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Quartic Threefolds Containing Two Skew Double Lines.

A. ALZATI - M. BERTOLINI (*)

1. - Introduction.

The problem of rationality for algebraic threefolds is still an open
problem in Algebraic Geometry. However the conic bundle theory,
developed by Beauville (see [BI]’ [B2] and also [C-M]), gives us a

very useful tool to solve this problem in many cases.
Some recent results of Sarkisov and Iskovskih (see [1,], [12]

and [Sa]) have improved this technique by giving some answers even
when the intermediate Jacobian of the threefold is the Jacobian of
a curve. These facts have allowed us to solve the problem of rational-
ity for the Fano threefold of P5 containing n planes (see [A-Bi]
and [A-B]).

In this paper we study the rationality of the generic quartic three-
fold of P4 containing two skew double lines and containing n planes
with all possible configurations. In [C-M] Conte and Murre have

proved that a generic quartic threefold of P4 containing only one
double line is not rational, while it is well known that such threefold
with two incident double lines is rational. Our. work is a natural

prosecution of [C-M] and it was suggested by remark (6, 3) of [A-B,],
in which we showed that a generic quartic threefold of P4 containing
two skew double lines, and no planes, is not rational.

Our proofs are based on this idea: there exists a birational morphism
(due to Fano, [F]) between P4 and the quadric hypersurface of P5,

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita di Milano
via C. Saldini 50, 20133 Milano.
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identified with the Grassmannian of lines of P3. By this
morphism some quartic hypersurfaces with two skew double lines
correspond to cubic complexes containing two planes, meeting two
by two at one point only; these singular varieties have a well known
conic bundle structure (see [C], and [A-B]) ; the existence of
some plane in the quartics changes this structure; by studying these
new structures we get our results; they are described in § 4.

We use these conventions: by the word we mean a pro-

jective algebraic variety (singular or not) defined on C; by the word
« generic » we mean that what we are saying is true in a suitable open
Zarisky set.

2. - Fano birational morphism.

We choose as coordinates in P5, we fix a smooth
quadric hypersurface Q and we choose three planes contained in Q,
meeting two by two at one point only; we can always suppose that Q
has this equation:

and that the three planes, Po , PI, P2 , have equations :

Now in P4 we choose z4 : zs) as coordinates, (this unusual
choice will be very useful in the sequel), and we choose three skew
lines, not two of them lying in the same hyperplane; we can always
suppose that the three lines have equations:
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We consider the rational map 0: p4 - P5 given by:

0 is a well known birational morphism between P4 and Q (see [F]) ,
its inverse is:

In fact 0 is a quadratic transformation; its base locus in P4 is

given by: LI, L2, La and by the only line L,~ which is incident to them,
the equations of L4 are: Z2 = z4 = zb = 0.

The base locus of in P5 is given by and by the
plane II passing through the points Po r) Pl, Po n P2, the

equations of 1I are : x2 = x4 = 0.

All cubic hypersurfaces in P5 containing P1 and P2 have this
equation:

where e ~ C; F = ~(~3 :~ ~5) = I,x, + + is a degree one

homogeneous polynomial; G, H7 E9 M9 N are analogous to F;
p = = + + P22X4 2 + + P2X4 + i 8
a degree two homogeneous polynomial; Q and B are analogous to P.

(P(JT) is the following quartic hypersurface Y of P4:
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It is easy to see that Y contains E., .L2 , L , L4 and that L1, L3
are double lines for Y, without n-ple points (n&#x3E;3). We can prove:

PROPOSITION (2.1 ). Y is smooth out of LI, La and it is the more

general quartic hypersur faee of p4 containing two skew double lines (and
no other singularities) artd another simple line, no two of them lying in
the same hyperplane..

PROOF. In P4 we choose as coordinates ; we can always
suppose that the three skew lines, no two of them lying in the same
hyperplane, have equations :

All quartic hypersurfaces containing x = y = u = 0 and
z = w = u = 0 as double lines have equation:

0, 9, Y are analogous to A.
This hypersurface contains the third line if and only if

It is easy to see that it is smooth out of the two double lines.
Now if we = XI ZI Z3 = YI Z2 = z, w, we see that

the equation (2.2), with the conditions (2.3), becomes the equation
of Y after a suitable linear, invertible, transformation on its coefh-
cients ; so we get our thesis. 13

REMARK (2.4). Obviously the existence of L4 in Y is a direct con-
sequence of the existence of L2 and the double lines L1, Z3.

If we intersect Y with the plane containing El and L4 we get an
other line Ls whose equations are: p11 z1 = Z4 = Zs = o.

If we intersect Y with the plane containing E3 and L1 we get an
other line Zg whose equations are: z2 = z4 = 0.

