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Quantum Stochastic Differential Equations
Driven by Free Noises and Dilations

of Markovian Semigroups.

MARIA ELVIRA MANCINO (*)

1. Introduction.

The Feynman-Kac formula allows to represent solutions of partial
differential equations as expectation of Brownian functionals. This for-
mula has been extended to the quantum stochastic case by Accardi
(see [1]). The Boson Fock space quantum stochastic calculus has been
recently applied to construct dilations of Markovian semigroups and
give a quantum stochastic representation of solutions to Feller-Kol-
mogorov equations via the Feynman-Kac perturbation scheme
(see [9]).
A satisfactory quantum stochastic calculus can be developed also

with respect to the so called «free noise» introduced by Speicher
(see [10]). This has been used to produce different dilations of Marko-
vian semigroups with bounded generators (see [2], [5], [7], [10]). In [6]
the stochastic calculus of [5], [7] was extended to the case of infinite
creation and annihilation fields and this extension allowed to construct
a unitary dilation of the semigroup of every countable state time con-
tinuous Markov process.

The aim of this paper is to extend these results to a bigger class of
Markovian semigroups. For this end we establish an existence, unique-
ness and unitary theorem for quantum stochastic differential equation
with unbounded coefficients driven by infinite creation and annihila-
tion and gauge fields. In Section 3 we extend the definitions of the left
and right stochastic integrals with respect to the gauge operators too,
and examine in detail the corresponding extensions of the left and right

(*) Indirizzo dell’A.: Universita di Trento, Dipartimento di Matematica,
1-38050 Povo (TN), Italia.
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quantum It6 formulae. The case of quantum stochastic differential

equation with bounded coefficients is studied in Section 4. The unitary
solution gives the cocycle which provides by conjugation, dilations of
every uniformly continuous quantum dynamical semigroup. In Sec-
tion 5 we prove a theorem on quantum stochastic differential equation
with unbounded coefficients satisfying the same conditions of the ana-
logue theorem in [4] for Boson noises. These conditions are necessary
and sufficient in order the quantum stochastic differential equation has
a unique contractive solution. However we will not prove here that
these are necessary because the free independence involves some ele-
mentary but quite complicated combinatorics. Moreover the main ideas
are the same than in the Boson case. We prove then that the unique
contractive solution is isometric if and only if the quantum dynamical
semigroup is identity preserving. In particular the cocycle we obtain
solving the quantum stochastic differential equation always dilates the
minimal solution of a Feller-Kolmogorov equation. The technique of
time reversal allows to reduce the problem of coisometry to the isome-
try one as in [6]. Thus, even if the free noise fields satisfy a different
Itb table, it turns out that unitary cocycles obtained as solutions of
quantum stochastic differential equations driven by free noise fields,
can be used to construct unitary dilations of the same class of quantum
stochastic differential equations dilated by unitary cocycles in the Bo-
son Fock space.

I wish to thank Prof. F. Fagnola for suggesting me the problem and
for his valuable help during the work.

2. Notations.

Let x be a complex separable Hilbert space, with fixed orthonormal
basis feiliez. and let 1F be the full Fock space over L 2 (R + ) ® ~,.
For all functions u in L 2 (R + ) ® ~t, and, for all t E R + , j E Z* define

and let 3K be the set of step functions u in

L 2 (R + ) ® ~t, such 1 and for all j E Z*, = 0 eventually
and sup 1. For all element u of 3K let

s

N(u ) : u’( is a nonzero function in L 2 (R + ) ~ .

Let ho be a Hilbert space and consider the Hilbert space ~C = ho (9
Let (Do be a dense linear submanifold of ho and let W be the set
of elements of ~C which can be written in the form x ® ~, where
x is an element of (Do and ~ is the k-fold tensor product of k
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elements of 3K for some positive integer 1~. The vector x ® ~ will
be denoted also by x~.

