = 1, 2$. According to Corollary 2.2 and Corollary 2.3 it follows:
(A) \(\deg f_1 \mid \deg f_2 \), if and only if \(k(f_2) \subseteq k(f_1) \). Particularly, \(k(f_1) = k(f_2) \) if and only if \(\deg f_1 = \deg f_2 \).

(B) \((\deg f_1, \deg f_2) \neq 1 \) if and only if \(k(f_1, f_2) \neq k(x) \). Particularly, \(k(f_1, f_2) = k(x) \) if and only if \((\deg f_1, \deg f_2) = 1 \).

A subfield \(K \) of \(k(x) \), \(K \neq k \) is called indecomposable if it is an indecomposable element in the lattice of intermediate fields between \(k \) and \(k(x) \), i.e. from \(K = K_1 \cap K_2 \), it follows \(K_1 = K \) or \(K_2 = K \). We shall show that under some conditions a subfield \(K \) of \(k(x) \) is a reduced intersection of indecomposable subfields, in a unique way.

Theorem 4.1. Let \(f(x) \) be a nonconstant polynomial such that \((\deg f(x), p) = 1 \) in case \(p \neq 0 \). Then \(k(f) \) can be represented in a unique way as a reduced intersection of indecomposable subfields of \(k(x) \).

Proof. It is easy to see, using induction on \(\deg f \), that \(k(f) \) can be represented as a reduced intersection of indecomposable subfields. In proving that the reduced intersection is also unique we shall utilize induction on \(\deg f \).

When \(\deg f = 1 \), or when \(k(f) \) is indecomposable, the proof is clear. Suppose \(\deg f > 1 \) and assume that the result is valid for all polynomials \(g(x) \) such that \((\deg g, p) = 1 \) and \(\deg f > \deg g \). Suppose \(k(f) \) is decomposable and let:

\[
k(f) = k(f_1) \cap \ldots \cap k(f_n) = k(g_1) \cap \ldots \cap k(g_s)
\]

be two representations of \(k(f) \) as reduced intersections of indecomposable fields. According to Corollary 2.2 one has:

\[
\deg f = [\deg f_1, \ldots, \deg f_n] = [\deg g_1, \ldots, \deg g_s].
\]

We shall divide the proof in several steps.

I) Assume \(k(f_i), 1 \leq i \leq n \) and \(k(g_j), 1 \leq j \leq s \) are maximal subfield of \(k(x) \). In this case the relation (9) becomes: \(\deg f = \deg f_1 \ldots \deg f_n = \deg g_1 \ldots \deg g_s \). This means that for every \(i, 1 \leq i \leq n \), there exists \(j, 1 \leq j \leq s \) such that \((\deg f_i, \deg g_j) \neq 1 \). But then, according to (B), one has \(k(f_i) = k(g_j) \); since both intersections of (8) are reduced, the unicity follows in an obvious manner.

II) Assume \(k(f_i) \) is not a maximal subfield of \(k(x) \). According to (9) we may assume that \((\deg f_1, \deg g_i) = d > 1 \). Then by (B),
there exists a maximal subfield $L = k(h)$ of $k(x)$ such that $k(f_1, g_1) \subseteq L$, and obviously $k(f_1) \neq L$, since $k(f_1)$ is not maximal, by hypothesis. Then one has:

\[(10) \quad k(f) = k(f_1) \cap (k(f_2) \cap L) \cap \ldots \cap (k(f_n) \cap L) =
\]

\[= k(g_1) \cap (k(g_2) \cap L) \cap \ldots \cap (k(g_s) \cap L).\]

Assert that we can choose L such that the first intersection of the equality (10) give a representation of $k(f)$ as a reduced intersection of subfields of L. Two situations may occur:

\begin{enumerate}
 \item[(a)] $(\deg f_1, \deg f_i) = 1$, for all $i, 2 < i < n$. In this case the intersection:
 \[(11) \quad k(f) = k(f_1) \cap (k(f_2) \cap L) \cap \ldots \cap (k(f_n) \cap L)\]
 is reduced. Indeed, if there exists an $i, 2 < i < n$ such that $k(f_i) \cap L$ is superflue in intersection (11), then, since $k(f_i) \subseteq L$, it follows that $k(f_i)$ is superflue in intersection (8), a contradiction.

 If we assume that $k(f_i)$ is superflue in (8), then, according to Corollary 2.2 one has $\deg f = [\deg h, \deg f_2, \ldots, \deg f_s]$. But then, condition (9) and relation $\deg f_1 > \deg h$ ($k(f_1)$ is not maximal) led us to a contradiction.

 \item[(b)] There exists an $i, 2 < i < n$, such that $(\deg f_1, \deg f_i) = d > 1$. (We may assume that $i = 2$). Then according to (9) it follows that, for example, $(d, \deg g_1) > 1$. Thus according to (B), there exists a maximal subfield $L = k(h)$ of $k(x)$ such that $k(f_1, f_2, g_1) \subseteq L$. For that L, the intersection (11) is reduced.

 Furthermore, in both situations $a)$ or $b)$ one has:

 \item[(c)] the intersection

 \[(12) \quad k(f) = k(g_1) \cap (k(g_2) \cap L) \cap \ldots \cap (k(g_s) \cap L)\]

 is reduced, or

 \item[(d)] $k(g_1) = L$ and $(\deg g_1, \deg g_j) = 1, 2 < j < 1$. (We observed that in this last case, as int he proof of $a)$ or $b)$, for $j > 2, k(g_j) \cap L$ cannot be dropped, and so the intersection $(k(g_2) \cap L) \cap \ldots \cap (k(g_s) \cap L)$ is reduced).

 We consider each situation separately.
e) Assume conditions a) or b) and c) are satisfied and all terms of reduced intersections (11) and (12) are indecomposable subfields in \(L = k(h) \). But then, according to the induction hypothesis (since \([L : k(f)] < \deg f\), and, as one easily sees, \(f = t(h) \), where \(t(y) \) is a polynomial of \(k[y] \), such that \(\deg t(y) < \deg f(x) \)), for all \(i, 1 < i < n \) there exists a unique \(j, 1 < j < n \) such that \(k(f_i) \cap L = k(g_j) \cap L \). Then, according to (B), Corollary 2.2 and the hypothesis that \(k(f_i), k(g_i) \) are indecomposable subfields, it follows that \(k(f_i) \subseteq L \) if and only if \(k(g_j) \subseteq L \). Hence, in this case, \(k(f_i) = k(g_j) \). If \(k(f_i) \cap L = k(g_j) \cap L \), and if \(k(f_i) \nsubseteq L \), then \((\deg f_i, \deg h) = 1 \), \((\deg g_j, \deg h) = 1 \), and according to Corollary 2.2, one has \(\deg f_i = \deg g_j \), i.e. \(k(f_i) = k(g_j) \) (see (B)). Finally it follows that \(n = s \) and (up to a renumerotation) \(k(f_i) = k(g_i) \) \(1 < i < n \), i.e. the unicity of \(k(f) \) as a reduced intersection of indecomposable subfields is proved.

f) Assume conditions a) or b) and d), are satisfied and all terms of the corresponding reduced intersections:

\[
(13) \quad k(f) = k(f_1) \cap (k(f_2) \cap L) \cap ... \cap (k(f_n) \cap L) = (k(g_2) \cap L) \cap ... \cap (k(f_s) \cap L)
\]

are indecomposable subfields of \(L \).

Now we may utilise again the induction hypothesis, and thus there exists \(j > 2 \) such that \(k(f_j) = k(g_j) \cap L \), a contradiction, because \(k(f_i) \) is indecomposable and \((\deg g_j, \deg h) = 1 \) by hypothesis.

g) Assume that conditions a) or b) and c) or d) are satisfied and not all terms of (11) or (12) are indecomposable subfields of \(L \). For example, assume that \(k(f_i) \cap L \) is decomposable in \(L \); this means that \(k(f_i) \nsubseteq L \). If \(k(f) \) is strictly included in \(k(f_i) \cap L \) it follows, according to the induction hypothesis, that \(k(f_i) \cap L \) is a reduced intersection of indecomposable subfields and another representation cannot exist, which contradicts the assumption that \(k(f_i) \cap L \) is decomposable in \(L \). The same considerations are valid for \(k(g_i) \cap L \). Hence, if one of the terms of the intersection (11), say \(k(f_2) \cap L \), is not indecomposable in \(L \), then necessarily one has:

\[g' \quad k(f) = k(f_2) \cap L = k(f_1) \cap k(f_2), \text{ since } k(f_1) \subseteq L. \]

Also, if we assume that one of the terms of intersection (12), say \(k(g_2) \cap L \), is not indecomposable in \(L \), then necessarily one has:
First we shall examine the situation $g')$.

Thus necessarily $k(f_2) \notin L$, because it was assumed that $k(f)$ is decomposable. Let M be a maximal subfield of $k(x)$ which contains $k(f_2)$. If $M = k(f_2)$ then $k(f_2) \cap M = L \cap M$. If $k(f_1) \subseteq M$, then $k(f_1) = L \cap M$, a contradiction, because $L \neq M$ and $k(f_1)$ is indecomposable. If $k(f_1) \notin L$, then $(\deg f_1, \deg m) = 1$, where $M = k(m)$, and so, according to Corollary 2.2, it follows $\deg f_1 = \deg h$ ($L = k(h)$), i.e. $k(f_1)$ is maximal, a contradiction.

Now, let us assume that $k(f_2) \neq M$; then

\begin{equation}
(14) \quad k(f) = k(f_2) \cap (k(f_1) \cap M) = k(f_2) \cap (L \cap M)
\end{equation}

give a representation of $k(f)$ as an intersection of subfields of M. We assert that (14) is a reduced intersection. Indeed, if $L \cap M \supseteq k(f_2)$, then it follows $k(f) = k(f_2)$, a contradiction, because $k(f)$ is not indecomposable. If $k(f_2) \supseteq k(f_1) \cap M$, i.e. if $k(f) = k(f_1) \cap M = L \cap M$, then as above we come to the conclusion that $k(f_2) = L$ i.e. $k(f_1)$ is maximal, again a contradiction. Hence (14) is a reduced intersection, as claimed.

Furthermore, we assert that $L \cap M$ and $k(f_1) \cap M$ are idemcomposable subfields of M. Now we shall utilise the induction hypothesis, since $[h(x): L \cap M] < [k(x): k(f)] = \deg f$ (because (14) is a reduced intersection). Therefore, again, according to induction hypothesis one has: $L \cap M = k(f_1) \cap M$ and so $L = k(f_1)$; a contradiction. Hence the situation g') is impossible. Now we examine the situation g''.

One has $k(f) = k(g_2) \cap L = k(g_2) \cap k(g_1)$, and as in the case g'), we come to the situation $k(g_1) = L$, i.e. $k(g_1)$ is a maximal subfield, hence $k(f) = L \cap k(g_2)$. If $k(g_2) = M$ is a maximal subfield, then

$$
k(f) = L \cap M = k(f_1) \cap k(f_2) \cap \ldots \cap k(f_n),
$$

and because $(\deg f_1, \deg m) = 1$, where $k(m) = M$, it follows necessarily $k(f_1) = L$, $k(f_2) = M$, i.e. $k(f_1)$ is a maximal subfield, a contradiction.

Now, if $k(g_2)$ is not a maximal subfield, we come to the case, already examined, with f_1 replaced to g_2. Hence we deduce that the unicity of representation (8) may be shown inductively out, possible, the case
when one has:

\[k(f) = k(f_1) \cap M = L \cap k(g_2) \]

where \(M, L \) are maximals, \(k(f_1) \subset L, k(f_1) \) not maximal, \(k(g_2) \subset M, k(g_2) \) not maximal. Let \(M = k(m), L = k(h), m, h \in k[x] \).

In this last situation one has \((\deg f_1, \deg m) = 1 = (\deg g_2, \deg h)\), otherwise \(k(f) \) will be indecomposable (see (B)). It is clear that, then one has \(\deg f_1 = s \deg h, \deg g_2 = s \deg m, \) where \(s > 1 \). Therefore, according to (B) there exists a maximal subfields \(S \) of \(k(x) \) such that \(k(f_1, g_2) \leq S \). But, then,

\[k(f) = k(g_2) \cap (L \cap S) = k(f_1) \cap (M \cap S). \]

It is easy to see that:

\(h \) both therms in the representation (16) are reduced intersections of indecomposable subfields of \(S \) (because of the induction hypothesis). In this case we utilise induction hypothesis, relative to \([S : k(f)]\), to derive the unicity of (16) and also of (9).

1) \(k(f) = L \cap S \). It follows that \(k(f_1) = L, i.e. k(f_1) \) is maximal; a contradiction.

2) \(k(f) = M \cap S \). It follows that \(k(g_2) = M, \) also a contradiction. The proof is complete.

Remark 4.2. Let \(k \) be a field of characteristic 3 and consider the polynomial \(f(x) = 2x^2(x^2 + 2)^2 \). It is easy to see that the field \(k(f) \) cannot be uniquely represented as a reduced intersection of indecomposable subfields of \(k(x) \). Indeed, (see Remark 2.5) \(k(x)/k(f) \) is a Galois extension and so the intermediate subfields are in one-to-one correspondence to subgroups of \(\text{Gal}(k(x)/k(f)) = \Sigma_3 \). Now, in \(\Sigma_3 \) there exist distinct subgroups \(H_1, H_2 \) of order two, and a subgroup \(H_3 \) of order three such that \(H_1 H_3 = H_2 H_3 = \Sigma_3 \). If \(L_i \) is the subfield of \(k(x) \) invariate by \(H_i, i = 1, 2, 3, \) then \(L_1 \cap L_3 = L_2 \cap L_3 = k(f) \) and obviously \(L_1 \neq L_2 \).

REFERENCES

On subfields of $k(x)$