The following picture shows the configuration of these six lines
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and their incidence points in Y:

In the sequel we will need to know the action of 0 on some plane
in Y, so we prove the following:

PROPOSITION (2.5). Let p be a plane in Y.
Suppose that p does not belong to the hyperplane z, = 0. If p 

Ll and L3 but not L2, then 0(p) is a quadric (irreducible or not), in
V = Q r1 X; i f P cuts LI, L2 and L3 then 0(p) is a plane in V meeting
Po , P1, P2 at one p oint onty.

Suppose that p belongs to the hyperplane z, = 0. If p does not con-
tain LI or L3 then V contains Po and therefore Y splits into a cubic
hypersurface acnd ac hyperplane.

PROOF. In the first case it suffices to consider the equations of a
plane p with the above conditions and to write down the equations
of 0(p) in P5 by using the previously fixed coordinate system.

In the second case a direct calculation shows that the existence
of a plane p in Y, with the above conditions, implies that V con-
tains Po : in this case is a cubic hypersurface, hence Y is
reducible. C7

Now let p be a plane in Y; if p contains El and it is incident with
L3 but it is not z, = Zs = 0 (i.e. the plane containing LI and .L4)
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we call it a If p contains La and it is incident with LLl
but it is not z. = z, = 0 (i.e. the plane containing La and L4) we
call it a « ,a-plane ). Obviously all these planes belong to the hyper-
plane z, = 0. We have this :

PROPOSITION (2.6). Let (a, b) be the numbers of A-plane8 and re-
spectively contained in Y, by keeping it irreducible. If Y does
not contain z4 = z5 = 0 or z, = z4 = 0 we have only these couples:

If Y contains z, = Z5 = 0 we have
(0, 2). If Y contains z, = z, = 0

) . I f Y contains both
of them we have

PROOF. Obviously when V contains Pl and P3 only, among the
three planes which are the base locus of 0 in P5, we can state that Y
is irreducible if and only if V is irreducible; then our strategy is the
following: to consider the generic Y containing a I-planes and b

u-planes, to consider the corresponding V and to check if it, i.e. X

because Q is fixed, is irreducible.
A k-plane has equations: Z4 = z3 - kz5 = 0 Y contains it if

and only if: Âfl + h = + + .p3 = 12 rii + Arl + 0; while Y
contains Z4 = Zõ = 0 if and only if: r11= 0. 0 sends the A-plane
into the line x3 = on the plane Po , y while 0 blow down the plane
z4 = zs = 0 in the point (o :0 : 0 :1:0 :0) of P5.

A /z-plane has equations: z4 = /ZZ2 = 0 ,u E C; Y contains it if
and only if : - Jupl1-f - rn = ,u2 fl - &#x3E;pi + ri = lZ2 f3 -f- r. = 0 ; while
Y contains z2=z4=0 if and only if: f1=f3=0. O sends the
p-plane into the line 0153l = - ux5 on the plane Po , while 0 blow down
the plane Z2= Z4= 0 in the point (0 :1:0 :0 :0 :0) of P5.

As we have seen, all these planes, belonging to the hyperplane
z4 = 0, are sent in Po by 0. The section of X with Po is the following
plane cubic E :

For generic passing through (o : 0 : o :1: o : o) and (o :1: o : o : o : o),
is smooth; if Y contains some k-plane, some ,u-plane or the two parti-
cular planes Z4 = z,, = 0 or Z2 = Z4 = 0, then E splits in a obvious way.
The values (a, b) quoted in (2.6) are the only possibilities to avoid
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that X contains Po entirely: it would imply Y reducible. In all these
cases it is easy to see that X is in fact irreducible by looking at the
possible hyperplanes contained in X which would cut one of the lines
into which .E splits on Po .

If Y contains Z4 = z, = 0 only or z2 = Z4 = 0 only, E does not

split and hence X is irreducible.
We will give an example of this reasoning: let us suppose that Y

contains a k-plane, then E splits into the line and into the
smooth conic + --~- + + plx3x5 + p3X2 5 = 0. If
X is reducible it splits into a hyperplane of P5 and something other;
this hyperplane has to cut the line ~3 = on Po , y hence its equa-
tion is: Â0153s + bx2 -E-- but there exists no choice of the
three numbers a, b, c such that the generic X contains this hyper-
plane, in spite of conditions imposed on Y by containing the A-plane,
( i.e. : + t 3 = 12p,l + + .~3 = 12 rn + lri + ra = 0), even when Y
contains z, = z5 = 0 or z2 = 0 or both.

The other cases are solved in the same way. D

REMARK (2.7). By a simple check of the partial derivatives of the
equations of V we see that, in spite of the existence in Y of the planes
quoted in (2.6), V has ordinary double points only, (see also [A-B1]
and [A-B2]) .

3. - The conic bundle structures.

We need some definitions and basic facts about conic bundle

theory.

DEFINITION (3.1). Let W be a threefold, let S be a smooth surface.
If there exists a sur5ective morphism r: W --~ ~ such that for every
point the fibre is isomorphic to a conic in P2, possibly de-
generated, then W is called a conic bundle over ~S; we will use the
symbol: ( yD’, z, S).

DEFINITION (3.2). Let ( IY, z, S) and ( W’, z’, S’ ) be two conic

bundles; if there exists a commutative diagram as follows:
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in which the horizontal arrows are birational morphisms, then we say
that ( W, ~, S) and ( W’, r’, ~" ) are birationally equivalent.

REMARK (3.3). Let ( W, ~c, ~’) be a singular conic bundle; suppose
that yV has only a finite number of ordinary double points such that
none of them is the intersection point of the two lines into which a‘
degenerate fibre splits. Then, if we solve the singularities of ~W by
blowings up, we get a smooth conic bundle over which is bira-

tionally equivalent to ( W, r, S).

DEFINITION (3.4). Let (W, r, S) be a conic bundle; the set of the
points t such that the fibre is a degenerate conic is called the
discriminant locus of the conic bundle. It can be shown (see [Sa],
p. 358) that it is always a divisor of ~’; from now on we will refer to
it as the discriminant divisor Dw of ( IP, r, S).

DEFINITION (3.5). A smooth conic bundle ( W, r, ~S) is called stan-
dard if for every curve C of S, the surface 7:-1(0) is irreducible.

PROPOSITION (3.6) (see [Sa], p. 366-367, see also [A-B2] prop. (2.6)).
Let ( TP, r, 8) be a smooth conic bundle, such that Dw is the disjoint
union of smooth curves Di , i = 1, 2 ... n ; if for instance, is
reducible then necessarily D1 n (Dw - D1) is empty and we can blow
down one of the two components of 7:-I(DI) to obtain a new smooth
conic bundle, birationally equivalent to r, ~S), whose D is.

D2 U Dg U ... D~.. We can repeat this process until to obtain a smooth
standard conic bundle birationally equivalent to (W, r, S).

THEOREM (3.7) (see [I2], p. 742). Let (W, r, S) ‘ be a smooth, stan-
dard, conic bundle, let S be a rational surface, let Dw be a curve.
Then W is rational if there exists a pencil of rational curves 0, on S,
(t E P1), without fixed components, such that Vt.

Now we consider the conic bundle structures of .~ and Y.
It is well known that every quartic hypersurface in P4 with a

double line has a conic bundle structure (see [C-M]) : we fix the plane or
whose equations are: z, = Z2 = 0; it is skew with Zi. If we project Y
from EL to n we have that the fibre over a point of n is a quartic plane
curve which splits into Li, counted twice, and into another conic;
if we blow up Y along Li we get a smooth conic bundle according to
definition (3.1).
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Now we want to determine Dy. The generic point of the plane
containing a point (0 : 0 : z3 : z4 : z5 ) of yr and L1, has coordinates

the intersection between Y and this plane is the

following plane quartic (where F = etc.~ :

t2 = 0 gives Ll counted twice, the remaining curve is a conic; it is

degenerated if and only if:

Therefore Dy splits into the line z, = 0 counted twice (whose
existence is an obvious consequence of the double lines .L1 and L,,
in Y) and into a sestic T; we remark that the existence of a double
line in Dp makes very difficult to apply all known theorems about the
rationality of the conic bundles.

Now let us consider V = X n Q, as = Y we have that V
is birational to Y. V has a conic bundle structure too; it is well
known (see [C], [A-B1]) : we fix the plane ~’, whose equations are
xo = x1= x2 = 0 ; we project V from Pi to n’; by blowing up V
along PI and at the ordinary double points which V has on P2 (see
[A-Bi]) we get a smooth conic bundle.

Let us determine D: the generic point of the plane containing a
point (o : o : o : x4 : x5) of Pl has coordinates: (oc:,8:y: ~x4 : 
this point belongs to V if and only if:

and
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3 = 0 gives the plane Pi; if we delete 6 we obtain a conic, it is
easy to see ([A-Bl]) that the conic is degenerate if and only if:

where F = etc.

Therefore Dy splits into the line x5 = 0 and into a smooth plane
sestic .1~ (see [A-BJ and [A-B2J); it is exactly the same curve into
which Dy splits, in fact if we look at (3.8) and (3.9) and if we put
x$ = 3, 41 5 we see that the two curves are the same curve.

4. - The main results.

Now we want to prove this:

PROPOSITION (4.1). The generic quartic hypersurface of p4 containing
two skew double lines is not rational.

As the set of the generic quartic hypersurfaces of P4, containing
two skew double lines and a third simple skew line, (not two of them
belonging to the same hyperplane), is a closed Zarisky set of the
moduli space of all quartic hypersurfaces of P4, to prove (4.1) it suf-
fices to prove the following:

PROPOSITION (4.2). The generic quartic hypersurfaces of P4, con-

taining two skew double lines and au third simple skew line, not two of
them belonging to the same hyperplane, is not rational.

PROOF. By (2.1) it suffices to show that Y is not rational. By
the previous section we have seen that Y is birational to V which
is a cubic complex containing two planes only, meeting two by two
at one point; therefore it is not rational (see [A-BI] and [A-R]). D

Now we want to study the rationality of the generic quartic hyper-
surface of P4 with two skew double lines when it contains some plane;
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as we have seen this problem is equivalent to study the rationality of
the generic Y containing some plane.

If Y contains a plane which is skew with Li (or Zg) it is rational;
in fact every line intersecting LI and the plane cuts Y in one other
point only, so that it is not difficult to see that in this case Y is bi-
rational to Therefore we can suppose that every plane con-
tained in Y is incident with both double lines, or it is a 2-plane or a
/z-plane or it is Z4 = z5 = 0 or z2 = z4 = 0.

We have this:

PROPOSITION (4.3). If Y contains some plane incident to both double
tines or containing one of them, then it is rational (or reducible) save
when it contains at most one plane incident with LI and La and all
A-planes and allowed by (2.6).

Before proving (4.3) we need

LEMMA (4.4). If Y contains one plane only, intersecting Ll and .L3
but not intersecting L2, then Y is not rational.

PROOF. - Let us call p this plane. If p belongs to the hyperplane
generated by L, and .L3 (i.e. z4 = 0), then 0(p) is Po and V is a

cubic complex containing the three planes which are the base locus
of therefore Y is reducible, (see also (2.5)).

In the other cases, by a suitable choice of coordinate system, we
can always suppose that p has equations:

Then 0(p) has equations:

In the cases 1) and 3) 0(p) splits into a couple of planes and V
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is a cubic complex containing four planes. It is easy to see that this
is the case (4, 3, 1) of table .R of therefore V is not rational.

In the cases 2) and 4) 0(p) is a smooth quadric cutting a line on
Pl and a line on P2 both passing through P1 n P2. This configuration
in V is obtained as follows: by choosing two points ..A, B in P3 and
two skew lines ,a, ¿ passing through A and B respectively; by con-
sidering the two stars of lines centered in A and in B and the lines
intersecting both az and e. If we move az until it cuts e in a third
distinct point C we get a cubic complex V containing four planes
(the three stars of lines centered in A, B, C and the lines of the plane
through A, B, C) with the previously considered configuration. It is

easy to see that this degeneration is flat so that V is not rational as
in the previous cases. D

PROOF OF (4.3). Let us suppose that Y contains only one plane p
intersecting L.1, L2 by (2.5 ) 0(p) is a plane in Y, meeting P1 and P2
at one point only, so that Y is birational to a cubic complex contain-
ing three planes two by two meeting at one point only (and no other
planes), such complex is not rational (see [A-R] and [A-B1]) .

Let us suppose that Y contains only one plane intersecting LI, L 3
but not intersecting L2: Y is not rational by lemma (4.4).

Now it is easy to see that if we suppose that Y contains two

planes intersecting Zi L2 , L3 , or two planes intersecting L,,, but

not L2 , or one plane of the first type and one plane of the second type,
we get that V is a singular conic bundle over P2 birationally equi-
valent to a smooth standard conic bundle over a rational surface S,
such that Dw is the pull back of a smooth plane quartic by blowings up;
(for the second type we can use a degeneration argument as in the
proof of lemma (4.4)).

V is rational by theorem (3.7): it suffices to consider a pencil of
lines of P2 (through a point not belonging to the quartic) and its trans-
formed on 8 by the blowings up.

Finally we have only to remark that the existence in Y of any
plane p quoted in (2.6) does not change the conic bundle structure
of V; in fact in all these cases V is irreducible, with ordinary double
points only, 0(p) is a line or a point (see (2.6)) and when we project V
from P1 to ~’ we see that Dv is the same divisor (a smooth curve plus
one or two lines) arising when Y does not contain any plane of this
type; this last fact is easy checked by looking directly at (3.8) or (3.9)
and by recalling the conditions imposed on Y by the existence of a
plane of this type (see (2.6)). L7
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