For every g E L 2 (R + , C) we consider the annihilation, creation and
gauge defined by:

We recall now some notations introduced in [6] and generalize for
our purposes. Denote by (resp. (itt) with t E [0, + oo], the *-subalge-
bra of 1B(50 generated where g is an element of

L2 (o, t) (resp. L2 (t, )). 
’

Consider then the class foj (6D, ~C) of operators with domain contain-
ing which are weak limits on W of finite sums of operators of the
form L Q9 A, where L is a bounded operator on ho and A is an element of

Analogous definitions for the class ~C). We write 
when t = + 00. Then a family (Z(~))~ ~ o of operators in 2«(lJ, ~C) is called
a process.

For all z E ~C with chaos decomposition with respect to Fock space
m

z let [z Q9 ~] denote the vector in ~C with chaos decomposition
m k=0

Ç". We note that, with each A e Q9 it is possible to as-
k=0

sociate two operators A + , A _ of ] ([5], [7]) characterized
by:

Remark that, for all t e R + and all X E foj (6D, ~C), the first formula
(2.1 ) uniquely defines an operator X+ X).

Now for all and i, j E Z define the processes

The deterministic process will be denoted by ( po ( t ))t , o . The re-
lations between the p§ yield the It6 table ([5], [7]), for all i, i’,
j,j’ E Z 

where âf is zero if j = 0 or j’ = 0 and is equal to the Kronecher delta af
otherwise.
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In order to extend the definition of left and right stochastic inte-
grals with respect to the we consider the two
classes of processes ~2 and J- introduced in [6].

~2 is the class of processes F strongly measurable on 0, such that
~C) and

for all t E R + . We note that the elements of ~2 can be integrated from
the right with respect to pj for all and from the left with respect
to pl for all j E Z thanks to (2.1) and the Proposition 3.1 in [5].

ð- is the class of processes F with the following property: there
exists a in such that, for all t E R + ,

(t) is a member of B(ho) ® at], the operator F~n~* (t) converges
strongly on ho and, for all t E R + and all vector (D, it holds:

For all F E 5- one can define the process F_ as a strong limit on 6D of
Note that, for elements in the class 5-, the inte-

grability from the left with respect to dp~ for all i E Z*, j E Z is guarant-
edf in virtue of Proposition 3.1 in [5].

3. Stochastic calculus preliminaries.

In this section we compute some quantum It6 formula, we will need
to find the unitary solution to the quantum stochastic differential equa-
tion we deal with.

For all ~ = Ul @ ... where k eZ let be the element
Ul ® ... + 1 0 ... ® uk if h E f 1, ... , k }, the vacuum vector
if k = 1, and 0 otherwise. If G is a process and a is a positive integer,
we denote with G the process GIIB + ex’ and is the orthogonal

B &#x3E; 0

projection onto the /3-th chaos in F.

LEMMA 3.1. Let G, F be processes in ~2. Then, for all positive real
numbers s, t with s  ~ for all i, j E Z* and for all x~, x’ ~’ E 6D, with



203

, we have:

PROOF. The identity (i) follows immediately from the definition of
po , with i e Z*.

Let us now prove (ii):

otherwise.

Now (ii) follows immediately.
The proof of (iii) is obtained in the same way, and we omit

it. 

This lemma is a slight extension of Lemma 2.2 in [6], because in our
case we are interested in computing scalar products of processes in-
volving the gauge operators, too. We observe that we have not the
same results as in [6]: infact, if G and F containg also gauge operators

with i, j E Z, then the scalar product ( G( s ) x’ ~’ , F + t ) x~ ~ is
more complicated. Anyway our result will be enough for our later
purposes.

LEMMA 3.2. Let G be a process in 92 and F be a process in 9 then,
for all positive real number s, t 2uith s  t, for all i E Z* and for all
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Let G, F be processes in :1-, then for all x~, x’ ~’ E 6), for all positive real
number s, t with s  t and for all i, j E Z*, we have:

PROOF. We will show only (i), the proof of (ii) being analogous.
Since F is it is strong limit on 6) of in

Then we can verify (i) for such simple processes. We
have:

Then (i) is proved.

