Sonia Dal Pio
Adalberto Orsatti

Representable equivalences for closed categories of modules

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p. 239-260

<http://www.numdam.org/item?id=RSMUP_1994__92__239_0>
0. Introduction.

0.1. All rings considered in this paper have a nonzero identity and all modules are unital. For every ring R, $\text{Mod}-R$ (R-Mod) denotes the category of all right (left) R-modules. The symbol M_R ($R M$) is used to emphasize that M is a right (left) R-module.

Categories and functors are understood to be additive. Any subcategory of a given category is full and closed under isomorphic objects. N denotes the set of positive integers.

0.2. Recall that a non empty subcategory \mathcal{S}_R of $\text{Mod}-R$ is closed if \mathcal{S}_R is closed under taking submodels, homomorphic images and arbitrary direct sums. Clearly \mathcal{S}_R is a Grothendieck category.

It is easy to show that a closed subcategory \mathcal{S}_R of $\text{Mod}-R$ has a generator and for every generator P_R of \mathcal{S}_R we have:

$$\mathcal{S}_R = \text{Gen}(P_R) = \overline{\text{Gen}}(P_R)$$

where $\text{Gen}(P_R)$ is the subcategory of $\text{Mod}-R$ generated by P_R and $\overline{\text{Gen}}(P_R)$ is the smallest closed subcategory of $\text{Mod}-R$ containing $\text{Gen}(P_R)$.

0.3. Let \mathcal{S}_R be a closed subcategory of $\text{Mod}-R$, P_R a generator of \mathcal{S}_R, $A = \text{End}(P_R)$. In the search for subcategories of $\text{Mod}-A$ which are equivalent to \mathcal{S}_R, the functors:

$$H = \text{Hom}_R(P_R, -): \text{Mod}-R \rightarrow \text{Mod}-A,$$

$$T = - \otimes_A P: \text{Mod}-A \rightarrow \text{Mod}-R,$$

(*) Indirizzo degli AA.: Dipartimento di Matematica Pura ed Applicata, Università di Padova, via Belzoni 7, I-35100 Padova.
play a crucial role. Indeed we have the following representation theorem:

Let A and R be two rings, \mathcal{O}_A a subcategory of $\text{Mod-}A$ such that $A_A \in \mathcal{O}_A$, \mathcal{S}_R a closed subcategory of $\text{Mod-}R$. Assume that an equivalence (F, G) between \mathcal{O}_A and \mathcal{S}_R is given:

$$\mathcal{O}_A \cong_{F G} \mathcal{S}_R.$$

Then there exists a bimodule $A P_R$ such that

1) $P_R \in \mathcal{S}_R$, $A \cong \text{End}(P_R)$ canonically.

2) The functors F and G are naturally equivalent to the functors $T|_{\mathcal{O}_A}$ and $H|_{\mathcal{S}_R}$ respectively.

3) $\mathcal{S}_R = \text{Gen}(P_R) = \text{Gen}(P_R)$, $\mathcal{O}_A = \text{Im}(H)$.

On the other hand a remarkable result of Zimmermann-Huisgen [ZH] and Fuller [F] states that, if $P_R \in \text{Mod-}R$ and $A = \text{End}(P_R)$, the following conditions are equivalent:

(a) $\text{Gen}(P_R) = \overline{\text{Gen}}(P_R)$.

(b) The functor $H : \text{Gen}(P_R) \rightarrow \text{Mod-}A$ is full and faithful and $A P$ is flat.

Therefore H induces an equivalence between $\text{Gen}(P_R)$ and $\text{Im}(H)$. We say that a module P_R of $\text{Mod-}R$ is a W-module if $\text{Gen}(P_R)$ is a closed subcategory of $\text{Mod-}R$ or, equivalently, if $\text{Gen}(P_R) = \overline{\text{Gen}}(P_R)$.

0.4. Let P_R be a W-module, $A = \text{End}(P_R)$. The main purpose of this paper is to find a satisfactory description of $\text{Im}(H)$. Instead of using the Popescu-Gabriel Theorem (cf. [St] Theorem 4.1. Chap. X) we prefer to proceed in a more concrete manner using always the role of the functors H and T that lead to an interesting torsion theory on $\text{Mod-}A$.

