Paz Jiménez Seral

A lattice of homomorphs

Rendiconti del Seminario Matematico della Università di Padova,

<http://www.numdam.org/item?id=RSMUP_1993__90__39_0>
A Lattice of Homomorphs.

PAZ JIMÉNEZ SERAL (*)

Preliminary notes.

In this paper all groups are finite and soluble. The homomorph \(h(\mathcal{B}) \) for a boundary \(\mathcal{B} \) consists of all \("\mathcal{B}\)-perfect groups\), namely all those groups that have no \(\mathcal{B} \)-groups among their epimorphic images. The boundary \(b(\mathcal{K}) \) for a homomorph \(\mathcal{K} \) consists of all groups \(G \) such that \(G \notin \mathcal{K} \) and if \(1 \neq N \leq G \), then \(G/N \notin \mathcal{K} \). The maps \(h \) and \(b \) are mutually inverse bijections between the set of non-empty homomorphs and the set of boundaries. Let \(\mathcal{K} \) be a homomorph. We recall from [4] that the class \(D\mathcal{K} \) of \(\mathcal{K} \) comprises all groups \(G \) such that \(\operatorname{Cov}_\mathcal{K}(G) \neq \emptyset \) namely all those groups that have \(\mathcal{K} \)-covering subgroups. \(D\mathcal{K} \) is also a homomorph. We study in [6] the set

\[
\mathcal{H}(\mathcal{U}) = \{ \mathcal{K} | D\mathcal{K} = \mathcal{U} \}, \text{ where } \mathcal{U} \text{ is a homomorph.}
\]

Those homomorphs \(\mathcal{K} \) such that \(D\mathcal{K} = \mathcal{U} \) behave with regard to \(\mathcal{U} \) in a somewhat similar way to the Schunck classes with regard to the whole universe of soluble groups. The class \(\mathcal{C}(\mathcal{U}) \) (see (2.1) of [6]) is introduced in order to characterize the homomorphs \(\mathcal{K} \) of \(\mathcal{H}(\mathcal{U}) \), when \(\mathcal{H}(\mathcal{U}) = \emptyset \) or \(|\mathcal{H}(\mathcal{U})| = 1 \) and to study the relation of usual containment in \(\mathcal{H}(\mathcal{U}) \). The class \(\mathcal{C}(\mathcal{U}) \) consists of those primitive groups \(G \) in \(\mathcal{U} \) that satisfy:

If \(M \leq X \) and \(X/\operatorname{core}_X M \equiv G \), we have \(M \in \mathcal{U} \) if and only if \(X \in \mathcal{U} \).

Let \(\mathcal{P} \) denote the class of finite soluble primitive groups.

If \(\mathcal{H}(\mathcal{U}) \neq \emptyset \), the minimum in \(\mathcal{H}(\mathcal{U}) \) with regard to the relation of containment is \(\mathcal{R} = h((\mathcal{P} - \mathcal{H}(\mathcal{U})) \cup \mathcal{C}(\mathcal{U})) \) (see [6], (3.3)).

(*) Indirizzo dell'A.: Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, España.
In this paper we study the relation of strong containment in \(H(U) \) given by

1 DEFINITION. Let \(U \) be a homomorph. Let \(\mathcal{X}, \mathcal{Y} \in H(U) \). We say that \(\mathcal{X} \) is strongly contained in \(\mathcal{Y} \), and write \(\mathcal{X} \ll \mathcal{Y} \) if, for each \(G \in U \) an \(\mathcal{X} \)-covering subgroup of \(G \) is contained in some \(\mathcal{Y} \)-covering subgroup of \(G \).

For a homomorph \(\mathcal{X} \), we denote \(\mathcal{X} := h(b(\mathcal{X}) \cap \mathcal{P}) \). For every group \(G \in D\mathcal{X} \) we have: \(\text{Cov}_{\mathcal{X}}(G) = \text{Cov}_X(G) \) (see [6], (1.8)).

2 LEMMA. Let \(\mathcal{X} \) be a homomorph. We denote
\[
a(\mathcal{X}) := \{ G \in D\mathcal{X} \mid \text{ if } H \in \text{Cov}_{\mathcal{X}}(G), H \cap \text{Soc} G = 1 \}.
\]
We have:

a) \(a(\mathcal{X}) = a(\mathcal{X}) \cap D\mathcal{X} \).
b) \(\mathcal{X} = h(a(\mathcal{X})) \).

PROOF. a) It is evident by the definition.
b) Since \(b(\mathcal{X}) = b(\mathcal{X}) \cap \mathcal{P} \), we have \(b(\mathcal{X}) \subseteq a(\mathcal{X}) \cap D\mathcal{X} = a(\mathcal{X}) \) and therefore \(h(a(\mathcal{X})) \subseteq h(b(\mathcal{X})) = \mathcal{X} \). Since \(\mathcal{X} = h(a(\mathcal{X})) \) (see [2], VI (1.4)) and \(a(\mathcal{X}) \subseteq a(\mathcal{X}) \), we have \(\mathcal{X} = h(a(\mathcal{X})) \subseteq h(a(\mathcal{X})) \).