Now using Lemmas 3.1, 3.2 and the identities (2.2) we can compute
the left It6 formula for all processes F E ð- , and the right ltb formula
for all processes F+ with F E ~2 . We study in detail only two cases; the
others are obtained with similar arguments. Suppose that F is a pro-
cess in and, for i, j E Z, let

Note that ~~ (F, t ) _ is identically zero for all i, j E Z*. Then, for all
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xÇ", x’ Ç"’ E=- 6D, ~~ zB~ eZ* and for all processes G, F in the space
tJ2 n tJ -, we have:

Now suppose G, F are processes in ~2 and for all t E R + , i, j E Z denote
by a) (F, t) the right integral of F with respect to We have then, for
all x~, x’ ~’ E 6D, i, i’ , j , j’ E Z* :

We conclude this Section with a proposition whose proof is essen-
tially an application of the It6 formula.

In the following proposition F_ 1, Fo , F+ I denote respectively the
processes F_ , F, F+ . Moreover for all ~ = Ul ® ... E 0~, let J(~) be
the subset of 6D consisting of Q and vectors of the form ® ... ® Uo(h)
with ... , and ~: ~ 1, ... , h ~ ~ ~ 1, ... , k ~ increasing.

PROPOSITION 3.3. Let be processes in t$- , satisfying

for all t E R+ , x~ E (J), i E Z and E e { -1, 0, + 1 }.. Define, for all n E N,
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the processes

Then there exists a process X such that:

PROOF. First observe that (3.1) in the case c = + 1 follows from the
case e = 0 using the first of the fundamental relations (2.1). For the
same reason it is enough to show (i) in the cases s = 0, - 1. Consider,
for all t E R + , and  n

Now, using the left It6 formula, we obtain for all m, n &#x3E; N(~):

Therefore from (3.1 ) it follows that, for all t E R + , xç E 60:

It is easily verified by the left It6 formula that if m, n &#x3E; N(~), then
for all t E R + , This implies

Then, for all t E R + , let X~ ( t ) be the strong limit on W of Now
from (3.2) and (3.3) follows (i). To get (ii) we need first an inequality for
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X- (t). Using Lemma 3.2 we have:

Hence, by Gronwall’s lemma, we obtain

The letting n go to infinity we conclude

In analogous way if we compute

using the left It6 formula, then by Schwarz’s inequality and the in-
equality obtained above for we have

where
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Hence, by Gronwall’s lemma, we conclude that

Now letting n to infinity we get the inequality (ii) and by hypothesis
(3.1) the series is convergent.

4. A class of quantum stochastic differential equations with
bounded coefficients.

PROPOSITION 4.1. Let lLj: i, j E Z} be bounded operators on ho and
suppose that there exist positive constants ci , i E Z such that, for all
x E ho ,

Then, for each Xo E there exists a process X E t’J2 n t’J- satisfying,
for all t ER+

PROOF. We set up the following iterative scheme

Each X(’) is well defined and for all t E R + , xç E 6D:

This inequality follows immediately by induction using the inequali-
ty (ii) in Proposition 3.3 and the hypothesis (4.1). In the same way we
obtain an analogous inequality for X ~n~ : -.
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t E R + the process X defined by 
I

satisfies (4.2).

We state now the main result of this Section.

THEOREM 4.2. Let be bounded operators on ho with the
property that, for each j E Z, there exists a positive constant Cj such
that

Consider also the following conditions:

If (4.6), (4.7), (4.8) hold, then there exists a unique contractive process
U such that

Suppose moreover that the lefthand side of (4.6) vanishes and the fol-
lowing identity holds:

then U is unitary and the adjoint process V is solution of

REMARK 4.3. The conditions (4.6), (4.7) imply that also the follow-
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ing conditions hold:

REMARK 4.4. Using (4.13) the property (4.5) also implies that
there exists a positive constant c such that

We will prove the result of Theorem 4.2 in several steps.

PROPOSITION 4.5. If hypothesis (4.5) and conditions (4.6), (4.7),
(4.10) of Theorem 4.2 are fulfilled, then there exists a contractive sol-
ution of the equation (4.11 ). Moreover if the lefthand side of (4.6) van-
ishes, there is a unique isometric solution.

