VITTORIO SCORNAZZANI

Pointwise estimates for minimizers of some non-uniformly degenerate functionals

Rendiconti del Seminario Matematico della Università di Padova, tome 81 (1989), p. 151-169

<http://www.numdam.org/item?id=RSMUP_1989__81__151_0>
Pointwise Estimates for Minimizers of Some Non-uniformly Degenerate Functionals.

**Vittorio Scornazzani (*)&

Introduction.

In this paper we prove the Hölder regularity and the Harnack inequality for the minimizers of following functional:

\[F(u, \Omega) = \int_\Omega F(x, Du) \, dx, \quad D = \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right) \]

where \(\Omega \) is an open subset of \(\mathbb{R}^n \). We assume that the following hypotheses are satisfied by function \(F \): \(F \) is a Caratheodory function, and there exist two constants \(M > 0 \) and \(m > 1 \) such that:

\[M^{-1} w(x) \left(\sum_{j=1}^n \lambda_j^2 P_j^2 \right)^{m/2} \leq F(x, P) \leq M w(x) \left(\sum_{j=1}^n \lambda_j^2 P_j^2 \right)^{m/2}. \]

(*) Indirizzo dell’A.: Università degli Studi di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40127 Bologna.
Here w is a nonnegative weight in the sense of Muckenhoupt (see later on) and $\lambda_j, j = 1, ..., n$ are nonnegative functions defined on \mathbb{R}^n satisfying the same hypotheses of [FL1] and [FL2]. In the case $\lambda_j = 1$ and $w = 1$, Giaquinta and Giusti ([GG1], [GG2]) proved the Hölder regularity of minimizers of F while Di Benedetto and Trudinger ([BT]) proved the Harnack inequality for nonnegative minimizers of F. Afterwards Modica ([M]) extended these results to the case $\lambda_j = 1$ and w is a weight that satisfies the following assumptions: $w > 0$ and there exist $p > 1$, $c_w \equiv c(w, p) > 1$ such that

$$
\left(\frac{1}{|S_R|} \int_{S_R} w \, dx \right) \left(\frac{1}{|S_R|} \int_{S_R} w^{-1/(p-1)} \, dx \right)^{p-1} \leq c_w
$$

for any euclidean ball S_R of radius R. Here $|S_R|$ is Lebesgue measure of S_R. The results of the works listed above cannot apply to non-uniformly degenerating functionals like, for example, to the following one

$$
F(u, \Omega) = \int_{\Omega} (|D_x u|^2 + |x|^{2\sigma} |D_y u|^2)^{m/2} \, dx \, dy, \quad (x, y) \in \mathbb{R}^p \times \mathbb{R}^q, \quad \sigma > 0.
$$

On the other hand it seems to be natural to handle such a functional by equipping \mathbb{R}^n by a metric d constructed in order to taking account of the special nonuniformly degeneration of F (and therefore of λ_j). A class of metrics of this kind has been studied by several authors, see, for example, [FL1], [FL2], [FL3], [NSW]. By using the metric d in the place of the euclidean metric one can adapt the technics of Giaquinta and Giusti, of Di Benedetto and Trudinger and of Modica to the study of functionals of the kind (1) (2). It is reasonable to require that the weight w satisfies the condition of Muckenhoupt with respect to the metric d; hence we substitute the hypothesis (3) with the following one: $w > 0$, there exist $p > 1$, and $c_w \equiv c(w, p) > 1$ such that

$$
\left(\frac{1}{|B_R|} \int_{B_R} w \, dx \right) \left(\frac{1}{|B_R|} \int_{B_R} w^{-1/(p-1)} \, dx \right)^{p-1} \leq c_w
$$

for any d-ball of radius R, $B_R \subset \Omega$.
As a consequence, our results can be applied, for example, to the functional defined by:

\[F(x, y, D_x u, D_y u) = \left(|D_x u|^2 + |x|^{2\alpha} |D_y u|^2 \right)^{\sigma/2} (x, y) \in \mathbb{R}^n, \quad \sigma > 0, \quad \alpha \in \mathbb{R}. \]

In Section 1 we introduce the class \(\mathcal{D}_m(\Omega, \lambda, w) \) which is the natural De Giorgi's class modelled on metric \(d \) and weight \(w \). Then we prove that the functions in De Giorgi's class \(\mathcal{D}_m(\Omega, \lambda, w) \) are Hölder continuous and then we prove that the minimizers are in \(\mathcal{D}_m(\Omega, \lambda, w) \) and therefore they are Hölder continuous.

In Section 2 we prove the Harnack inequality by using a Krylov-Safanov ([KS]) covering type Lemma, that we prove by using fundamentally the homogeneity of the space \((\mathbb{R}^n, d, w(x) dx) \).

Now we list explicitly the hypotheses on the function \(\lambda_i \). We suppose:

1. \(\lambda_i > 0, \; \lambda_i \equiv 1, \; \lambda_i(x) = \lambda_i(x_1, \ldots, x_{j-1}) \; \forall x \in \mathbb{R}^n, \; j = 1, \ldots, n \).

2. Put \(\Pi = \left\{ x \in \mathbb{R}^n : \prod_{k=1}^n x_k = 0 \right\} \), then

\[\lambda_j \in C(\mathbb{R}^n) \cap C^1(\mathbb{R}^n - \Pi), \quad 0 < \lambda_j(x) \leq A \quad \forall x \in \mathbb{R}^n - \Pi, \; j = 1, \ldots, n \]

\[\lambda_j(x_1, \ldots, x_i, \ldots, x_{j-1}) = \lambda_j(x_1, \ldots, -x_i, \ldots, x_{j-1}) \quad j = 2, \ldots, n; \; i = 1, \ldots, j - 1. \]

3. There exists a family of nonnegative numbers \(q_{ij} \) such that

\[0 < x_{ij} \frac{\partial}{\partial x_{ij}} (\lambda_j(x)) \leq q_{ij} \lambda_j(x), \quad j = 2, \ldots, n, \; i = 1, \ldots, j - 1. \]

These hypotheses allow to construct a "natural" metric \(d \) for the functional, associated with the fields \(X_j = \lambda_i(\partial/\partial x_i), \; j = 1, \ldots, n \) (see [FL1], [FL2], [FL3], [NSW]) in the following way.

A continuous curve \(\gamma \subseteq \Omega \) is \(X \)-admissible if:

1. \(\gamma \) is piecewise \(C^1 \);

2. each piece \(C^1 \) of \(\gamma \) is an integral curve of one of the vector fields \(\pm X_j, \; j = 1, \ldots, n \).
If $\gamma : [0, T] \to \Omega$, we put $1(\gamma) = T$. The hypotheses on λ allow to prove that for any $x, y \in \Omega$ there exists an X-admissible curve γ joing x and y. Hence we can define $d(x, y) = \inf \{1(\gamma) : \gamma$ is X-admissible and joins x and $y\}$. For every compact subset K of Ω there exists $c = c(K)$ and $\varepsilon > 0$ such that

$$e^{-1} |x - y| < d(x, y) < e|x - y|^\varepsilon$$

where $| \cdot |$ denotes the euclidean norm on \mathbb{R}^n (see [FL2], Prop. 2.9). In the following we shall write

$$w(E) = \int_E w \, dx$$

and, for $k \in \mathbb{R}$

$$B(k, R) = \{x \in B_R \mid u(x) > k\}.$$

It is well know that $|E| = 0$ iff $w(E) = 0$ (see, for example, Lemma 4 in [C]) and that for the measure $w(x) \, dx$ the following doubling property holds: there exists a constant $\beta = \beta(p, c(w, p), d)$ such that

$$w(B_{2R}) \leq \beta w(B_R)$$

for every d-ball of radius R (see [FS], Lemma 2.10).

Given $u \in \text{Lip}(\Omega)$, we denote

$$D_\lambda u = \left(\lambda_1 \frac{\partial u}{\partial x_1}, \ldots, \lambda_n \frac{\partial u}{\partial x_n} \right) \quad \text{and} \quad |D_\lambda u| = \left(\sum_{j=1}^n \lambda_j^2 \left(\frac{\partial u}{\partial x_j} \right)^2 \right)^{1/2},$$

besides we denote by $W_{m}^{1}(\Omega)$ the closure of the space $\text{Lip}(\Omega)$ with respect to the norm

$$\|u \mid W_{m}^{1}(\Omega)\| = \left(\int_{\Omega} |u|^m w \, dx \right)^{1/m} + \left(\int_{\Omega} |D_\lambda u|^m w \, dx \right)^{1/m}.$$

DEFINITION 1. We call $u \in W_{m}^{1}(\Omega)$ a minimizer for $F(\cdot, \Omega)$ if for all $\Phi \in W_{m}^{1}(\Omega)$ with $\text{supp} \Phi \subset \Omega$

$$F(u, \text{supp} \Phi) \leq F(u + \Phi, \text{supp} \Phi).$$
DEFINITION 2. A function u is said to belong to De Giorgi’s class, $\mathcal{D}_m(\Omega, \lambda, w) \equiv \mathcal{D}_m(\Omega)$ if:

i) $u \in W^1_m(\Omega)$;

ii) for any d-ball $B_R \subset \Omega$ and for any $q > 0$, $q < R$, $k \in \mathbb{R}$

\begin{equation}
\int_{B(k, q)} |D^{\lambda} u|^m w \, dx = \frac{C}{(R - q)^m} \int_{B(k, R)} |u - k|^m w \, dx \tag{1}
\end{equation}

where B_q is the d-ball concentric to B_R and radius q.

REMARK. In the case $\lambda = 1$, the class $\mathcal{D}_m(\Omega)$ coincide with the usual De Giorgi’s class (see [DG], [GG1], [M]).

§ 1. Here we prove that the functions in $\mathcal{D}_m(\Omega)$ are Hölder continuous (Th. 5) and that the minimizers are in $\mathcal{D}_m(\Omega)$. To this aim we make use of the following embedding Theorem whose proof is similar to the one of Th. 4.1 of [FS]:

THEOREM 3. Let w be a weight such that satisfies (4) with $p < m$, let B_R be the d-ball with centre \bar{x} and radius R and $u \in W^1_m(\Omega)$ such that for a $\beta > 0$ we have $w(\{x \in B_R \mid u(x) = 0\}) \beta w(B_R)$. Then exist $l > 1$ and $C > 0$ such that:

\begin{equation}
\left(\int_{B_R} |u|^{lm} w \, dx \right)^{1/m} \leq CR w(B_R)^{(l-1)/lm} \left(\int_{B_R} |D^{\lambda} u|^{lm} w \, dx \right)^{1/m}.
\end{equation}

Here C depends on \bar{x} and β and on constants of (4), l depends on m, λ, and constants of (4).

PROOF. Put $E = \{x \in B_R \mid u(x) = 0\}$ and $u_R = (w(B_R))^{-1} \int_{B_R} u w \, dx$. Then, making use of Hölder inequality:

\begin{equation}
|u_R| \leq (w(E))^{-1} \int_{B_R} u_R - u \, w \, dx \leq \beta^{-1} \left(w(B_R) \right)^{-1} \int_{B_R} |u_R - u|^{lm} w \, dx \tag{1}
\end{equation}

(1) In the following we denote by C a positive constant which is not always the same at each occurrence.
by that, we have:

$$\left((w(B_R))^{-1} \int_{B_R} |u|^{1-m} w \, dx \right)^{1/m} \leq C \left((w(B_R))^{-1} \int_{B_R} |u|^{1-m} w \, dx \right)^{1/m}$$

$$\leq CR \left((w(B_R))^{-1} \int_{B_R} |D_1 u|^{1-m} w \, dx \right)^{1/m}$$

by Th. 4.5 of [FS].

By (9) it is possible to prove that, if u and $-u \in DG_m(\Omega)$, then u is locally essentially bounded. In fact, we have:

THEOREM 4. Let $u \in DG_m(\Omega)$, $k \in R$, $\sigma \in]0, 1[$, $0 < R < R_0$: Then for any d-ball $B_R \subset \Omega$ we have:

$$\sup_{B_R} u \leq k + \frac{C}{(1 - \sigma)^{\Theta/(l-1)}} \cdot \left((w(B_R))^{-\Theta/m} \left(w(B(k, R)) \right)^{(\Theta-1)/m} \left(\int_{B(k, R)} |u - k|^{m} w \, dx \right)^{1/m} \right)$$

where $\Theta = \Theta(l) > 1$ and l is the constant in (9), and $C = C(\overline{x}) > 0$.

We first prove two Lemmas in which we use the following notation like those used by Giaquinta ([G])

$$u(h, \varrho) := \int_{B(h, \varrho)} |u - k|^{m} w \, dx,$$

$$b(h, \varrho) := w(B(h, \varrho)),$$

$$\Phi(h, \varrho) := u^{\Theta/(l-1)}(h, \varrho) b(h, \varrho)$$

where $\Theta = (1 + (1 + 4(l-1)/l)^{1/2})/2$.

LEMMA 4.1. Let $0 < \varrho < R < R_0$ and $h > k$. For any $u \in DG_m(\Omega)$ we have:

$$\Phi(h, \varrho) = \frac{CR^m \theta/(l-1) (w(B_R))^{-\theta}}{(R - \varrho)^m \theta/(l-1) |h - k|^m} \Phi^\theta(k, R).$$

Proof. Let B_R be a d-ball contained in Ω. Then there exists $\eta \in C_0^\infty(B(R+\varrho)/2)$, $\eta = 1$ on B_ϱ, $0 < \eta < 1$, and such that $|D_1 \eta| < C/(R - \varrho)$ (see [FL2], proof of Lemma 4.2). Let $u \in DG_m(\Omega)$. In particular
\(u \in W^1_m(\Omega) \), so by Corollary 5.2 in [FS], it results \(\eta \max (u - k, 0) \in W^1_m(\Omega) \). From inequality (9) and doubling property for the measure \(w(x) \text{d}x \), we have:

\[
\left(\int_{B((R + \varrho)/2)} |\eta \max (u - k, 0)|^{m} w \text{d}x \right)^{1/m} \leq CR(w(B_R))^{(1-1)/m} \left(\int_{B((R + \varrho)/2)} |D_\lambda (\eta \max (u - k, 0))|^{m} w \text{d}x \right)^{1/m}
\]

for some \(l > 1 \). By Hölder inequality, we get:

\[
\int_{B_\varrho} |\max (u - k, 0)|^{m} w \text{d}x \leq \left(\int_{B_\varrho} |\max (u - k, 0)|^{m} w \text{d}x \right)^{1/l} \left(w(B(k, \varrho)) \right)^{(l-1)/l}.
\]

Hence, because \(\varrho < (R + \varrho)/2 < R \) and \(u \in D_m(\Omega) \):

\[
\int_{B(k, \varrho)} |u - k|^m w \text{d}x \leq CR^m(w(B_R))^{(1-1)/l}.
\]

\[
\cdot \int_{B(k, (R + \varrho)/2)} |D_\lambda (\eta \max (u - k, 0))|^m w \text{d}x \cdot \left(w(B(k, \varrho)) \right)^{(l-1)/l} \leq CR^m(w(B_R))^{(1-1)/l} \int_{B(k, R)} |u - k|^m w \text{d}x \cdot \left(w(B(k, \varrho)) \right)^{(l-1)/l}.
\]

Now, if \(\varrho > k \), and \(0 < \varrho < R \), we have

\[
|h - k|^m w(B(h, \varrho)) \leq \int_{B(k, \varrho)} |u - k|^m w \text{d}x \leq \int_{B(k, R)} |u - k|^m w \text{d}x
\]

hence, because \(u(h, \varrho) < u(k, \varrho) \), using our notation we get

\[
\begin{align*}
\left\{
\begin{array}{l}
u(h, \varrho) < \frac{CR^m(w(B_R))^{(1-1)/l}}{(R - \varrho)^m} u(k, R) b(k, R)^{(l-1)/l}, \\
b(h, \varrho) = \frac{1}{|h - k|^m} u(k, R).
\end{array}
\right.
\end{align*}
\]
For any positive numbers ξ and ζ we find

$$u^\xi(h, \varrho) b^\zeta(h, \varrho) \leq \frac{C R m^\xi(w(B_R))^{(1-1)\xi/l}}{(R - \varrho)^m \xi |h - k| m^\zeta} u^\xi + \zeta(k, R) b(k, R)^{(l-1)\zeta/l}.$$

Now we choose ξ and ζ in such way that for some $0 > 0$, we have $\xi + \zeta = \Theta \xi, (l-1)\xi/l = \Theta \zeta$, (then Θ must be the positive solution of $\Theta^2 - \Theta - (l-1)/l = 0$ i.e. $\Theta = \left(1 + (1 + 4(l-1)/l)^{1/2}\right)/2 > 1$. We can choose $\zeta = 1$ and $\xi = l\Theta/(l-1)$ and consequently the Lemma follows.

Lemma 4.2. For any $k \in \mathbb{R}, 0 < R < R_0, \sigma \in]0, 1[$, it holds:

$$\Phi(k + d, \sigma R) = 0$$

where

$$d = \frac{2(\Theta/(l-1) + 1)^{(\Theta-1)}(1/m^\Theta(w(B_R)) - \Theta/m)}{(1 - \sigma)^{l\Theta/(l-1)}} \Phi^{(\Theta-1)m}(k, R)$$

and C is the constant that appears in Lemma 4.1.

Proof. We set $h_n = k + d(1 - 2^{-n}), \varrho_n = \sigma R + (1 - \sigma) R 2^{-n}; n \in \mathbb{N}$ then $h_n \not\rightarrow k + d, \varrho_n \not\rightarrow \sigma R$. For every $n \in \mathbb{N}$ we have

$$\Phi(h_n, \varrho_n) \leq \frac{\Phi(k, R)}{2 m/(\Theta - 1)(l\Theta/(l-1) + 1)n}.$$

This easily follows by Lemma 4.1 and by induction. Now it is enough take the limit $n \rightarrow +\infty$ to prove the Lemma.

Proof of Theorem 4. By Lemma 4.2, we have $\Phi(k + d, \sigma R) = 0$, thus either $u(k + d, \sigma R) = 0$ or $b(k + d, \sigma R) = 0$. Hence, since $(\Theta - 1) \Theta l/(l-1) = 1$, the thesis follows.

This holds also for $-u$ and hence u is locally essentially bounded.

Theorem 5. If u and $-u \in \mathcal{D}(\Omega)$, then u is Hölder continuous.

We first prove the following two Lemmas:

Lemma 5.1. Let $h > k > k_0$, if $w(B(k_0, R)) \ll \gamma w(B_R), 0 < \gamma < 1$, then:

$$|h - k|^{(m+1)/2}(w(B(h, R)))^{1/l} \leq C(\gamma) R^{(m+1)/2}(w(B_R)) \left(\int_{B(k, R)} |D_\lambda u|^m w \, dx \right)^{(m+1)/2m} \cdot \left(w(B(k, R) - B(h, R)) \right)^{(m-1)/2m}.$$

Vittorio Scornazzani
Proof. Put \(v = \min (u, h) - \min (u, k) \). Then:

\[
wx \{x \in B_R \mid u(x) = 0\} = w(B_R - B(k, R)) = w(\{x \in B_R \mid u(x) < k\}) > w(\{x \in B_R \mid u(x) < k_0\}) > (1 - \gamma) w(B_R).
\]

So we can apply (9). There exists \(l > 1 \), such that

\[
|h - k|^{(m+1)/2} w(B(h, R)) = \int_{B(h, R)} |v|^{(m+1)/2} w \, dx < \int_{B(k, R)} |v|^{(m+1)/2} w \, dx < \int_{B_R} |v|^{(m+1)/2} w \, dx < C(\gamma) R^{(m+1)/2} w(B_R))^{1-l} \left(\int_{B_R} |D_\lambda u|^{(m+1)/2} w \, dx \right)^l = C(\gamma) R^{(m+1)/2} w(B_R))^{1-l} \left(\int_{B(h, R)} - B(k, R)} |D_\lambda u|^{(m+1)/2} w \, dx \right)^l.
\]

By Hölder inequality (12) follows.

Lemma 5.2. Let \(u \in D\Omega_m(\Omega) \); setting

\[
M(2R) = \sup_{B(2R)} u, \quad m(2R) = \inf_{B(2R)} u; \quad k = \frac{1}{2}(M(2R) + m(2R)), \quad k_\gamma = M(2R) - \frac{M(2R) - k_0}{2^r}.
\]

Then, if \(w(B(k_\gamma, R)) < \gamma w(B_R), 0 < \gamma < 1 \), we have:

\[
(13) \quad w(B(k_\gamma, R)) < \frac{Cw(B_R)}{\gamma^{m(m-1)/2m}}.
\]

Proof. In inequality (12) we put \(k = k_{i-1} \) and \(h = k_i \). Hence, by (8) and by doubling property of measure \(w(x) \, dx \):

\[
\left(w(B(k_i, R)) \right)^{2m/(m-1)} < C \left(w(B_R) \right)^{2m(1-\gamma)/(m+1) - \gamma(m-1)/(m-1)} \left(w(B(k_i-1, R)) - w(B(k_i, R)) \right).
\]
Summing up for \(i = 1, 2, \ldots, v \) and using the inclusion \(B(k_\sigma, R) \subset B(k_\epsilon, \bar{R}) \), we have

\[
\nu \left(w(B(k_\sigma, R)) \right)^{2m/(m-1)} \leq C \left(w(B_R) \right)^{(2m/(1-\beta))(m/(1-\beta))} w(B(k_\sigma, R)).
\]

So the assertion follows.

Proof of Theorem 5. We use the notations of Lemma 5.2. We may assume \(w(B(k_\alpha, R)) < \frac{1}{2} w(B_R) \). Otherwise, since

\[
\{ x \in B_R : u(x) > -k_\alpha(u) \} = \{ x \in B_R : u(x) < k_\alpha(u) \},
\]

we can work with \(-u\). Applying Theorem 4 and replacing \(k \) by \(k_\sigma \), we have

\[
M(R/2) = k_\sigma + C w(B_R)^{-\Theta/m} \left(\int_{B(k_\sigma, R)} w^m dx \right)^{1/m} \left(w(B(k_\sigma, R)) \right)^{(\Theta-1)/m}
\]

\[
< k_\sigma + C w(B_R)^{-\Theta/m} \left(w(B(k_\sigma, R)) \right)^{\Theta/m}.
\]

By Lemma 5.2 we can choose a \(\frac{\psi}{\psi} \) independent on \(R \), such that

\[
C w(B_R)^{-\Theta/m} \left(w(B(k_\sigma, R)) \right)^{\Theta/m} < \frac{1}{2}.
\]

Then

\[
M(R/2) < M(2R) - 2^{-(\gamma+1)}(M(2R) - m(2R)) + \frac{1}{2}(M(2R) - k_\sigma)
\]

\[
= M(2R) - 2^{-(\gamma+2)}(M(2R) - m(2R)).
\]

We now subtract \(m(R/2) \):

\[
M(R/2) - m(R/2) < (M(2R) - m(2R))(1 - 2^{-(\gamma+2)})
\]

i.e. \(\omega(R/2) = M(R/2) - m(R/2) < \beta \omega(2R) \), with \(\beta \in [0, 1[\) and thus there exists a constant \(\alpha \) such that \(\omega(\varrho) < C(\varrho/R)^\alpha \omega(R) \) and \(u \) is Hölder continuous by (5).

Now we prove that the minimizers are Hölder continuous. This result follows from Theorem 5 and the following

Theorem 6. Let \(u \in W^1_m(\Omega) \) be a minimizer for the functional \(F \) defined in (1), (2). Then \(u \) and \(-u\), \(\in \mathcal{D}_m(\Omega) \).

Proof. Let \(B_R \) be the \(d \)-ball with centre \(x_0 \), such that \(B_R \subset \Omega \). Moreover let \(u \) a minimizer (see (7)). Let now \(\eta \in C^\infty_0(B_R) \), \(\eta = 1 \) in
Pointwise estimates for minimizers etc.

B_ε, $0 < \varepsilon < R$ and such that $|D_1 u| < C/(R - \varepsilon)$ (see [FL2], proof of Lemma 4.2). For a fixed $k \in \mathbb{R}$, we put $\Phi = - \eta \max (u - k, 0)$. Since $B(k, \varepsilon) = \{ x \in B_\varepsilon | u(x) > k \} \subset \text{supp } \Phi$, we have

$$M^{-1} \int_{B(k, \varepsilon)} |D_\lambda u|^m w \, dx < \int_{B(k, \varepsilon)} |D_\lambda u|^m w \, dx < \int F(x, Du) \, dx < \int_{\text{supp } \Phi} F(x, Du) \, dx < \int F(x, D(u + \Phi)) \, dx < M \int |D_\lambda (u + \Phi)|^m w \, dx <$$

$$< C \int (1 - \eta)^m |D_\lambda u|^m w \, dx + C \int |u - k|^m |D_\lambda \eta|^m w \, dx <$$

$$\leq C \int_{B(k, R) \setminus B(k, \varepsilon)} |D_\lambda u|^m w \, dx + \frac{C}{(R - \varepsilon)^m} \int_{B(k, R)} |u - k|^m w \, dx.$$

In the last step we used $\text{supp } \Phi \subset \{ x \in B_\varepsilon | u(x) > k \}$ and $\eta = 1$ in B_ε. From this inequality adding $C \int_{B(k, \varepsilon)} |D_\lambda u|^m w \, dx$, we obtain

$$(M^{-1} + C) \int_{B(k, \varepsilon)} |D_\lambda u|^m w \, dx < C \int_{B(k, R)} |D_\lambda u|^m w \, dx + \frac{C}{(R - \varepsilon)^m} \int_{B(k, R)} |u - k|^m w \, dx.$$

This, by Lemma 1.1 in [GG1], implies

$$\int_{B(k, \varepsilon)} |D_\lambda u|^m w \, dx \leq \frac{C}{(R - \varepsilon)^m} \int_{B(k, R)} |u - k|^m w \, dx;$$

that is $u \in \mathcal{DG}_m(\Omega)$.

At this point, to prove that $- u \in \mathcal{DG}_m(\Omega)$, it is enough to observe that $- u$ is a minimizer of the functional $\tilde{F}(v, \Omega) = \int \tilde{F}(x, Dv) \, dx$ where $\tilde{F}(x, Dv) = F(x, D(-v))$. It is evident that \tilde{F} satisfies the same hypotheses as F.

\section{2.} Here we prove the Harnack inequality for the nonnegative minimizers of F. To this aim we prove a Krylow-Safanov covering type Lemma:
LEMMA 7. Let B be a d-ball, $E \subseteq B$, E measurable, $\delta \in]0, 1[$, $B = \{B_\delta(x) \cap B \mid x \in B, \delta > 0, w(E \cap B_\delta(x)) \geq \delta w(B_\delta(x) \cap B)\}$ ($B_\delta(x)$ is the d-ball of centre x and radius δ). We consider $E_\delta = \bigcup_{B \in \mathcal{B}} B$. Then either i) $E_\delta = B$, or ii) $w(E) < C\delta w(E_\delta)$. Here $C > 1$ is dependent on the doubling constant for the measure $w(x) \, dx$.

PROOF. If $w(E) \geq \delta w(B)$ then, since $E \subseteq B$, we have $w(E) = w(E \cap B) \geq \delta w(B)$ and hence $B \in E$ and hence i) is valid.

Let now $w(E) < \delta w(B)$. If $w(E) = 0$ then ii) is valid. Let so $w(E) > 0$. We say that a d-ball of centre x and radius δ intersects substantially E (i.s. E) if $w(E \cap B_\delta(x)) \geq \delta w(B_\delta(x) \cap B)$. We suppose that every point of E let be a Lebesgue point ([C]) that is

\[\lim_{r \to 0^+} \frac{w(E \cap B_r(x))}{w(B_r(x))} = 1. \]

(14)

Afterwards, we cover B by means of d-balls $B_{R/2}(x_i^{(1)})$ of radius $R/2$ which are centred at the points of a maximal set $\{x_1^{(1)}, \ldots, x_k^{(1)}\} \subseteq B$ with $d(x_i^{(1)}, x_j^{(1)}) > R/2$, $\forall i \neq j$ ([CW]). Moreover we cover B by means of d-ball of radius $R/4$ centred at the points of a maximal set $\{x_1^{(2)}, \ldots, x_k^{(2)}\} \subseteq B$ with $d(x_i^{(2)}, x_j^{(2)}) > R/4$ and so on; in this way we obtain a class of families

$E_i = \{B_{R/2^{i-1}}(x_i^{(p)}) \mid i = 1, \ldots, I_p\}$ of covering of B.

Then we consider

$S_p = \left\{B_{R/2^{i-1}}(x_i^{(p)}) \mid i = 1, \ldots, I_p, B \text{ i.s. } E, x_i \notin \bigcup_{h=1}^{p-1} \bigcup_{B \in S_p} B, B_{R/2^{i-1}}(x_i^{(h)}) \text{ i.s. } E \right\}$

It results that for every $x \in E$, $\exists p \in \mathbb{N}$, $i \in \mathbb{N}$ such that $x \in B_{R/2^p}(x_i^{(p)})$ and $w(E \cap B_{R/2^{i-1}}(x_i^{(p)})) \geq \delta w(B_{R/2^{i-1}}(x_i^{(p)}))$. In fact, by (14), taken
Let be \(x \in E \), there exist \(p, i \in \mathbb{N} \) such that \(x \in B_{R/2^p}(x_i^{(p)}) \) with \(R/2^p < r_z \), then

\[
\begin{align*}
\omega(E \cap B_{R/2^{p-1}}(x_i^{(p)})) &> \omega(E \cap B_{R/2^p}(x)) > \sigma \omega(B_{R/2^p}(x)) > A \sigma \omega(B_{R/2^{p-1}}(x)) > \\
&> A^2 \sigma \omega(B_{R/2^{p-1}}(x_i^{(p-1)})) > \delta \omega(B_{R/2^{p-1}}(x_i^{(p-1)})) .
\end{align*}
\]

To any \(B \in \bigcup_{p \in \mathbb{N}} S_p \), we associate \(\tilde{B}_B \) as following manner: let \(B \in \bigcup_{p \in \mathbb{N}} S_p \) then \(\exists p \in \mathbb{N}, \exists i \in \{1, \ldots, I_p\} \) such that \(B = B_{R/2^{p-1}}(x_i^{(p)}) \in S_p \) with \(x_i^{(p)} \in B_{R/2^{p-1}}(x_i^{(p-1)}) \), \(j \in \{1, \ldots, I_{p-1}\} \). We put \(\tilde{B}_B = B_{R/2^{p-1}}(x_i^{(p-1)}) \). It results \(B \subset \tilde{B}_B \) and \(\tilde{B}_B \) does not intersects substantially \(E \). Then we put

\[
\tilde{E}_\delta = \bigcup_{p \in \mathbb{N}} \left(\bigcup_{B \in S_p} (\tilde{B}_B \cap B) \right).
\]

It results \(\tilde{E}_\delta \subseteq E_\delta \). In fact: let \(y \in \tilde{E}_\delta \), then \(\exists p \in \mathbb{N}, \exists B_{R/2^{p-1}}(x_i^{(p)}) \in S_p \) that intersects substantially \(E \), such that \(y \in \tilde{B}_B = B_{R/2^{p-1}}(x_i^{(p-1)}) \) and \(B_{R/2^{p-1}}(x_i^{(p-1)}) \subseteq B \). \(\tilde{E}_\delta \subseteq E_\delta \).

It results \(\omega(\tilde{E}_\delta \cap E) = \omega(E) \). In fact \(E \subseteq \tilde{E}_\delta \) because every point of \(E \) is Lebesgue point.

Let now \(0 < \alpha < \frac{1}{4} \). We can prove that

\[
B_{\alpha R/2^{p-1}}(x_i^{(p)}) \cap B_{\alpha R/2^{q-1}}(x_j^{(q)}) = \emptyset,
\]

\(\forall p, q \in \mathbb{N}, \forall i = 1, \ldots, I_p, \forall j = 1, \ldots, I_q \).

In fact, if \((p > q) \) \(B_{\alpha R/2^{p-1}}(x_i^{(p)}) \cap B_{\alpha R/2^{q-1}}(x_j^{(q)}) \neq \emptyset \), because \(B_{\alpha R/2^{p}}(x_i^{(p)}) \in R^{(p)}, B_{\alpha R/2^{q}}(x_j^{(q)}) \in R^{(q)} \), if \(p = q \) then \(d(x_i^{(p)}, x_j^{(q)}) > R/2^p \). If \(q > p \) then \(B_{R/2^{p-1}}(x_i^{(p)}) \in S_p \), \(B_{R/2^{q-1}}(x_j^{(q)}) \in S_q \) and \(x_j^{(q)} \notin B_{R/2^{p}}(x_i^{(p)}) \) then \(d(x_i^{(p)}, x_j^{(q)}) > R/2^p \).

In every case \(d(x_i^{(p)}, x_j^{(q)}) > R/2^p \). Let \(z \in B_{\alpha R/2^{p-1}}(x_i^{(p)}) \cap B_{\alpha R/2^{q-1}}(x_j^{(q)}) \) then

\[
R/2^p < d(x_i^{(p)}, x_j^{(q)}) < d(z, x_i^{(p)}) + d(z, x_j^{(q)}) < \alpha R/2^{p-1} + \alpha R/2^{q-1} \iff \alpha > \frac{1}{4} .
\]

Then, by taking \(0 < \alpha < \frac{1}{4} \) and by recalling that the doubling prop-

\((\ast) \) In fact, let \(z \in B_{R/2^{p-1}}(x_i^{(p-1)}) \), then

\[
d(z, x_i^{(p)}) < d(z, x_j^{(p-1)}) + d(x_i^{(p-1)}, x_i^{(p)}) < R/2^{p-2} + R/2^{p-1} = 3R/2^{p-1} .
\]
erty holds also for $B \cap B_R$ (see Prop. 2.10 of [FL2] and Lemma 4 of [C]).

$$w(E) = w(E_d \cap E) \leq \sum_{B \in \mathcal{U}_p} w(B_d \cap E) <$$

$$< \delta \sum_{B \in \mathcal{U}_p} w(B) < \quad (\delta \in \mathbb{R})$$

$$\leq C \delta \sum_{B \in \mathcal{U}_p} w((\alpha B) \cap B_R) = C \delta w \left(\bigcup_{B \in \mathcal{U}_p} (\alpha B) \cap B_R \right) < C \delta w \left(\bigcup_{B \in \mathcal{U}_p} B \cap B_R \right) <$$

$$= C \delta w \left(\bigcup_{B \in \mathcal{U}_p} (B \cap B_R) \right) = C \delta w(E_d) < C \delta w(E_0).$$

Now we prove the Harnack inequality. We have, in fact:

Theorem 8. Let u and $-u \in \mathcal{DG}_m(\Omega)$, $u \geq 0$. Then it exists a constant C dependent on the functional and on \bar{x} such that for any d-ball $B_R(\bar{x}) = B_R$, $B_{3R} \subset \Omega$, we have:

$$\sup_{B_{3R}} u \leq C \inf_{B_{3R}} u.$$

The proof follows by following propositions:

Proposition 8.1. Let $u \in \mathcal{DG}_m(\Omega)$, $u \geq 0$. Then for any $q > 0$, it exists $C = C(\bar{x}, q)$ such that

$$\sup_{B_{3R}} u \leq C \left(\frac{1}{w(B_R)} \int_{B_R} u^q w \, dx \right)^{1/q}.$$

Proof. Let $q > m$. The (15) follows by (10) and Hölder inequality. Let now $0 < q < m$. By (10) for $\sigma \in [0, 1[$ fixed and $k = 0$

$$\sup_{B_{3R}} u \leq \left(\frac{C}{1 - \sigma} \right)^{\Theta/(1 - 1)} \left(\frac{1}{w(B_R)} \int_{B_R} u^m w \, dx \right)^{1/m} \leq$$

$$\leq \left(\frac{C}{1 - \sigma} \right)^{\Theta/(q - 1)} \left(\frac{1}{w(B_R)} \int_{B_R} u^q \left(\sup_{B_{3R}} u \right)^{m-q} w \, dx \right)^{1/m} \leq$$

$$\leq \varepsilon \sup_{B_R} u + \left(\frac{C(\varepsilon)}{1 - \sigma} \right)^{\Theta/(q - 1)} \left(\frac{1}{w(B_R)} \int_{B_R} u^q w \, dx \right)^{1/q}$$

(ε) By doubling property.
with $0 < \varepsilon < 1$ fixed. (Here we have utilized the inequality $ab \leq \varepsilon a^{\alpha(l-m)} + C(\varepsilon)b^{m/q}$, $a, b > 0$). Now by Lemma 1.1 in [GGI] we have

$$\sup_{B \in \mathcal{R}} u \leq \frac{C}{(1 - \sigma)^{\frac{m}{q}l(l-1)}} \left(\frac{1}{w(B)} \int_{B} w \, dx \right)^{1/q},$$

by which, for $\sigma = \frac{1}{2}$, the thesis follows.

Proposition 8.2. Let $u \geq 0$, $-u \in \mathcal{D}^m(\Omega), \tau > 0$, $\gamma \in \mathbb{N}, [\,]$. If $w(\{x \in B_R/u < \tau\}) < \gamma w(B_R)$, then:

1. $w(\{x \in B_R/u < \tau/2^{r+1}\}) < C(\gamma)(\gamma^l)^{(m-1)/2m}w(B_R), \nu \in \mathbb{N},$

2. $\inf_{B \in \mathcal{R}} u > \lambda(\gamma)\tau$, with $0 < \lambda(\gamma) < 1$.

Proof. We observe that

$$w(\{x \in B_R/(-u) < -\tau\}) = w(\{x \in B_R/u < \tau\}) < \gamma w(B_R).$$

So we can apply the (12) of Lemma 5.1 to the function $-u$, for $h > k > -\tau$:

$$|h - k|^{m(m+1)/(m-1)}w(B(h, R))^{2m/l(m-1)} \leq$$

$$\leq C(w(B_R))^{2m(1-l)/(l(m-1))} \left(\int_{B(h, 2R)} \left| u - k \right|^m w \, dx \right)^{(m+1)/(m-1)} \cdot \left(w(B(k, R)) - w(B(h, R)) \right).$$

We put $h = -\tau/2^{r+1}$, $k = -\tau/2^r$, $s \in \mathbb{N}$ in the last inequality. We observe that on $B(-\tau/2^r, 2R)$ it is $0 < -\tau + \tau/2^r < \tau/2^r$. By doubling property for the measure $w(x) \, dx$, we obtain:

$$\left(w(\{x \in B_R/u < \frac{\tau}{2^{r+1}}\}) \right)^{2m/l(m-1)} \leq$$

$$\leq C(\gamma)(w(B_R))^{(2m(1-l) + l(m+1))/l(m-1)} \left(w\left(B\left(\frac{-\tau}{2^r}, R\right) \right) - w\left(B\left(\frac{-\tau}{2^{r+1}}, R\right) \right) \right).$$
Summing up for $s = 0, \ldots, v$, we have

$$
\nu \left(w \left(\left\{ x \in B_R / u < \frac{\tau}{2^{v+1}} \right\} \right) \right)^{2m/(l(m-1))} \leq C(\gamma) \left(w(B_R) \right)^{(2m(1-l)+l(m+1))/l(m-1)} w\left(\left\{ x \in B_R / u < \tau \right\} \right) \leq C(\gamma) \left(w(B_R) \right)^{(2m(1-l)+l(m+1))/l(m-1)} \gamma w(B_R).
$$

From which it follows that

$$
w \left(\left\{ x \in B_R / u < \frac{\tau}{2^{v+1}} \right\} \right) \leq C(\gamma) \left(\frac{\tau}{\gamma} \right)^{(m-1)/2m} w(B_R)
$$

that is (16).

At last we prove the ii). By (10) applied to $-u$, with $k = -\tau$, $\sigma = \frac{1}{2}$, we have

$$
\inf_{B_R/ \gamma} u \geq \tau \frac{1}{C(w(B_R))} \left(\int_{B(-\tau, R)} |u + \tau|^m w d\nu \right)^{1/m} \left(w(B(-\tau, R)) \right)^{(\Theta-1)/m} \geq \tau \left(1 - C \left(\frac{w(B(-\tau, R))}{w(B_R)} \right)^{\Theta/m} \right) \geq \tau \left(1 - C \gamma^{\Theta/m} \right)
$$

(we observe that on $B(-\tau, R)$ it is $0 < -u + \tau < \tau$).

Put $\gamma_0 = (1/2C)^{m/\Theta}$. Then

$$
\inf_{B_R/ \gamma} u \geq \frac{1}{2} \tau \quad \gamma \in]0, \gamma_0[,
$$

Let no $\nu \in N$ fixed such that $C(\gamma)(\gamma/\gamma')^{(m-1)/2m} < \gamma_0$. $C(\gamma)$ is the constant that appears in (16). Then by (16) and (18) it is

$$
\inf_{B_R/ \gamma} u \geq \frac{1}{2} \frac{\tau}{2^{v+1}} = \lambda(\gamma) \tau.
$$

We note that $\lambda(\gamma) < 1$. The conclusion of proof of ii) follows making use of the doubling property of the measure $w(x) dx$. It exists $\alpha > 0$ (see Lemma 2.10 in [FS]) such that

$$
w\left(\left\{ x \in B_{8R} / u \geq \tau \right\} \right) > (1 - \gamma)(1/8)^{\alpha} w(B_{8R}),
$$
that is equivalent to \(w(\{ x \in B_R / u < \tau^\prime \}) < \gamma' \cdot w(B_R) \). So by (19) follows (17).

Proposition 8.3. Let \(u > 0, -u \in \mathcal{D} \mathcal{G}_m(\Omega) \). Then \(\forall q > 0, q < 1/C \), (see proof), \(\exists \ C > 0 \) dependent on \(q \) such that

\[
\begin{equation}
\left(\frac{1}{w(B_R)} \int_{B_R} u^q \, dx \right)^{1/q} < C \inf_{B_{4R}} u.
\end{equation}
\]

Proof. If \(u = 0 \) the (20) is evident. Now let \(u \not= 0 \). Then it exists \(t > 0 \) such that \(w(\{ x \in B_R / u(x) > t \}) > 0 \). Let \(\delta \in]0,1[\) fixed, we consider \(E = \{ x \in B_R / u(x) > \lambda^{-1} t \} = A_{t^2}^{-1} \) (\(\lambda = \lambda(\gamma) \) is the constant that appears in (17)). We can apply the Lemma 7 to the set \(E \). There exist \(x \in B_R \) and \(\varrho > 0 \) such that \(w(E \cap B(x, \varrho)) > \delta w(B(x, \varrho)) \). Then by (17) replacing \(\tau = \lambda^{-1} \), it follows \(u(x) = \lambda^t, \forall x \in B(\varrho) \). Hence or

\[
w(\{ x \in B_R / u(x) > \lambda^t \}) > \frac{1}{C \delta} w(\{ x \in B_R / u(x) > \lambda^{-1} t \})
\]

or

\[
w(\{ x \in B_R / u(x) > \lambda^t \}) = w(B_R).
\]

In both case we conclude: if \(w(A_{t^2}) > C^{s-1} \delta^s w(B_R) \) for some \(s \) (we can suppose \(C \delta < 1 \)) then

\[
w(A_{t^{-1}}^s) > \frac{1}{C \delta} w(A_{t^{-2}}^s) > \ldots > \frac{1}{(C \delta)^{s-1}} w(A_{t^2}^s) > C^{s-1} \delta^s \cdot w(B_R),
\]

and hence by (17) we have \(\inf_{B_{4R}} u > \lambda t \).

Choose \(s \) so that \(w(A_{t^2}^s) > w(\{ x \in B_R / u(x) > \lambda^t \}) > C^{s-1} \delta^s \) i.e.

\[
s > \frac{\log (C \delta (w(A_{t^2}^s)/w(B_R)))}{\log (C \delta)}.
\]

And so \(\inf_{B_{4R}} u > C_1 t (w(A_{t^2}^s)/w(B_R))^{c^*} \) i.e.

\[
w(A_{t^2}^s)/w(B_R) < C_1^{-1} t^{-1/c^*}(\inf_{B_{4R}} u)^{1/c^*}.
\]
Now, since

\[
\frac{1}{w(B_R)} \int_{B_R} u^q \, dx = \frac{1}{w(B_R)} \left(q \int_0^\infty \frac{t^{q-1} w(A_t^0)}{t} \, dt + \frac{\xi}{q} \int_0^\xi t^{q-1} w(A_t^0) \, dt \right),
\]

setting \(\xi = \inf_{B_{1R}} u \) and \(q < 1/C_0 \), it holds

\[
\frac{1}{w(B_R)} \int_{B_R} u^q \, dx = \frac{q}{w(B_R)} \int_0^\infty \frac{t^{q-1} w(A_t^0)}{t} \, dt + \xi^q <
\]

\[
< C_1^{-1} q \int_0^\infty \frac{t^{q-1} t^{-1/C_0}}{B_{1R}} \left(\inf_{B_{1R}} u \right)^{1/C_0} \, dt + \left(\inf_{B_{1R}} u \right)^q = \frac{C_1^{-1} q}{(1/C_0)} \int_0^\infty \left(\inf_{B_{1R}} u \right)^q \, dt + \left(\inf_{B_{1R}} u \right)^q.
\]

From this it follows

\[
\left(\frac{1}{w(B_R)} \int_{B_R} u^q \, dx \right)^{1/q} < C \inf_{B_{1R}} u < C \inf_{B_{1R}} u.
\]

The conclusion of Theorem 8 now follows by (15).

Remark. The previous results are true for quasi-minima (see [G], [GG2], [BT]). Recall that \(u \in W^1_\gamma(T) \) is a quasi-minimum for the functional (1) with constant \(Q \) if, for any \(\Phi \in W^1_\gamma(T) \), with \(\text{supp} \Phi \subset T \)

\[
F(u, \text{supp} \Phi) < Q F(u + \Phi, \text{supp} \Phi).
\]

References