Let us recall now the following

3 DEFINITION ([5] and [3] (8.2)). Let \(B \subset \mathcal{P} \). We define \(B_0 = B \), and if \(B_i \) has already been defined, let
\[
B_i + 1 = \left\{ (X/C_X(V))[V] \mid H \leq X \leq K \leq G = KF(G) \in B_i, \text{ } H \in \text{Cov}_{h(B_i)}(K), \text{ is } X \text{-composition factor of } F(G) \right\}.
\]
We denote by \(B^* \) the union of all class \(B_i \) previously defined.

In a similar way to (8.3) from [3] we have

4 PROPOSITION. Let \(\mathcal{X} \) be a homomorph and \(B \subset \mathcal{P} \) such that \(B \subseteq a(\mathcal{X}) \). We have that \(B^* \subseteq a(\mathcal{X}) \) (in particular \(a(\mathcal{X})^* = a(\mathcal{X}) \)).

PROOF. Let us prove that \(B_i \subseteq a(\mathcal{X}) \) for every \(i \in \mathbb{N} \). We proceed by induction on \(i \). We have that \(B = B_0 \subseteq a(\mathcal{X}) \). Suppose \(B_i \subseteq a(\mathcal{X}) \). Let \(B \in B_{i+1} \). There exists \(G \in B_i \subseteq a(\mathcal{X}) \), \(Y \leq X \leq K \), \(K \) complement of \(F(G) \), \(H \in \text{Cov}_{h(B_i)}(K) \), \(V, W \), \(X \)-subgroups of \(F(G) \), \(V/W \), \(X \)-composition
of $F(G)$ such that $B = X/C_X(V/W)[(V/W)]$. Since $B_i \subseteq a(\mathcal{C})$, by [1] (2.2), we have $\mathcal{C} \subseteq h(B_i)$, hence there exists $H \in \text{Cov}_a(K)$ such that $H \leq Y$. As $G \in a(\mathcal{C}) \subseteq D\mathcal{C}$, we have $H \in \text{Cov}_a(K) \subseteq \text{Cov}_a(G)$. Besides, it can be confirmed that

$$B = X/C_X(V/W)[(V/W)] \cong XV/C_X(V/W)W.$$

By the properties of covering subgroups $H \in \text{Cov}_a(XV)$ and

$$HC_X(V/W)W/C_X(V/W)W \in \text{Cov}_a(XV/C_X(V/W)W),$$

therefore $B \in D\mathcal{C}$. We know from [3] (8.3), that $B \in a(\mathcal{C})$, so we can deduce that $B \in a(\mathcal{C}) \cap D\mathcal{C} = a(\mathcal{C})$.

Below we study the relation \ll in $H(\mathcal{U})$.

5 Proposition. Let $\mathcal{X}, \mathcal{Y} \in H(\mathcal{U})$. We have $\mathcal{X} \ll \mathcal{Y}$ if and only if $\mathcal{X} \ll \mathcal{Y}$.

Proof. \Rightarrow It is evident from that comment before Lemma 2.

\Rightarrow We have $b(\mathcal{Y}) = b(\mathcal{Y}) \cap \mathcal{P}$. By definition of \ll and $a(\mathcal{X})$, we have that $b(\mathcal{Y}) \cap \mathcal{P} = b(\mathcal{Y}) \cap D\mathcal{Y} \subseteq a(\mathcal{X})$. Moreover, $a(\mathcal{X}) \subseteq a(\mathcal{X})$, hence $b(\mathcal{Y}) \subseteq b(\mathcal{X})$ and by [1] (2.2), $\mathcal{X} \ll \mathcal{Y}$.

Since the mapping $\mathcal{C} \rightarrow \mathcal{C}$ from $H(\mathcal{U})$ to the set of Schunck classes is injective (see [6], 3.1), $H(\mathcal{U})$ can be considered a subset of the Schunck classes ordered by \ll.

In the examples described in [6] (1.9), (3.8), (3.9), $(H(\mathcal{U}), \ll)$ has a lattice structure. In these examples we have $a(\mathcal{U}) = a(\mathcal{K})$. In this respect, we can say:

6 Proposition. Let \mathcal{U} be a homomorph and \mathcal{K} the minimum for \subset in $H(\mathcal{U})$. The following statements are equivalent:

a) $a(\mathcal{U}) = a(\mathcal{K})$;

b) $a(\mathcal{U})^\subset = a(\mathcal{U})$.

Proof. a) \Rightarrow b) It follows immediately from Proposition 4.

b) \Rightarrow a) By b) we obviously have $a(\mathcal{U})^\subset \cap h(a(\mathcal{U})) = \emptyset$. By [3] (8.4), we have $a(\mathcal{U}) \subseteq a(h(a(\mathcal{U})))$. By [6] (3.3), $h(a(\mathcal{U})) = \mathcal{K}$ and therefore $a(\mathcal{U}) \subseteq a(\mathcal{K})$.
Besides, \(\mathcal{C}(U) \subseteq U = D\mathcal{M} \) implies \(\mathcal{C}(U) \subseteq \mathcal{C}(\mathcal{M}) \cap D\mathcal{M} = a(\mathcal{M}) \). By [6] (1.7), we have \(a(\mathcal{M}) \subseteq \mathcal{C}(U) \) and therefore the equality.

7 Theorem. Let \(U \) be a homomorph such that \(b(U) \cap \mathcal{P} = \emptyset \). (These homomorphs are known as totally unsaturated).

\((\mathcal{H}(U), \ll)\) is a lattice if and only if \(\mathcal{C}(U)^* = \mathcal{C}(U) \).

Proof. \(\Rightarrow \) By the proposition above and [6] (1.7), it suffices to prove that \(\mathcal{C}(U) \subseteq a(\mathcal{M}) \). Let \(G \in \mathcal{C}(U) \). Let \(\mathcal{K} = h(b(U) \cup \{G\}) \). By [6] (2.3), \(\mathcal{K} \in \mathcal{H}(U) \). Since \(\ll \) implies \(\subseteq \), the infimum of \(\{\mathcal{K}, \mathcal{M}\} \) must be \(\mathcal{M} \).

Thus \(\mathcal{M} \ll \mathcal{K} \), therefore \(\mathcal{M} \ll \mathcal{K} \) and consequently \(b(\mathcal{K}) \subseteq a(\mathcal{M}) \). As \(\{G\} = b(\mathcal{K}) \), we have that

\[G \in a(\mathcal{M}) \cap U = a(\mathcal{M}) \cap D\mathcal{M} = a(\mathcal{M}). \]

\(\Leftarrow \) Let \(\mathcal{X}, \mathcal{Y} \in \mathcal{H}(U) \). Recall from [5] Theorem A that

\[\mathcal{X} \land \mathcal{Y} = h((b(\mathcal{X}) \cup b(\mathcal{Y}))^*). \]

By Proposition 6 we have \(\mathcal{C}(U)^* = \mathcal{C}(U) = a(\mathcal{M}) \). Since \(b(\mathcal{X}) \cup b(\mathcal{Y}) \subseteq a(\mathcal{M}) \), by Proposition 4, we have that \((b(\mathcal{X}) \cup b(\mathcal{Y}))^* \subseteq a(\mathcal{M}) \) and therefore \(b(\mathcal{X} \lor \mathcal{Y}) \subseteq a(\mathcal{M}) \). By [6] (2.3), we have that \(\mathcal{K} = h(b(U) \cup \cup b(\mathcal{X} \lor \mathcal{Y})) \in \mathcal{H}(U) \) and it can easily be confirmed that \(\mathcal{K} = \mathcal{X} \land \mathcal{Y} \).

Now let, \(j = h(a(\mathcal{X}) \cap a(\mathcal{Y})) \). Again by the characterization in [6] (2.3) and (3.1), of the homomorphs in \(\mathcal{H}(U) \) we have that \(Z = j \cap U \in \mathcal{H}(U) \), and \(j = Z \). It can be confirmed that \(Z = \mathcal{X} \lor \mathcal{Y} \).

8 Proposition. Let \(U \) be a totally unsaturated homomorph such that \((\mathcal{H}(U), \ll) \) is a lattice. For every \(\mathcal{X}, \mathcal{Y} \in \mathcal{H}(U) \) we have:

a) \(\mathcal{X} \land \mathcal{Y} = \mathcal{X} \land \mathcal{Y} \).

b) \(\mathcal{X} \ll Z \neq U \) implies \(\mathcal{X} = Z \) if and only if \(|b(\mathcal{X}) \cap \mathcal{P}| = 1 \).

Proof. a) It is clear from the previous proof that

\[b(\mathcal{X} \land \mathcal{Y}) \cap \mathcal{P} = b(\mathcal{X} \land \mathcal{Y}). \]

b) \(\Rightarrow \) If \(|b(\mathcal{X}) \cap \mathcal{P}| \neq 1 \), we can have \(\emptyset \neq \mathcal{B} \subset b(\mathcal{X}) \cap \mathcal{P} \subseteq \mathcal{C}(U) \). Now \(Z = h(b(U) \cup \mathcal{B}) \in \mathcal{H}(U) \), \(Z \neq \mathcal{X} \) and \(\mathcal{X} \ll Z \neq U \) in contradiction with the hypothesis.

\(\Leftarrow \) As \(\mathcal{X} = h(b(\mathcal{X}) \cap \mathcal{P}) \), \(\mathcal{X} \) is maximal, hence \(\mathcal{X} \ll \mathcal{Z} \neq \mathcal{S} \) implies \(\mathcal{X} = \mathcal{Z} \) and by Proposition 5 we have the thesis.
REFERENCES