PROOF. From Proposition 4.1, it follows that there exists a solution
of (4.11 ). Then using the left ItO formula we compute, for all t E R + , x~,
x’ ~’ E 6D the derivative of the scalar product:

Grouping similar terms we obtain four addends:

Using (4.10), (4.12), (4.13) we conclude that V(t) is a contraction. More-
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over, if (4.12) vanishes, the first addend vanishes also, hence we
have:

Clearly V(t) is the only isometric solution.

LEMMA 4.6. Let be bounded operators on ho with the
property that, for each j E Z, there exists a positive constant Cj such
that

If Y is a solution of the equation

with the properly that there exists a constant C such that:

sup for all t E R+ , xç- E 6D, then Y = 0.
t

PROOF. Using Proposition 8.1 in [5] we can prove that, for all x’ ~’ ,
xç E 6D, t E R + , it holds:

This identity is proved by induction on N = k + k’, where $’=
- u1 ® ... 0 uk, and ~ = ul ® ... ® uk . ..

Finally we conclude the proof of Theorem 4.2:

PROPOSITION 4.7. Under the hypothesis of Theorem 4.2, V* = U is
the unique solution of the stochastic differential equation:

the series being strongly convergent on 6D. More-

over U isorrzetric.

PROOF. For all xç E 6D the function x - U(s) xç is strongly measur-
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able (because it is weakly measurable), and

This ensures that U( ~ ) is integrable from the right with respect to dpj,
for all i, j E Z. Now using Proposition 8.1 in [5] it follows that U satis-
fies (4.14). Moreover U is the unique solution by Lemma 4.6.

Now we want to prove that the series is strongly convergent 6D. Ob-
serve first that, for all with i &#x3E; N(~) we have:

Moreover, for each m, n E N with m  n:

,

Consider now the second sum in (4.15): computing by the right It6 for-
mula we see that if m &#x3E; N(~) this sum is equal to zero. Then computing
again by the right Itb formula, from the first sum in (4.15) we
obtain:

Remark now that the solution U(t) to (4.14) satisfies, for all

x’, xEho

this follows computing the derivative by It6 formula and the hypothe-
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sis that (4.6) vanishes. Therefore last remark and (2.1) imply:

Now Remark 4.4 allows us to conclude that the series converges

strongly on W uniformly in each bounded interval of R + .
Let us now prove the isometricity of U.
Let xç-, x’ ç-’ E 6D and ~ = ... ® uk , ~’ = ui 0 ... 0 The proof

proceeds by induction on k + k’. Start with k + k’ = 0 i.e. ç- = ç-’ _ ~ ;
this is immediate because of (4.16). Suppose now that

if k + k’ ~ N and show it for We have

Observe now that using the inductive hypothesis, for all i E Z*

and

Moreover, because of the isometricity of U(t) over ho , the first term in
the sum is equal to

Remark now that from the isometricity of U(t) on ho it follows
that
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Infact using the first identity in (2.1 ) we obtain, for all t E R + ,
xE, x’ E’ E D

Thus by (4.17) and (4.18), grouping similar terms, we can write:

Now if we consider together the fourth, seventh and tenth terms in
(4.19) we have the following sum of scalar products:

and condition (4.7) implies that each term in this sum is equal to zero.
In the same way, again by condition (4.8) and the adjoint of (4.7), we
see that (4.19) reduces to:
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Now define the contraction operator K(t) on ho by:

Then K(t) satisfies the following equation with bounded coeffi-
cients :

This equation has 1 as a solution thanks to the hypothesis that (4.6)
vanishes, then, because (4.20) has a unique solution, it follows that
K(t) = 1 for all t E R + . Therefore we conclude that, for all

The isometricity of U(t) is so proved. 0

5. Quantum stochastic differential equations driven by free noises
with unbounded coefficients and dilation of Feller’s minimal
solution.

The class of unbounded coefficients we will consider in this Section,
can be described as follows:

(A) the satisfy the following properties:

(i) Lo is the infinitesimal generator of a contraction semi-
the domain of Lo contains (Do and (Do is a core

for Lo ;
(ii) for all j E Z*, the domain of Lo contains the domain of Leo

and the domain of Ll contains 6DO;
(ill) for all x in the domain of Lo the following inequality

holds:

(iv) for all x E (DO, y in the domain of L8 and for all j E Z*:




