CARLO GRECO

Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds

Rendiconti del Seminario Matematico della Università di Padova, tome 91 (1994), p. 251-263

<http://www.numdam.org/item?id=RSMUP_1994__91__251_0>
Infinitely Many Spacelike Periodic Trajectories on a Class of Lorentz Manifolds.

CARLO GRECO (*)

ABSTRACT - Let us consider \mathbb{R}^4 equipped with a Lorentzian tensor g with signature $(+, +, +, -)$. In this paper we prove, under suitable assumptions on g, the existence of infinitely many spacelike geodesics $z(s) = (x(s), t(s))$ with the periodicity conditions $x(s + 1) = x(s), t(s + 1) = t(s) + T$ ($T > 0$) on the Lorentz manifold (\mathbb{R}^4, g).

1. Introduction.

Let us consider the manifold (\mathbb{R}^4, g), where $g(z) = g(x, t)$ is a Lorentz tensor on \mathbb{R}^4, with signature $(+, +, +, -)$. Let $z(s) = (x(s), t(s))$ be a geodesic on (\mathbb{R}^4, g), and suppose that $t(0) = 0$, and there exist $\sigma, T > 0$ such that $x(s + \sigma) = x(s), t(s + \sigma) = t(s) + T$ for every $s \in \mathbb{R}$. Then we shall say that z is a σ-periodic T-trajectory on (\mathbb{R}^4, g). Moreover, if z is a geodesic, there exists $E_z \in \mathbb{R}$ such that $g(z(s))\{\dot{x}(s), \dot{t}(s)\} = E_z$, and z called spacelike, null or timelike if $E_z > 0$ or, respectively, $E_z = 0$, or $E_z < 0$ (see [14], p. 69).

Suitable Lorentz manifolds are used in Relativity theory in order to describe the physical space-time. Then, timelike (or, respectively, null) periodic trajectories corresponds to periodic orbits of a particle of positive mass (or, respectively, of a light ray). Spacelike geodesics are not trajectories of particles, but they are important in order to study geometrical properties of a semiriemannian manifold.

Some multiplicity results for timelike periodic trajectories on (\mathbb{R}^4, g) are given, for instance, in [5] and [9] under the assumption that

(*) Indirizzo dell'A.: Università degli Studi di Bari, Dipartimento di Matematica, Campus Universitario, Via G. Fortunato, 70125 Bari, Italy.

Work supported by MURST and by GNAFA of CNR.
the gravitational field vanish at infinity, so that \(g \) tends to the Minkowski metric at infinity (see Remark 1.3 below for further informations).

In this paper we consider a completely different behavior at infinity for \(g \), and we are able to prove that, for any \(T > 0 \), there are infinitely many spacelike 1-periodic \(T \)-trajectories on the semiriemannian manifold \((\mathbb{R}^4, g)\).

Let \(\{g_{ij}\}_{i,j=1,\ldots,4} \) be the components of \(g \). We suppose that \(g \) not depend to the time, \(g_{ij} = g_{ji} \in C^1(\mathbb{R}^3, \mathbb{R}) \), and \(g_{i4} = 0 \) for \(i = 1, 2, 3 \). We set, for simplicity, \(\alpha = \{\alpha_{ij}\}_{i,j=1,2,3} = \{g_{ij}\}_{i,j=1,2,3} \), and \(\beta = -g_{44} \), so that we have, for every \(x \in \mathbb{R}^3 \) and every \(\begin{pmatrix} \xi \\ \tau \end{pmatrix} \in \mathbb{R}^4 \):

\[
g(x)\begin{pmatrix} \xi \\ \tau \end{pmatrix} = \alpha(x)[\xi, \xi] - \beta(x) \tau^2.
\]

Moreover we assume that there exist \(\alpha_0, \alpha_1, R > 0, p > 2 \) and \(q \in]0, p-2[\) such that for every \(x, \xi \in \mathbb{R}^3 \):

\[
\alpha(x)[\xi, \xi] \geq \alpha_0 |\xi|^2,
\]

\[
(q\alpha(x) - \alpha'(x)(x))[\xi, \xi] \geq \alpha_1 |\xi|^2,
\]

\[
p|\beta(x)| \leq (\beta'(x)|x|) \quad \text{if} \quad |x| \geq R,
\]

\[
0 < \beta_0 \equiv \beta(0) = \min_{\mathbb{R}^3} \beta,
\]

\[
\lim_{|x| \to 0} \frac{\beta(x) - \beta_0}{|x|^2} = 0,
\]

\[
\alpha(x) = \alpha(-x), \quad \beta(x) = \beta(-x).
\]

Then we have the following theorem.

Theorem 1.1. If (1.1)-(1.6) are satisfied, then, for every \(T > 0 \), there exist infinitely many spacelike 1-periodic \(T \)-trajectories on \((\mathbb{R}^4, g)\).

Remark 1.1. If \(x_0 \in \mathbb{R}^3 \) and \(\beta'(x_0) = 0 \), it is easy to check that \(z(s) = (x_0, Ts) \) is a trivial periodic trajectory. We shall see later that the trajectories given by Theorem 1.1 are not trivial, and are geometrically distinct.
REMARK 1.2. Condition (1.3) is a sort of superquadraticity condition at infinity. It has been introduced by P. H. Rabinowitz in the theory of Hamiltonian systems. (1.4) implies that there exists $c_1 > 0$ such that, for every $x \in \mathbb{R}^3$, with $|x| \geq R$:

\begin{equation}
\beta(x) \geq c_1 |x|^p.
\end{equation}

Condition (1.3) means that
\[\sum_{i,j=1}^{3} [q \alpha_{ij}(x) - (x'_{ij}(x)|x|)] \xi_i \xi_j \geq \alpha_1 |\xi|^2; \]
it is satisfied, for instance, if
\[\alpha(x) = \{\delta_{ij}\}_{i,j=1,2,3}. \]
Moreover, because of (1.3), there exists $c_2 > 0$ such that

\begin{equation}
\|\alpha(x)\| \leq c_2 |x|^q
\end{equation}

for $|x| \geq 1$. In fact, let $x \in \mathbb{R}^3$ with $|x| \geq 1$. Since

\[d(t^{-q} \alpha(tx/|x|)[\xi, \xi])/dt \leq 0, \]

we have

\[|x|^{-q} \alpha(x)[\xi, \xi] \leq \alpha(x/|x|)[\xi, \xi] \leq c_2 |\xi|^2 \quad \text{where} \quad c_2 = \max_{|y| = 1} \|\alpha(y)\|. \]

REMARK 1.3. The problem of geodesics for a Lorentz manifold (M, g) has been recently studied by many authors (see [2]-[5], [7]-[12]). If particular, in the papers [5],[9], are given multiplicity results for timelike periodic trajectories on (\mathbb{R}^4, g) under the assumption $\beta(x)$ bounded.

The main difficult in the variational approach of this kind of problems is that the action functional

\[\int g(z)[\dot{z}, \dot{z}] = \int \alpha(x)[\dot{x}, \dot{x}] - \int \beta(x) \dot{t}^2 \]

is strongly indefinite, i.e. it is not of the form identity + compact, even «modulo compact perturbations». In order to avoid this difficult, we use the convexity of the functional with respecto to t and search for the critical points of a functional f depending only on x.

If $\beta(x)$ is bounded as in [9] (or it is subquadratic), the functional f is bounded from below, and satisfies easily the Palais-Smale compactness condition. In our case f is unbounded, so we need some linking argument; moreover more care is required in order to prove compactness conditions.

In Section 2 we expose the functional framework and we prove the compactness condition using assumptions (1.1)-(1.5). Then we prove Theorem 1.1 with a mountain pass argument by using (1.6).
2. Proof of the results.

In the following we assume that (1.1)-(1.5) hold. Let us consider a geodesic \(z(s) = (x(s), t(s)) \) on \((\mathbb{R}^4, g)\); then \(z \) satisfies the geodesic equations:

\[
\frac{d}{ds} \left[\alpha(x) \dot{x} \right] = \frac{1}{2} \left(\alpha'(x) [\dot{x}, \dot{x}] - \beta'(x) \dot{t}^2 \right),
\]

\[
\frac{d}{ds} [\beta(x) \dot{t}] = 0 .
\]

If \(z \) is a \(\sigma \)-periodic \(T \)-trajectory, we shall call the minimal period of \(x \), the minimal period of \(z \). Notice that, if \(z_1 = (x_1, t_1) \) and \(z_2 = (x_2, t_2) \) are \(\sigma \)-periodic \(T \)-trajectories on \((\mathbb{R}^4, g)\), with \(z_1 \neq z_2 \), then \(z_1 \) and \(z_2 \) are geometrically distinct.

In fact, if \(z_2(s) = z_1(\varphi(s)) \) for some reparametrization \(\varphi(s) \), from geodesic equations we have \(\varphi(s) = as + b \) for some \(a, b \in \mathbb{R} \) (see [14], p. 69), so that \(t_2(s) = t_1(as + b) \). Since \(\dot{t}_1(s) \neq 0 \) for any \(s \in \mathbb{R} \), from \(t_1(0) = 0 = t_2(0) = t_1(b) \), we have \(b = 0 \), and from \(t_1(as + \alpha) = t_2(s + \sigma) = t_2(s) + T = t_1(as + \sigma) \), we have \(\alpha = \sigma = a = 1 \), which is impossible.

In particular, if \(z_1 \) and \(z_2 \) have not the same minimal period, then its are geometrically distinct.

Remark 2.1. We observe now that, if \(z(s) = (x(s), t(s)) \) is a \(k^{-1} \)-periodic \(Tk^{-1} \)-trajectory, \(x \) and \(t \) are also 1-periodic and \(t(s + 1) = t(s) + T \). Infact, it is easy to check that \(t(s + 1) = t(s + (k - 1)/h + Th/k \) for every \(h = 1, \ldots, k \); then \(z \) is a 1-periodic \(T \)-trajectory on \((\mathbb{R}^4, g)\), with minimal period less or equal to \(1/k \). So, in order to prove Theorem 1.1, we can show that there exists \(k_0 \in N \) such that, for every \(k \in N \) with \(k \geq k_0 \), there exists a \(k^{-1} \)-periodic \(Tk^{-1} \)-trajectory \(z(s) = (x(s), t(s)) \), with \(\dot{x} \neq 0 \).

Let \(k \in N \) be free for the moment, and let us consider the functional

\[
I(x, \eta) = \int_0^{1/k} \alpha(x) [\dot{x}, \dot{x}] \, ds - \int_0^{1/k} \beta(x)(T/k + \eta)^2 \, ds ,
\]

defined on \(H^{1,2}(S^{1/k}, \mathbb{R}^3) \times L_0(S^{1/k}, \mathbb{R}) \), where \(H^{1,2}(S^{1/k}, \mathbb{R}^3) \) is the Sobolev space of \(k^{-1} \)-periodic functions \(x: \mathbb{R} \rightarrow \mathbb{R}^3 \) with
$x, \dot{x} \in L^2([0, 1/k])$, and

$$L_0(S^{1/k}, \mathbb{R}) = \left\{ \gamma \in L^2(S^{1/k}, \mathbb{R}) \mid \int_0^{1/k} \gamma \, ds = 0 \right\}.$$

It is easy to check that, if (x, η) is a critical point of I, then $z(s) = (x(s), t(s))$, where $t(s) = Ts/k + \int_0^s \eta \, ds$ is a critical point of the action functional

$$\int_0^{1/k} \alpha(x)[\dot{x}, \dot{x}] \, ds - \int_0^{1/k} \beta(x) \dot{t}^2 \, ds;$$

so, it is a 1-periodic T-trajectory on (\mathbb{R}^4, g), with minimal period less or equal to $1/k$ (see Remark 2.1).

Notice that, because of (1.4), for every $x \in H \equiv H^{1,2}(S^{1/k}, \mathbb{R}^3)$, the functional $\gamma \mapsto \int_0^{1/k} \beta(x)(T/k + \gamma)^2 \, ds$ is strictly convex, so it possess a unique minimum point $\eta_x \in L_0(S^{1/k}, \mathbb{R})$. Let $f : H \to \mathbb{R}$ be the functional

$$f(x) = \int_0^{1/k} \alpha(x)[\dot{x}, \dot{x}] \, ds - \int_0^{1/k} \beta(x)(T/k + \eta_x)^2 \, ds + \frac{\beta_0 T^2}{k^3}.$$

Lemma 2.2. The function $x \mapsto \eta_x$ is continuous from H to $L_0(S^{1/k}, \mathbb{R})$; moreover $f \in C^1(H, \mathbb{R})$ and

$$\langle f'(x), y \rangle = \left\langle \frac{\partial I}{\partial x}(x, \eta_x), y \right\rangle,$$

so that, $x \in H$ is a critical point of f if and only if (x, η_x) is a critical point of I.

Proof. The proof is contained in [9]. We recall it for the reader convenience. First of all we observe that $\int_0^{1/k} \beta(x)(T/k + \eta_x) \eta_x \, ds = 0$, because of η_x is a critical point of the functional $\eta \mapsto \int_0^{1/k} \beta(x)(T/k + \gamma)^2 \, ds.$
So \(\int_0^{1/k} \beta(x) \eta_x^2 ds = -(T/k) \int_0^{1/k} \beta(x) \eta_x ds \), and then

\[
\| \eta_x \| \leq \frac{T \| \beta(x) \|_{\infty}}{k \beta_0}.
\]

Now, let \(x, y \in H \). Clearly

\[
I(x, \eta_y) - I(y, \eta_y) \leq f(x) - f(y) \leq I(x, \eta_x) - I(y, \eta_x),
\]

and \(I(x, \eta_x) - I(y, \eta_x) \to 0 \) as \(y \to x \). Moreover, since

\[
I(x, \eta_y) - I(y, \eta_y) = \int_0^{1/k} \alpha(x)[\dot{x}] - \alpha(y)[\dot{y}] ds - \int_0^{1/k} (\beta(x) - \beta(y))(T/k + \tau) ds,
\]

using (2.1) we get \(I(x, \eta_y) - I(y, \eta_y) \to 0 \) as \(y \to x \), so \(f \) is continuous.

We prove now that \(x \mapsto \eta_x \) is continuous. Infact, arguing by contradiction, we suppose that there exist \(x \in H \), \((x_n) \subset H \) and \(\epsilon > 0 \) such that \(x_n \to x \) and \(\| \eta_x - \eta_{x_n} \| \geq \epsilon \). Since \(\int_0^{1/k} \beta(x)(T/k + \tau)^2 ds \) is strictly convex, we have

\[
\sup \{ I(x, \eta) \mid \eta \in L_0(S^{1/k}, R), \| \eta - \eta_x \| = \epsilon/2 \} \leq I(x, \eta_x) - \delta
\]

for some \(\delta > 0 \). Let \(\mu_n \in \partial B(\eta_x, \epsilon/2) \cap \{ \eta_x + \lambda(\eta_{x_n} - \eta_x) \mid \lambda \in [0, 1] \} \); since \(I(x_n, \cdot) \) is concave, we have \(I(x_n, \mu_n) \geq I(x_n, \eta_x) \), so that

\[
I(x, \eta_x) - \delta \geq I(x, \mu_n) = I(x, \mu_n) - I(x, \mu_n) + I(x_n, \mu_n) \geq I(x, \mu_n) - I(x, \mu_n) + I(x_n, \eta_x).
\]

Since \((\mu_n) \) is bounded and \(x_n \to x \), we get \(I(x, \mu_n) - I(x_n, \mu_n) \to 0 \), and \(I(x_n, \eta_x) \to I(x, \eta_x) \), and then we have a contradiction.

Finally, fix \(x, y \in H \), and let \(\tau > 0 \). From (2.2) we have

\[
\frac{I(x + \tau y, \eta_x) - I(x, \eta_x)}{\tau} \leq \frac{f(x + \tau y) - f(x)}{\tau} \leq \frac{I(x + \tau y, \eta_{x + \tau y}) - I(x, \eta_{x + \tau y})}{\tau}.
\]

For \(\tau \to 0 \) we get \(\langle f'(x), y \rangle = \langle \partial I(x, \eta_x)/\partial x, y \rangle \), so the lemma is proved.

REMARK 2.3. Notice that \(\int_0^{1/k} \beta(x)(T/k + \tau) \eta_x ds = 0 \) for every
In other words, there exists \(c_x \in \mathbb{R} \) such that
\[
f(x(s))(\frac{T}{k} + \gamma_x(s)) = c_x \quad \text{for every } s \in \mathbb{R}.
\]
Since \(c_x \leq 0 \) implies \(\frac{T}{k} + \gamma_x(s) \leq 0 \), so \(\frac{T}{k} + \gamma_x(s) \leq 0 \), we have \(c_x > 0 \), and then
\[
\frac{T}{k} + \gamma_x(s) > 0 \quad \text{for every } s.
\]
Moreover \(\beta(x)(\frac{T}{k} + \gamma_x)^2 = c_x (\frac{T}{k} + \gamma_x) \), so \(c_x = (k^2/T) \int_0^{1/k} \beta(x)(\frac{T}{k} + \gamma_x)^2 ds \).

Lemma 2.4. Fix \(\rho > 0 \) and \(x \in H \), and set \(I = \{ s \in [0, 1/k] | |x(s)| \leq \rho \} \). Then, if \(|I| > 0 \),
\[
\int_0^{1/k} \beta(x)(\frac{T}{k} + \gamma_x)^2 ds \leq \frac{T^2 M}{k^4 |I|},
\]
where \(M = \max \{ \beta(x) | |x| \leq \rho \} \), and \(|I| \) is the Lebesgue measure of \(I \).

Proof. Let \(c_x \) be as in Remark 2.3, so that \(\frac{T}{k} + \gamma_x(s) = c_x/\beta(x(s)) \) for every \(s \in \mathbb{R} \). If \(s \in I \), we have \(c_x/M \leq \frac{T}{k} + \gamma_x(s) \), and then
\[
c_x^2/M \leq \beta(x(s))(\frac{T}{k} + \gamma_x(s))^2.
\]
Integrating on \(I \), we have:
\[
\frac{c_x^2}{M} |I| \leq \int_0^{1/k} \beta(x)(\frac{T}{k} + \gamma_x)^2 ds = \frac{Tc_x}{k^2}.
\]
Then \(c_x \leq TM/k^2 |I| \), so that the lemma is proved. \(\blacksquare \)

Lemma 2.5. Let \(0 < r < \rho \) and \((x_n) \subset H \) be such that \(\text{dist}(\text{Im}(x_n), 0) \leq r \) and \(\|x_n\|_\infty \geq \rho \). Then
\[
\int_0^{1/k} \beta(x_n)(\frac{T}{k} + \gamma_x)^2 ds \leq \frac{T^2 M}{k^4 (\rho - r^2) \|x_n\|_2^2},
\]
where \(M = \max \{ \beta(x) | |x| \leq \rho \} \).

Proof. Let \(I_n = \{ s \in [0, 1/k] | |x_n(s)| \leq \rho \} \); since \(\|x_n\|_\infty \geq \rho \), \(|I_n| > 0 \), so that
\[
\int_0^{1/k} \beta(x_n)(\frac{T}{k} + \gamma_x)^2 ds \leq \frac{T^2 M}{k^4 |I_n|}.
\]
because of Lemma 2.4. Moreover, since \(\text{dist}(\text{Im} (x_n), 0) \leq r \), we have
\[
\varphi - r \leq \int_{I_n} |\dot{x}_n| \, ds \leq \|\dot{x}_n\|_2 \|I_n\|^{1/2},
\]
and the lemma follows. \(\blacksquare \)

We say that a functional \(f: H \to \mathbb{R} \) verifies the Palais-Smale-Cerami (PSC) condition (see [6]) if every sequence \((x_n) \subset H \) such that \(f(x_n) \to c \in \mathbb{R} \) and \(\langle f'(x_n), x_n \rangle \to 0 \) as \(n \to \infty \), possesses a convergent subsequence.

We have the following lemma.

Lemma 2.6. There exists \(k_0 \in \mathbb{N} \) such that, for every \(k \geq k_0 \), the functional \(f \) satisfies the PSC-condition.

Proof. Let \(M = \max \{ \beta(x) \mid x \leq R + 1 \} \) (\(R \) is defined in (1.3)), and let \(k_0 \in \mathbb{N} \) be such that \(\alpha_0 - T^2 M/k_0^2 > 0 \). Fix \(k \in \mathbb{N} \) with \(k \geq k_0 \), and let us consider a sequence \((x_n) \subset H \) such that \(f(x_n) \to c \in \mathbb{R} \) and \(\langle f'(x_n), x_n \rangle \to 0 \) as \(n \to \infty \). First of all, we prove that \(\|\dot{x}_n\|_2 \) is bounded modulo subsequences. In fact, we distinguish two cases:

1) case: for every \(n \in \mathbb{N} \), \(\text{dist} (\text{Im} (x_n), 0) > R \) (modulo subsequences). Then \(p\beta(x_n(s)) \leq (\beta'(x_n(s)) \langle x_n(s) \rangle) \) for every \(s \) (see (1.3)), so, from \(f(x_n) \to c \) we get (setting \(r_n = r_{x_n} \)):

\[
p \int_0^{1/k} \alpha(x_n)[\dot{x}_n, \dot{x}_n] \, ds \leq pc + \int_0^{1/k} (\beta'(x_n)) \langle x_n(T/k + r_n)^2 \, ds + o(1). \]

Since \(\langle f'(x_n), x_n \rangle \to 0 \), we have

\[
\int_0^{1/k} \alpha'(x_n)(x_n)[\dot{x}_n, \dot{x}_n] \, ds + 2 \int_0^{1/k} \alpha(x_n)[\dot{x}_n, \dot{x}_n] \, ds - \int_0^{1/k} (\beta'(x_n)) \langle x_n \rangle \left(\frac{T}{k} + r_n \right)^2 \, ds = o(1),
\]

so that

\[
\int_0^{1/k} (q\alpha(x_n) - \alpha'(x_n)(x_n))[\dot{x}_n, \dot{x}_n] \, ds \leq pc + o(1),
\]

then \(\|\dot{x}_n\|_2 \) is bounded because of (1.2).
2) case: for every $n \in \mathbb{N}$, $\text{dist}(\text{Im}(x_n), 0) \leq R$ (modulo subsequences). Then, if $(\|x_n\|_\infty)$ is bounded, we have $\beta(x_n(s)) \leq M_1$ for $n \in \mathbb{N}$, $s \in \mathbb{R}$, so $\int_0^{1/k} \beta(x_n)(T/k + \eta_n)^2 \, ds \leq M_1 T^2 / k^3$, and the claim follows from the fact that $f(x_n) \to c$ as $n \to \infty$. So, we can assume $\|x_n\|_\infty \to \infty$. Let $I_n = \{s \in [0, 1/k] | |x_n(s)| \leq R + 1\}$; from Lemma 2.5 (with $r = R$ and $\rho = R + 1$), we have

$$\int_0^{1/k} \beta(x_n)(T/k + \eta_n)^2 \, ds \leq \frac{T^2 M}{k^4} \|\dot{x}_n\|_2^2.$$

Then, since $f(x_n) \to c$,

$$\int_0^{1/k} \alpha(x_n)[\dot{x}_n, \dot{x}_n] \, ds \leq \frac{T^2 M}{k^4} \|\dot{x}_n\|_2^2 + c + o(1),$$

so that (see (1.1)): $(x_0 - T^2 M/k^4)\|\dot{x}_n\|_2^2 \leq c + o(1)$. Since $k \geq k_0$, the claim follows.

We set now $x_n = \xi_n + y_n$, where $\xi_n \in \mathbb{R}^3$, and $\int_0^{1/k} y_n(s) \, ds = 0$; we shall prove that (ξ_n) is bounded. In fact, we can assume that $y_n \to y$ weakly in $H^{1,2}$ and strongly in L^∞; then

$$|\xi_n| - (\|y\|_\infty + 1) \leq |x_n(s)| \leq |\xi_n| + (\|y\|_\infty + 1)$$

for n large enough, so that, since

$$\alpha(x_n(s)) [\dot{x}_n(s), \dot{x}_n(s)] \leq c_2 |x_n(s)|^q |\dot{x}_n(s)|^2$$

(see (1.8)), we have $\int_0^{1/k} \alpha(x_n)[\dot{x}_n, \dot{x}_n] \, ds \leq c_3 |\xi_n| + c_4$ for some $c_3, c_4 > 0$.

On the other hand, $\beta(x_n(s)) \geq c_1 |x_n(s)|^p$, then $\int_0^{1/k} \beta(x_n)(T/k + \eta_n)^2 \, ds \geq c_5 |\xi_n|^p + c_6$. Since $f(x_n) \to c$, we have

$$c_5 |\xi_n|^p + c_6 \leq \int_0^{1/k} \beta(x_n)(T/k + \eta_n)^2 \, ds = \int_0^{1/k} \alpha(x_n)[\dot{x}_n, \dot{x}_n] \, ds - c + o(1) \leq c_3 |\xi_n| + c_4 + c + o(1),$$
so \((\xi_n) \) is bounded. Let us suppose \(x_n \to x \) weakly in \(H^{1,2} \) and strongly \(L^\infty \). Then

\[
\langle f'(x_n), x - x_n \rangle = \int_0^{1/k} \alpha'(x_n)(x - x_n)[\dot{x}_n, \dot{x}_n] \, ds +
\]

\[
+ 2 \int_0^{1/k} \alpha(x_n)[\dot{x}_n, \dot{x}_n] \, ds - \int_0^{1/k} (\beta'(x_n)|x - x_n|(T/k + \eta_n)^2) \, ds;
\]

because of (2.1) we have that \((\eta_n) \) is bounded, so, the fact that

\[
\langle f'(x_n), x - x_n \rangle = o(1) \implies \int_0^{1/k} \alpha(x_n)[\dot{x}_n, \dot{x}_n] \, ds = o(1).
\]

Then

\[
\int_0^{1/k} |\dot{x} - \dot{x}_n|^2 \, ds \leq \alpha_0^{-1} \int_0^{1/k} \alpha(x_n)[\dot{x} - \dot{x}_n, \dot{x} - \dot{x}_n] \, ds = o(1),
\]

so that \(x_n \to x \) strongly in \(H \), and the lemma is proved. ■

Let \(H = H^{1,2}(S^{1/k}, R^3) = R^3 \times Y \), where

\[
Y = \left\{ x \in H \mid \int_0^{1/k} x(s) \, ds = 0 \right\}.
\]

As well-known (see e.g. [13], p. 9), for every \(y \in Y \) we have \(\|\dot{y}\|_2 \geq a\|y\| \), and \(\|y\|_\infty \leq b\|\dot{y}\|_2 \), where \(a = 2k\pi(1 + 4k^2\pi^2)^{-1/2} \), and \(b = (1/12k)^{1/2} \).

We have now the following lemma.

Lemma 2.7. There exist \(\delta, \rho > 0 \) such that \(f(y) \geq \delta \) for every \(y \in Y \) with \(\|y\| = \rho \). Moreover \(\delta \) is independent of \(k \).

Proof. Fix \(\varepsilon > 0 \) such that \(\alpha_0 - \varepsilon T^2/\sqrt{12} > 0 \). (1.5) implies that there exists \(\rho_1 > 0 \) such that \(\beta(x) \leq \beta_0 + \varepsilon \|x\|^2 \) for \(\|x\| \leq \rho_1 \). Set \(\rho = \rho_1 / b \) and

\[
\delta = \frac{4\pi^2}{1 + 4\pi^2} \left(\alpha_0 - \frac{\varepsilon T^2}{12} \right) \rho_1^2 12.
\]

For \(y \in Y \) with \(\|y\| = \rho \), we have \(\|y\|_\infty \leq b\|\dot{y}\|_2 \leq b\|y\| = b\rho = \rho_1 \), so that \(\beta(y(s)) \leq \beta_0 + \varepsilon |y(s)|^2 \leq \beta_0 + \varepsilon b^2 \|\dot{y}\|^2_2 \). Then

\[
\int_0^{1/k} \beta(y)(T/k + \eta_y)^2 \, ds \leq (\beta_0 + \varepsilon b^2 \|\dot{y}\|^2_2) T^2 / k^3,
\]
since assumption (1.3) is not superquadratic at infinity on finite-dimensional subspaces of H. This fact makes not possible to apply the standard linking theorem of f. In order to avoid this difficult, we consider the subspace $E = \{ x \in H \mid x(s + 1/2k) = x(s) \}$. Clearly $E \subset Y$; moreover we have the following lemma.

LEMMA 2.9. Let us suppose that (1.6) holds. Then, every critical point $x \in E$ of the functional is a critical point of f.

PROOF. Let $x \in E$ be a critical point and $z \in H$; we shall prove that \(\langle f'(x), z \rangle = 0 \). In fact, set $z_1(s) = z(s) - z(s + 1/2k)$, and $z_2(s) = z(s) - z_1(s)$, so that $z_1 \in E$, and $z = z_1 + z_2$. Since $\langle f'(x), z_1 \rangle = 0$, we have $\langle f'(x), z \rangle = \langle f'(x), z_2 \rangle$. From Remark 2.3, there exists $c_x > 0$ such that $\beta(x(s))(T/k + \gamma_x(s)) = c_x$. Since β is even and $x \in E$, we have that $\gamma_x(s + 1/2k) = \gamma_x(s)$, and then it is easy to check, by using (1.6), that $\langle f'(x), z_2 \rangle = -\langle f'(x), z \rangle$, and the lemma is proved. \(\blacksquare \)

PROOF OF THEOREM 1.1. Let us suppose that (1.1)-(1.6) hold, let $k_0 \in \mathbb{N}$ be as in Lemma 2.6, $\delta > 0$ as in Lemma 2.7, and such that $ka > k_0$. From Lemma 2.6, the functional $f_{|E}$ satisfies the PSC condition on E. Let $w(s) = r\cos(2k\pi s), \sin(2k\pi s), 0)$; clearly $w \in E$, and since $\beta(w(s)) \geq ar^p + b$, we have

$$\int_0^{1/k} \beta(w)(T/k + \gamma_v)^2 ds \geq (ar^p + b) T^2 / k^3,$$

so that (see Remark 1.2) $f(w) \leq 4k\pi^2 c_2 r^{q+2} - (ar^p + b) T^2 / k^3 + \beta_0 T^2 / k^3$, and $f(w) < 0$ for r large enough (we recall that $q + 2 < p$). Set
Let p be as in Lemma 2.7; since $f(0) = 0$ and we can assume $\|w\| > P$, we have $\delta \leq c < + \infty$. From the mountain pass lemma (see [1]), we have that c is a critical value for the functional $f_{\Sigma E}$. From Lemma 2.9 we get a critical point $x \in H$ of f with $f(x) = c$. Since $c > 0$, we have $\dot{x} \neq 0$. Because of Remark 2.1, $z(s) = (x(s), t(s))$, where $t(s) = Ts/k + \int_0^s \gamma_x(\tau) d\tau$, is a 1-periodic T-trajectory on (\mathbb{R}^4, g).

Finally, in order to prove that z is spacelike, we observe that

$$E_z = \int_0^1 \alpha(x) [\dot{x}, \dot{x}] ds - \int_0^1 \beta(x) t^2 ds =$$

$$= k \left(\int_0^{1/k} \alpha(x) [\dot{x}, \dot{x}] ds - \int_0^{1/k} \beta(x)(T/k + \gamma_x)^2 ds \right) =$$

$$= k \left(f(x) - \frac{\beta_0 T^2}{k^3} \right) \geq k\delta - \frac{\beta_0 T^2}{k^2} > 0,$$

so that $E_z > 0$, and Theorem 1.1 is proved. ■

REFERENCES

