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Complex Interpolation for 2N Banach Spaces.

GIOVANNI DORE - DAVIDE GUIDETTI - ALBERTO VENNI (*)

SUNTO - Si definiscono spazi d’interpolazione tra 2N spazi di Banach, con il
metodo complesso. Gli spazi sono definiti a partire da spazi di funzioni
olomorfe sulla polistriscia di CN che siano integrali di Poisson di oppor-
tuni dati al bordo. Vengono dinlostrati un teorema di densita e alcune
proprieta che collegano questo metodo con il metodo di Calder6n. Infine
viene data una caratterizzazione degli spazi duali.

1. Introduction.

The aim of this paper is to give an extension involving 2N Banach
spaces and N parameters of the complex method of interpolation for
Banach spaces introduced by A. P. Calder6n in [3].

In the subsequent years other generalizations were given by several
authors: we recall Favini [9], who employs N -~-1 spaces and N param-
eters developing a definition of Lions [17]. S. G. Krein and L. I. Niko-
lova [18] [14] [15] constructed interpolation spaces for finite or infinite
families depending on a complex parameter. In this connection we

quote also the papers [4] [5] [6] in which they describe a general theory
of complex interpolation for infinite families of Banach spaces with
one complex parameter varying on a simply or multiply connected
domain.

(*) Indirizzo degli AA. : Dipartimento di Matematica, Piazza di Porta
S. Donato 5, 40127 Bologna, Italia.
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The method involving 2N spaces and N parameters goes back to
the papers of Fernandez who deals with the real case in [10] [11] [12],
with the complex case in [13], and with their connection in [2]. In the
two last papers they sketch a theory following a pattern very similar
to the pattern of Calder6n, but the crucial inequality 4.4. (2) of [2]
is wrong, as we prove in our counterexample 5.5. It is just the lack
of that inequality, without which part of Calderon’s theory cannot
be developed, which led us to give a new definition of the interpolation
spaces, starting from holomorphic functions on the polystrip S~T that
are not supposed to be continuous at the boundary but are Poisson
integrals of functions belonging to suitably weighted Lq spaces.

The paper is arranged in the following way. In § 2 we obtain some
inequalities about Poisson kernels and some technical results about
Poisson integrals. In § 3 we define the interpolation spaces for a com-
patible family (Ai) as the spaces of values in the points of 
assumed by holomorphic functions on (]0,1[ + iR)N which can be
expressed as Poisson integrals of functions of type Aj), where
e is a weight function equivalent to the Poisson kernel. In ~ 4 we
prove the density of a certain class of  good functions » in the function
spaces introduced in the previous section. This result is repeatedly
employed in § 5 to show the density of n Aj in the interpolation spaces

j

and other properties. In particular zvc study the connection between
our method of interpolation and Cald?r6n’s; we show that our inter-
polation spaces are embedded in iterated interpolation spaces of Cal-
der6n. A counterexample shows also that in general this inclusion is
proper. In 9 6 we prove some results of duality.

2. Poisson kernels and Poisson integrals.

In this section we give some definitions, deduce some estimates
about Poisson kernels for the strip and study some properties of
Poisson integrals. We establish the following notations which we keep
from now on.

.N is a positive integer, and when a e R (a ~ 0) ~ is the N-tuple (a, ... , oc).
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These are the Poisson kernels for the strip ~S’.

Moreover q E [1, oo] (unless a more restrictive

condition is required) and q’ is its conjugate exponent (i.e. 

The weight is defined by
C = 1

Remark that = 1. When X is a Banach space and 
RN

Le(RN, X) is the Banach space of strongly measurable functions

For nota-

tional convenience we shall also write Lae when q is allowed to reach
00: however in the case q == 00 it is understood that this symbol
denotes simply the space L°° (without weight).

We observe that from the well-known identity

it follows that

and later wc shall refer to this inequality even without explicit mention.
We have also

In fact
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PROPOSITION 2.1. T he following statements hold:

PROOF. (2.3), (2.4), (2.5), (2.6) are trivial. (2.7) Obviously

and the middle term is exactly P;(a, s) IP~ ( 2, s). Now it is sufficient
to observe that the left term is an increasing function of 181 and the
right one is a decreasing function of 

(2.8) follows from (2.7) (with .M’= 0) and (2.1).
Remark that from (2.3) it follows that ’

i(

In the remaining part of this section, X is a fixed Banach space.

PROPOSITION 2.2..Let f E X). Then E JN, a E IN, s ERN,
- c~) f(d) da~ exists and define8 a continuous function of a + is E SN

RN
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which is harmonic in every couple of variables (ak, 

PROOF. By the estimate (2.8) we have

This ensures the existence of the integral, gives the required growth
estimate, and allows us to employ the dominated convergence theorem
to prove continuity. Moreover we can check that the function (ah, s~) 1-7
1-7 iPj(a, s - a) f (a) da has the mean value property by changing the
RN

order of integration and exploiting the same property of Pj.

LEMMA 2.3. Let continuous function, harmonic on S.
Suppose that 38 E ]0,1[, 0 &#x3E; 0 such that ’if a -f- is E S

PROOF. Suppose that f is real-valued. In this case we prove that
Vz E S f (z) sup f (~). Since - f has the same properties as f, this will

EEbS

prove the statement R.

Then g is harmonic, and its g.l.b. on ~S is positive. Vq E R+

Therefore, if we fix z = a -E- is E S and M is large enough, by the
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maximum principle on [0, 1] -[- i[- .M, MI,

Now we suppose that f is complex-valued. Obviously Re f , Im f fulfil
the assumptions of the theorem. Therefore

Finally, if f has values in the Banach space X, then

LEMMA 2.4. Let f: X be a continuous function such that

a compact subset of Then, uniformly f or s E H,

where j, k E JN and is Kronecker’s symbol. M’oreover if f is uniformly
continuous on RN and e = 1 (i.e. f is bounded), then the convergence is
uni f orm on RN.

PROOF. Suppose j. Then
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so that it is enough to show that each integral in the last side of the
inequality is bounded for ah E I and converges to 0 when 11t.
But this is shown by the inequality

Suppose Then

’When a - j the last term converges to 0, uniformly on every set on
which f is bounded. Having fixed s E R+, we can take 6 E R+ such that
the second summand (or if f is uniformly con-
tinuous on RN). The first summand is dominated by

Here the second term converges uniformly to 0. Theref ore the proof
will be complete if we show that when a - j

and

have the same finite limit. For this we can suppose N = 1 and show
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that

The first equality follows from the fact that for a - j ~(~ ’) is an
approximate identity; the second one is shown by an easy computation.

PROPOSITION 2.5 (see [3] p. 116). Let continuous
harmonic on every couple of Suppose

PROOF. We begin by supposing that N = 1. By lemma 2.4 and
proposition 2.2, the function

is harmonic on 8 and has a continuous extension to S, which vanishes
on as. We can get our result through lemma 2.3 if we prove that

In fact we have
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This depends only on rx, continuously on [0, 1] by lemma 2.4, so that
it is bounded.

Suppose now that f is a function of N’ -~- 1 variables which satisfies
our assumptions. If we fix the last variable, we obtain a function of
.N variables satisfying the same assumptions, so that we can proceed
by induction.

The aim of our next result is to show that if fj e .X~) Vj E JN
and

then Vj E IN I; = 0. However, y since it is possible that

does not belong to X), we work in a suitable larger space.

converges to t in the norm of

Since jo2(8) d8  + from lemma 2.4 it follows that we have the
RN

asserted convergence whenever f is uniformly continuous and bounded.
Since such functions are dense in ~’), it suffices to show that
3C&#x3E; 0 such that
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In fact

so that it remains to show that

But

and direct computation of the last integral concludes the proof.

3. Definition of the interpolation spaces.

In this section we introduce the complex interpolation spaces for
compatible families of complex Banach spaces. Henceforth every
vector space we consider is complex.
A finite family A = of Banach spaces is said to be com-

patible if there is a Hausdorff vector topological space A such that
Vj E .g (by « - » we denote algebraic inclusion with continuous

m

embedding; if X and Y are normed spaces, X dl Y means that the

embedding norm does not exceed ~VI) . When A is a compatible family
A(A) is the Banach space n A; with norm = max and

:,w jEK
jEK

-Y(A) is the linear hull of U Ai with the norm 11
-,. ieK

(this too is a Banach space). Evidently
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A normed space X is said to be intermediate for the family A if
4 (A) ~ X‘ ~ E(A). When A = and B = are compatible
families, .L(A, B) is defined as the vector space of the linear mappings
T : ~{A) -~- ~(B) such that TIAi E Bj) Vj E K (as usual, when X
and Y are normed spaces, Y) is the space of continuous linear
mappings from X to Y). If X and Y are intermediate spaces for

A, B respectively, we say that .~, Y are interpolation spaces with
respect to A, B when for every T E L(A, B) E L(X, Y).

From now on we consider compatible families A, B etc. of Banach
spaces whose index set is ~TN (J = ~0, 1 ~) . Since for a compatible

family .A and 1  q  00 Aj) ~ L) (RN, 27(A)), on the space
i we can define a linear map T, whose range is contained in

the space of continuous functions g: SN -~ ~’(A) (see prop. 2.2), by
putting

where f = (fj)iEJN, a E IN, s 

From prop. 2.6 it follows at once that is one-to- one, and we

call the image under J of
functional ’

(with the usual modification if q = cxJ) is obviously a Banach norm.

and if

is a norm on Remark that 00) does not depend on

a (but we keep this notation for convenience) and that when  o0
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we call also the norm induced by 5’ on

PROPOSITION 3.1. For each fixed q E [1, o], all the norms 
(a E IN) on ,~q(A) are equivalent, uniformly for a in compact subsets of IN.

PROOF. The first statement is an obvious consequence of the ine-

quality (2.7) with M = 0. The second one follows from H61der ine-

quality and from

PROPOSITION 3.2.

K is a compact subset of

If z E .7~, we have

DEFINITION 3.3. $’q(A) is the space of the f unctions f: SN-+E(A)
holomorphic and belonging to By the second part of prop. 3.2,
convergence in ~q(A) implies uniform convergence on compact subsets
of ~SN, with respect to the norm of E(A), so that is a closed subspace
of and hence a Banach space.
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- 

When X is a Banach space, we write Yq(X) to mean

Now we define interpolation spaces Â(a;a).
DEFINITION 3.4. Va E IN, ~(a; a~ _ { f (lL) ~ f E 
Since the operator f ~ is continuous from Yq(A) to L(A) by

prop. 3.2, we can define a Banach norm on A(a;,,) by putting _

THEOREM 3.5. an intermediate space f or the family A.

More precisely, ~ A(a; g) ~ ~(A). *

obvious that f c- so that
- (when q  oo)

The proof is even simpler when q = 00, since 00) == 
Let x E A(a;a)8 Then obviously x E L’(A) and the estimates on the

norms follow at once from the first part of prop. 3.2.

THEOREM 3.6. If A and B are compatible f amities of Banach spaces,
then A(a; q) and are interpolation spaces with respect to A and B.
More precisely,

PROOF. Let x E A(a; (1 and g = E with g(a) = x. Then

Tg E so that Tz E and

(and similarly when q = ~). As f is arbitrary, we obtain the inequality.

REMARKS

3.7. When X is a Banach space and Ai == X Vj E JN, we have
4 (A) = X = Z(A) with equal norms. Therefore from th. 3.5 it follows
that in this case .A(a; a) _ ~ with equal norms.
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1

3.8. From prop. 3.1 we have y. whenever 1 ~ q  r  00.

3.9. If 1  q  00 and Vj E JN Ai is reflexive, then Ai)
is reflexive ([19] th. 5.7), so that 5T~(A), ,~ a(A.) and are reflexive,
since products, closed subspaces and quotients of reflexive spaces are
reflexive.

4. A density theorem.

Let A be a compatible family of Banach spaces. We consider the
holomorphic functions f : such that _ lim = 0,

zESN, |z|-oo
and we call the space of the restrictions to ~SN of these functions.
Remark that by prop. 2.5 C 5"q(A) E [1,00].

The main result of this section is the following one.

THEOREM 4.1. If 1  q  oo , then is dense in ,~ Q {A. ) .

We shall prove this theorem through a number of lemmas con-
cerning the functions

LEMMA 4.2. The above integrals (4.1) and (4.2) exist in the spaces
and Aj respectively. The function as defined by f ormuta (4.2)

is holomorphic on CN in the norm of Aj.
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the integral (4.1) exists in f(A). Proving the existence of (4.2) in A;
is even simpler, as

and

are both finite. Let .K’ be a compact subset of CN. Then for z E K
and 8 

Therefore, by the dominated convergence theorem, f(j)n is continuous
from CN to Moreover, if y is a closed, piecewise differentiable curve
in C, when we compute

we can change the order of integration, so that it vanishes. This proves
the lemma.
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PROOF. Without loss of generality we may consider only the case
j = 0. When we substitute in (4.1) f (a + is) with its expression by
means of the Poisson integral, we can change the order of integration,
so that

We prove that in this sum every summand converges to 0, except
the one with j = 0 which converges to as a -+ 0. By the domi-
nated convergence theorem it is enough to prove that

and that

In fact the left side of (4.3) is dominated by

The first integral is

while the second one is  (see (2.7))
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For j - 1, (4.4) follows at once from ( 2 . 6 ) . Finally

Here the second summand converges to 0 by lemma 2.4. The first

one is dominated by

LEMMA 4.4...For z E CN, does not depend
on a E IN.

PROOF. We prove that for fixed a == (a2 , ... , aN) E IN-1, f ~a~(z) does
not depend on al. For this it is enough to show that

does not depend on a1 (the existence of this integral is guaranteed
by prop. 2.2). Being holomorphic the function

it suffices to prove that as I MI -* + -

But this follows from prop. 2.2.

Thus we have proved the following proposition :

PROPOSITION 4.5. E d (A) and the f unction f ~,a’ is holomorphic
in the norm o f d (~.).
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Lemma 4.4 allows us to write henceforth In instead of j J
Moreover, by lemmas 4.3 and 4.4

and

PROOF

(recall that cosh a c 2 cosh (a - ~3) cosh and this proves the lemma.

PROOF. is holomorphic, it is enough to prove that the function
belongs to and that ~==~((/~)).

The first statement is trivial when and is easily proved when
q by means of Minkowski integral inequality, through the ex-
pression of given before lemma 4.6. For the second one we hav e
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PROOF

(by Minkowski integral inequality)

Therefore

as it can be seen by putting T = nt and remembering that 
On the other hand
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Here the first summand is small when 6 is small because E

E Lq(RN, Aj). The second one is dominated by

and this also is small when 8 is small by (2.2).
We have thus proved that the space of the restrictions to SN of

the functions f : CN ~ d (A ), holomorphic and satisfying the growth
condition of lemma 4.6 and belonging to is dense in 
Therefore the following result completes the proof of th. 4.1.

LEMMA 4.9. Let holomorphic function such that

PROOF. It is obvious that g,, E In order to prove that
it is enough to apply the dominated convergence

theorem.

5. Some properties of the spaces Å(a; a) .

We prove some consequences of th. 4.1.

THEOREM 5.1. d(A) is dense in A(a;q).
PROOF. Trivial consequence of th. 4.1.

THEOREM 5.2. Vj E JN let A0j be the closure of A(A) in Aj, with the
norm of so that A° _ is a compatible family. Then Vq E [1, oo[

, in both cases with equal norms.

PROOF. Since = 4(A°) (with equal norms), we have that
= and that the restriction to of the norm 

of £(A) coincides with the restriction of the homonymous norm of
Then our statements follow easily from th. 4.1.
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THEOREM 5.3. Suppose that

Then Vb = (b2, and f or 1 , 

PROOF. Vf E we set

Then it is obvious that We prove that 3 C &#x3E; 0 such that
Vf E F0(A)

But
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by (2.7) and (2.8) (the constants depcnding only on a’, a"). Therefore-

Here

and by H61der inequality

This allows us to get the inequality.
Let ~ E and f E 5~-,(A) such that f(a’, b) = x. Let (fn)neN W

a sequence in Yo(A) converging to f in the norm · then

The above inequality shows that b))neN is a Callchy sequence
in i because gfn(a", b) = fn(a’, b), and as and 

are both continuously embedded in .E(A), it follows that x E A(a’, b; q)
, Therefore 11

as f is arbitrary

REMARK 5.4. When N=1, our interpolation spaces A(a; q) (a E ]0, 1[,
1 ~ q ~ ~) coincide (with equal norms) with the space [Ao , A1]a defined
by A. P. Calder6n in [3]. In fact it is obvious that Calder6n’s space

Ax) is contained in our 5l~(A) and that Vf e AI) 
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, and this implies that I

~ A(~ ; a ~ . Conversely, let Then and the ine-

quality IIIflll(a; 1) holds (see [3], p. 117 ) . By an argui-nent
similar to that of the proof of th. 5.3, we obtain the embedding

A(a; 1) ~ [Ao, which proves our statement by remark 3.8.
When .~1~~ ~ 2 the situation is no more so clear, because of the lack

of the inequality (9.4 iii) of [3] p. 117, as we see in the subsequent
counterexample. As a matter of fact the asserted proof of that ine-
quality, given in [2] pp. 199-200 is wrong, since the argument is based
on the false assertion that, given 2 N bounded infinitely differentiable
real-valued functions there exists a function f : SN- C,
continuous on SN and holomorphic on such that Vs e RN Vj E IN
Re -;- is) = 

COUNTEREXAMPLE 5.5. We exhibit a compatible quadruple
A = and a sequence of func tions tn : 82-7- L(A), continuous
and bounded on 82, holomorphic on 82, such that fn(j + is, k + it) E 
and is bounded and continuous in the norm of Ajk, for which the norm
of f ~( 2 , 2 } in the interpolation space defined in [13] and dealed with
in [2] is equal to 1, while This proves that the

inequality 4.4(2) of [2] (corresponding to (9.4 iii) of [3]) fails, and
also that the interpolation space of [13] relative to the point (t, ~)
is different from A(~,~;1) (actually it is easily checked that it is smaller).

have the usual meaning and let I be the Banach space of
complex-valued sequences such that --- sup  + 00,

1 

’ 

n

so that loo - 1. we set Aoo = All = Zoo, Aol = A1o = I. Then = Zoo,
Z(A) = Z (with equal norms). If [A ; 2 , tJ is the interpolation space
defined in [13], we have Zoo ~ [A ; ~ , ~ ] . On the other hand, let f :
82 -¿ 17(A) = be a bounded continuous function, holomorphic on 82
and such that f (j + is, k + it) E A j, and is bounded and continuous
(with respect to (s, t)) in Ajk. Put g(z) = f (z, z) Vz E S. As g is bounded
in the norm of 1, we can represent it as the Poisson integral of its
boundary values, and these values are bounded and continuous in Zoo,
so that g(z) E Zoo Vz E S (see [3] p. 116) . Therefore f ( 2 , 1 ) E 100, and
this proves that loo = [A; 1 2, 1 2] . Moreover, from
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it follows that ~ Therefore we have also equality
of norms.

_ 

Let a(n) = (Kronecker’s symbol) and 0 f,: ~~--~ Z°°,,

If we fix n &#x3E; 0, we can find E &#x3E; 0 such that the last integrals is 
and if we take n &#x3E; e~ we obtain 

THEOREM 5.6. Let A = (A;);eJN be a compatible family of Banach

PROOF. We shall prove that vf E ,~=o(-A) b) 
and this will prove the theorem by an argument similar to that of
the proof of th. 5.3. In fact (9.4 iii) of [3]
and H61der inequality)

THEOREM 5.7. Let and A ---- be a compatible family-
of Banach spaces that E JN-1 I A,,,. = Ak,1 = Bk. Then V(a, b) c-

1
PROOF. By theorem 5.6 Let

and put ;
.1t is an easy computation to check that g E £ (A ) and that ==

- This proves the converse embedding.
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We conclude this section by showing that, in general, the ill-

clusion of th. 5.6 is not an equality. For this we need two preliminary
lemmas.

LEMMA. 5.8. Let .,A.o , AI, Bo , .B~ be Ba,nach spaces such that 
is ac compatible family, Ao 4- Bo ~--&#x3E; Ao + Ai , and suppose that 300 E ]0, 1[
such that [.Ao, ~ Bo. Let T E t(Bo, Bl) and endow ker TIAo with the

PROOF. Let f c- Y(ker TIAo’ A1) (Calderón’s function

spaces, see [3]). Then f (it) E Bo, f (80 + it) E R. For 0  0  eo
f (8 + it) is the Poisson integral (in Ao + Ai) of its values for Re z = 0
and Re z = 80 . But this is also a Poisson integral of Bo-valued, Bo-
bounded and continuous functions, so that f (0 -t- it) E Bo . Moreover

f is a Bo-continuous function which, for 0  0  00 coincides with its
Cauchy integral in the norm of Ao + A, and hence in the norm of Bo.
This proves that Tf is holomorphic for 0  Re z  00 and continuous
for in the norm of B1. But -- 0 b’t E R., so that
Tf(z) = 0 for each z such that 0 ~ Re z ~ 8p . Since f is arbitrary, this
concludes the proof.

We recall that if vo and xi are positive weight sequences, then
 0  1), where vo(n) = (see [1] th. 5.5.3).

LEMMA 5.9. Let Vi: Z - R+ (j = 0,1) be non-decreasing sequences.
We suppose that inf vo &#x3E; 0 . = inf v1.

Then 10, 1 [ [Ao, .--- l1v0 with equivalent norms..

PROOF. First of all from Ao l;o’ 11 it follows by inter-
,

It is obvious that the function
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and

Thus in general Therefore, as

since lim ve(m) = 0 as i t follows easily from the assumptions. This
m- - oo

proves that ’BIn E Z (a"&#x3E; - converges in [Ao, as m -?- - 00.

But II and as both A1 and [Ao , are con-

tinuously embedded in we have that and

Hence it follows easily that each

« finite » sequence À belongs to with and so

we get at once that l1v0 2- [Ao , 

COUNTEREXAMPLE 5.10. We show an example of a compatible
quadruple where A(~,~ ;1) is strictly smaller than

We set

with the l1-norm,

with the natural norms. By applying lemma 5.9 we see that [.Aoo~ 
is equal to l1 with weight 2n/2 and that [Aol, .A1l]i is equal to 11 with
weight 2-n/2, , so that the iterated interpolation space is equal to lx
(without weight). But 4 (A) is contained in the proper closed subspace
of 11 1 defined by the condition

1

and by th. 5.1 A~2, ~ ;1~ =,4 11.
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COUNTEREXAMPLE 5.11. We show an example of a compatible
quadruple A = where for some (0, e) C J2

We define ~:Z-~C in the following way: ~oo(~)=ma.x{1~2"}~ 1
VIO(N) = max fl, 2-"1, vol(n) = min 11, 21~, vll(n) = min {1, 2-"1. We

put Ail == and (in every case with the

natural norm). Then, by lemma 5.9, = (voe = 
and = so that

By th. 1.17.1/1 of [21] ~j In = 0), and we
M~Z

know that [.Aol, Al1]o = ~~e~ . An application of lemma 5.8 shows that

6. Duals

In this section we study the duals of our interpolation spaces.
When we are given a compatible family A = (Aj);eJN of Banach

spaces, the assumption that d (A) is dense in each Aj (which we suppose
satisfied throughout this section) ensures that the dual space Ai of
A~ can be identified, in the usual way, with a subspace AJ of A (A)~’.
Thus A’ _ (A;)ieJN is another compatible family and we can put the
question whether the space (A(a; a~)’, identified with the dual of A(a; q),
is an intermediate space for the family A’ . When N=1, from the
fact that d (A)*= Z(A’ ) and J (A) (see [1] th. 2. 7.1) it follows
at once that (A(a; q»)’ is intermediate for A’, and moreover in that case
Calder6n [3] show ed that it is an interpolation space. But as soon as
N ~ 2 the equality d (A’ ) fails (see [8] §4) and in fact the
following counterexample shows that (A(a;q»)’ may also fail to be an
intermediate space for the family A’.

COUNTEREXAMPLE 6.1. We set

where vo(n) = min 11, 2~~, == min {1, 2’"}.
is dense in each (see [5] appendix 1).
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We set Then 0 can be con-

tinuously extended to each A.1k, and so 0 E d(A.’). Now we fix (0, e) E J2
such that 0 + e &#x3E; 1, 0  Lo and we show that OE (2(0,e;q))’. To do

this, we put I and we show that in 
this will prove our assertion.

n, m wi th and we set

converges to a~~~ - a~-?~~, we have proved that 

In the sequel we have to consider dual spaces of spaces like

rLQ(RN, .X), where X is a Banach space, a: RN- R+ is a measurable

weight function and 1 ~ q We shall assume that for 1  q  o0

.X))* is isometrically isomorphic to + (1iq’)=1)
and that (La(~BN, .X))* is isometrically isomorphic to in
both cases with respect to the duality

These assumptions are fulfilled when .X’~ has the Radon-Nikodym
property, and in particular when X’~ is reflexive or separable (see [7]
cor. 5 p. 117 and §6 p. 118).

We shall also employ functions defined on the polydisk DN
(.Z) -=  11) (or on (aD)N) which we obtain from functions
defined on (or on (aS)N ) by means of changes of variables given
by direct products of conformal mappings of g into D. More precisely,
let w and /~p: ~S 2013~D be the map defined by
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Then pw is a homeomorphism of 9 onto exp (2ni Re w)~ such
that pw(w) = 0 and its restriction to S is a biholomorphic diffeo-

morphism of S onto D.
When w - (~,vl , ... , e SN, we define

- 
..., Since exp (2ni Re we

obtain that the N-dimensional measure of is zero.
The functions p ) act as changes of variables, giving rise

to one-to-one correspondances between functions defined on SN and
functions defined on DN, and between (classes of) functions defined
a.e. on (aS)N and (classes of) functions defined a.e. on (aD)N. Moreover
these changes of variables « commute » with the Poisson integrals
(on (aD)N and on in the following sense.

and 99 = Let g be the Poisson
integral of 1jJ on DN (here the Poisson kernel for DN is the tensor product
of Poisson kernels for D) and f = Then and f
is the Poisson integral of 99

The computations are straightforward and we omit them. As a par-
ticular case (with ~ + i?7 = u~ and 11(p(j + instead of ~(~ c is))
we get

Hence, E X), then E Lq((oD)N, X), so that the cor-
respondance is onto.

It is well-known ([20] th. 2.1.4) that a necessary and sufficient
condition that g be holomorphic on DN is that the Fourier coefficients
ca of 1jJ are zero such that tXj  0.

Thus for a function 99 E X) we are interested in looking for
the vanishing Fourier coefficients of its corresponding function y on
(8D)N. In connection with this, remark that if v: SN~ DN are direct
products of conformal mappings such that = v(w) = 0 (where
w E SN), then, by well-known properties of the conformal mappings of
the disk, there are Â1, ..., with = 1 such that Vk = 
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(15 = 1, ... , N) ; therefore after we have chosen the point w E SN which
we map into 0, the fact that a fixed Fourier coefficient vanishes does
not depend on the product of conformal mappings we employ.

THEOREM 6.2. Let 1  q  00, q’ be its conjugate exponent, X be a
Banach space and V j E JN . let fj X ). We put f(j + is) ==
== fj(s) Vs E JN, and g = (where W E SN) . T hen the following
statements are equivalent:

(a) the Fourier coefficient of g

is zero cx =F 0 and
]

In particular, if X is the dual space of a Banach space Y,
then ( a ) and (b) are equivalent to

such that 99(w) = 0

PROOF. We show that (b) ~ (a) and that (a) =&#x3E; (c). Analogously
it can be shown that (a) =&#x3E; (b). Moreover it is obvious that (c) ~ (b).

Then = 0, so that
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We also call1jJ the function on ( aD)N obtained by the change of variable
~w from the function j + ~ ~ pj(s) on Since

we have to prove that the first integral vanishes. Set

where and ba is the a-th Fourier coefficient of Vy. By means
of the Fourier coefficients of g we define analogously gm. As y
is holomorphic on DN and = 0, we have that ba = 0 when a = 0
and whenever min oc,  0. Therefore

k

We now remark that E L°°((aD)N, Y), as it is a finite sum of
functions in and that g E Lq’((aD)N, X), so that

. Therefore Vn E N

same theorem) and so
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REMARK 6.3. Suppose that f E (1  q’ co). Then f is

holomorphic if and only if the equivalent properties of th. 6.2 hold
Vw E ~N. In fact, if f is holomorphic, then condition (a~) is fulfilled
as we have already remarked. Conversely, if the condition (b) is
satisfied ‘dw E SN, then it is easy to check that

so that ggf is harmonic in each complex variable zk = Ek + iq,,. In

particular if we set q;(z) = we get

so that it is proved that f is holomorphic.

DEFINITION 6.4. Let A = (Ai)jEJN be a compatible family of Banach
spaces, a E IN, 1  q  00, and let q’ be the conjugate exponent to q. We
call g(A)(a; a’) the closed subspace of ,~ a.(A) whose elements are the functions
f with boundary values fulfilling the conditions (a)-(b) of th. 6.2
(where X -.E(A) and w = a). We endow with the norm

By prop. 3.2 f H- f (a) is continuous on S(~)(~~ so that we can
define a Banach space in the following way:

From remark 6.3 it follows at once that is a closed subspace
of S(JL)(~~ so that A

THEOREM 6.6. &#x3E; is an intermediate space for the family A,
and actuall y J (A) ~ .d~a ~ a~ &#x3E; ~ ~(A ) Moreover, i f A and B are com-
patible families o f Banach spaces, then A(a; a’) and B~a ~ a~ are interpolation
spaces with respect to A and B.

PROOF. From the remark preceding the theorem and from prop. 3.2

and th. 3.5 it follows that It is
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easily checked that whenever and f c then
hence the theorem follows at once.

As above, when Y is a Banach space such that is a dense

subspace of Y (we recall that we have made this assumption for
Y = and this is not restrictive by th. 5.2), we denote by Y’ the
vector subspace of 4(A)* which can be identified in the usual way
with the dual space Y* of Y.

THEOREM 6.7. I f 1 ~ ~  ~ , then (.A(a; q»)’ is a closed subspace of
A’ ~a ~ g~ o)ith the same norm.

PROOF. Let q/ E (A(a;,))’ and let qJ* be its continuous extension to
Then f is a continuous linear functional on 

and (if .~~ (A ) has the norm it has the same norm as qJ’. By
the Hahn-Banach theorem we get a continuous linear functional on

and by a composition with T we get a continuous linear functional
such that has the

norm ~~~ ’ ~~~ (~ ; ~&#x3E; , and that

whenever T((f,)) E In connection with there are

(j E IN) such that

(recall the assumptions that we have made above and the equivalence
between the weights o and P,(a,.)) and 11 (1J’ = J ~~y~~}~).
As the constant A(A )-valued functions belong to Fq(A),

so that = ~9’. To show that y E ~(A‘)(a; a.~, since
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we can verify that 1p fulfils the condition (c) of th. 6.2 with Y == d (A).

Thus we have proved that p’ and that I
It remains to show that Vy’ E (A(a;q))’,

Let g E such that g(a) = T’ and let f E Then

REMARK 6.8. Along the lines of the proof of th. 6.7, it can be proved
that the dual space (A(~; a))’ can be obtained as the space of vectors
h(a), where h runs over the space whose elements are the
functions h E !,,,(A’) such that Vf E with f (a) = 0,

We note that the definition of differs from the definition
of 9(J.~)~;~’) because in the latter only functions f E are

employed (see 6.2(c) and the definition 6.4). However for 
we do not know any characterization in terms of Fourier coefficients

analogous to condition 6.2(a).
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Note added in proo f .

After the sending of this paper for publication, a paper was published
by J. PEETRE (Math. Nachr., 119 (1984), pp. 231-238), whose results and
methods are very close to the ones of our last section.
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