Set

$$\text{Ker}(T) = \{ L \in \text{Mod-}A : L \otimes A P = 0 \}.$$

Since $A P$ is flat, $\text{Ker}(T)$ is a localizing subcategory of $\text{Mod-}A$, i.e. $\text{Ker}(T)$ is the torsion class of a hereditary torsion theory in $\text{Mod-}A$. The corresponding torsion-free class is obtained in the following manner: let Q_R be a fixed, but arbitrary, injective cogenerator of $\text{Mod-}R$, $K_A = \text{Hom}_R(P_R, Q_R)$, $\mathcal{O}(K_A)$ the subcategory of $\text{Mod-}A$ cogenerated by
K_A. Then $\mathcal{O}(K_A)$ is the requested torsion-free class and K_A is injective in $\text{Mod-}A$.

The Gabriel filter \mathcal{I}'—consisting of right ideals of A—associated to the torsion theory $(\ker(T), \mathcal{O}(K_A))$ is given by

$$\mathcal{I}' = \left\{ I \leq A_A : \frac{A}{I} \in \ker(T) \right\}.$$

Equivalently

$$\mathcal{I}' = \left\{ I \leq A_A : IP = P \right\}.$$

For every $L \in \text{Mod-}A$ denote by $L_{\mathcal{I}}$ the module of quotients of L with respect to \mathcal{I}. Set

$$\text{Mod} - (A, \mathcal{I}') = \left\{ L \in \text{Mod-}A : L = L_{\mathcal{I}} \right\}$$

The main result on the torsion theory $(\ker(T), \mathcal{O}(K_A))$ is the following: for every $L \in \text{Mod-}A$

$$L_{\mathcal{I}} = HT(L).$$

Then it is easy to show that $\text{Im}(H) = \text{Mod} - (A, \mathcal{I}')$.

0.5. Various properties of W-modules are investigated, in particular their connection with Fuller’s Theorem on Equivalences.

The work ends with an example concerning the closed subcategory of $\text{Mod-}R$ consisting of semisimple modules.

0.6. REMARK. The class $\ker(T)$ was also investigated by [WW].

1. Representable equivalences.

1.1. Through this paper we use the following standing notations. Let A, R be two rings and $A_P R$ a bimodule (left on A and right on R). Consider the adjoint functors:

$$T = - \otimes_A P : \text{Mod-}A \to \text{Mod-}R,$$

$$H = \text{Hom}_R(P_R, -) : \text{Mod-}R \to \text{Mod-}A.$$

For every $L \in \text{Mod-}A$ and $M \in \text{Mod-}R$ there exist the natural morphisms:

$$\sigma_L : L \to HT(L) = \text{Hom}_R(P_R, L \otimes_A P)$$

$$\sigma_L(l) : p \mapsto l \otimes p \quad (p \in P, l \in L)$$
In the sequel the functors T and H will be suitably restricted and corestricted.

1.2. Let A, R be two rings, \mathcal{A} and \mathcal{S}_R subcategories of $\text{Mod-}A$ and $\text{Mod-}R$ respectively. Assume that a category equivalence (F', G) between \mathcal{A} and \mathcal{S}_R is given:

$$\mathcal{A} \xrightarrow{F} \mathcal{S}_R, \quad G \circ F \approx 1_{\mathcal{A}}, \quad F \circ G \approx 1_{\mathcal{S}_R}.$$

In this situation we always assume that $A_A \in \mathcal{A}$.

Set $P_R = F(A)$. Then we have the bimodule $A_P R$, with $A = \text{End}(P_R)$ canonically.

1.3. **Lemma.** in the situation (1.2) the functor G is naturally equivalent to the functors $\text{Hom}_R(P_R, -) \mid_{\mathcal{S}_R}$.

Proof. Let $M \in \mathcal{S}_R$ and consider the following natural isomorphisms:

$$G(M) \cong \text{Hom}_A(A, G(M)) \cong \text{Hom}_R(F(A), FG(M)) \cong \text{Hom}_R(P_R, M).$$

Thus $G \approx H \mid_{\mathcal{S}_R}$.

1.4. **Definition.** We say that the equivalence (F, G) is representable by the bimodule $A_P R = F(A)$ if $F \approx T \mid_{\mathcal{A}}$ and $G \approx H \mid_{\mathcal{S}_R}$. In this case we say that the bimodule $A_P R$ represents the equivalence (F, G).

1.5. Let $P_R \in \text{Mod-}R$ and let $\text{Gen}(P_R)$ be the subcategory of $\text{Mod-}R$ generated by P_R. Recall that a module $M \in \text{Mod-}R$ is in $\text{Gen}(P_R)$ if there exists an exact sequence $P_R(X) \rightarrow M \rightarrow 0$ where X is a suitable set. $\text{Gen}(P_R)$ is closed under taking epimorphic images and arbitrary direct sums. Denote by $\text{Gen}(P_R)$ the smallest closed subcategory of $\text{Mod-}R$ containing $\text{Gen}(P_R)$. $\text{Gen}(P_R) = \text{Gen}(P_R)$ if and only if $\text{Gen}(P_R)$ is closed under taking submodules. Let $A_P R$ be a bimodule and let Q_R be a fixed, but arbitrary, cogenerator of $\text{Mod-}R$. Set $K_A = \text{Hom}_R(P, Q)$ and denote by $\mathcal{O}(K_A)$ the subcategory of $\text{Mod-}A$ cogenerated by K_A.
1.6. LEMMA. Let $A P_R$ be a bimodule. Then $\text{Im}(T) \subseteq \text{Gen}(P_R)$ and $\text{Im}(H) \subseteq \otimes(K_A)$.

PROOF. See [MO2] Prop. 2.2.

For every $M \in \text{set}$
then $t_p(M) \in \text{Gen}(P_R)$ and $\text{Hom}_R(P_R, M) \equiv \text{Hom}_R(P_R, t_p(M))$ in a natural way.

1.7. LEMMA. Let $A P_R$ be a bimodule. Then

a) $\text{Im}(H) = H(\text{Gen}(P_R))$;

b) $M \in \text{Gen}(P_R)$ if and only if φ_M is surjective;

c) $L \in \otimes(K_A)$ if and only if σ_L is injective.

PROOF. See [MO2] page 207.

1.8. PROPOSITION. The equivalence (F, G) is representable by the bimodule $A P_R (P_R = F(A))$ if and only if for every $L \in \varnothing_A$ and for every $M \in \mathcal{S}_R$ the canonical morphisms σ_L and φ_M are both isomorphisms.

2. W-modules.

2.1. Let \mathcal{S}_R be a closed subcategory of Mod-R. Then \mathcal{S}_R has a generator P_R and

\[
\mathcal{S}_R = \text{Gen}(P_R) = \overline{\text{Gen}}(P_R).
\]

Indeed let \varnothing the filter of all right ideals I of R such that $R/I \in \mathcal{S}_R$. Then $P_R = \bigoplus_{I \in \varnothing} R/I$ is a generator of \mathcal{S}_R and it is easy to check that (1) holds.

2.2. DEFINITION. Let $P_R \in \text{Mod} - R$, $A = \text{End}(P_R)$. Consider the functors $H = \text{Hom}_R(P_R, -)$ and $T = - \otimes_A P$. We say that P_R is a W_0-module if

\[(*) \text{ the functor } H: \text{Gen}(P_R) \to \text{Mod} - A \text{ subordinates an equivalence between } \text{Gen}(P_R) \text{ and } \text{Im}(H) \]

(whose inverse is given by $T|_{\text{Im}(H)}$).

2.3. REPRESENTATION THEOREM. Let \varnothing_A and \mathcal{S}_R be subcategories of Mod-A and Mod-R respectively. Assume that $A_A \in \varnothing_A$ and that \mathcal{S}_R is closed under taking arbitrary direct sums and homomorphisms.
Suppose that a category equivalence \((F, G)\) between \(\mathcal{O}_A\) and \(\mathcal{S}_R\) is given:

\[
\mathcal{O}_A \xrightarrow{F} \mathcal{S}_R.
\]

Then \((F, G)\) is representable by the bimodule \(\mathcal{A}P_R\) \((P_R = F(A), A = \text{End}(P_R))\) and \(\mathcal{S}_R = \text{Gen}(P_R)\), \(\mathcal{O}_A = \text{Im}(H)\). Therefore \(P_R\) is a \(W_0\)-module.

Proof. By Lemma (1.2), since \(\text{Gen}(P_R) \subseteq \mathcal{S}_R\) and by Lemma (1.6), the functor \(T|_{\mathcal{O}_A}\) is a left adjoint of the functor \(G\). Since \((F, G)\) is an equivalence \(F\) is a left adjoint of \(G\). Therefore \(F \simeq T|_{\mathcal{O}_A}\). Thus by Lemma (1.6) \(\mathcal{S}_R = \text{Gen}(P_R)\). Finally, by Lemma (1.7), \(\mathcal{O}_A = \mathcal{S}_R = \text{Gen}(P_R)\).

2.4. Under the assumptions of Theorem (2.3) suppose that \(\mathcal{S}_R\) is a closed subcategory of \(\text{Mod}-R\). Then \(P_R\) is a \(W_0\)-module such that \(\mathcal{S}_R = \text{Gen}(P_R)\).

2.5. Let \(P_R \in \text{Mod}-R\) and assume that \(\text{Gen}(P_R) = \overline{\text{Gen}}(P_R)\). Then the condition \((*)\) of 2.2. holds by the following important

2.6. **Theorem.** Let \(P_R \in \text{Mod}-R\), \(A = \text{End}(P_R)\). The following conditions are equivalent:

(a) For every positive integer \(n\), \(P_R\) generates all submodules of \(P^\mathbb{Z}_R\).

(b) \(\text{Gen}(P_R) = \overline{\text{Gen}}(P_R)\).

(c) \(\mathcal{A}P\) is flat and the functor \(H: \text{Gen}(P_R) \rightarrow \text{Mod}-A\) is full and faithful.

Moreover if the above conditions are fulfilled, then

1) \(H\) subordinates an equivalence between \(\text{Gen}(P_R)\) and \(\text{Im}(H)\).

2) The canonical image of \(R\) into \(\text{End}(\mathcal{A}P)\) is dense if \(\text{End}(\mathcal{A}P)\) is endowed with its finite topology.

Proof. The equivalences \((a) \iff (b) \iff (c)\) are due to Zimmermann-Huisgen (cf. [ZH], Lemma 2.2). The statement (2) is due to Fuller ([F], Lemma 1.3).

2.7. **Definition.** Let \(P_R \in \text{Mod}-R\). We say that \(P_R\) is a \(W\)-module
if $\operatorname{Gen}(P_R)$ is a closed subcategory of $\text{Mod-}R$ or equivalently $\operatorname{Gen}(P_R) = \overline{\operatorname{Gen}(P_R)}$.

3.1. Proposition. Let P_R be a W-module, $A = \text{End}(P_R)$, $B = \text{End}(A_P)$. Then the bimodule $A P_B$ is faithfully balanced and $\operatorname{Gen}(P_B)$ is naturally equivalent to $\operatorname{Gen}(P_R)$.

Proof. By Proposition (4.12) of [AF], $A P_B$ is faithfully balanced. Endow R with the P-topology τ. τ is a right linear topology on R and has as a basis of neighbourhoods of 0 the right ideals of the form $\operatorname{Ann}_R(F)$ where F is a finite subset of P. Let \mathcal{F}_r be the filter of all right ideals of R which are open in (R, τ). Set $\mathcal{F}_r = \{M \in \text{Mod-}R: \forall x \in M, \operatorname{Ann}_R(x) \in \mathcal{F}_r\}$. Then $\mathcal{F}_r = \operatorname{Gen}(P_R)$. Indeed it is obvious that $\operatorname{Gen}(P_R) \subseteq \mathcal{F}_r$. On the other hand let $M \in \mathcal{F}_r$ and $x \in M$. Then $\operatorname{Ann}_R(x) \supseteq \operatorname{Ann}_R(p_1, \ldots, p_n)$ where $\{p_1, \ldots, p_n\}$ is a finite subset of P. We have

$$
\bigcap_{i=1}^n \operatorname{Ann}_R(p_i) \subseteq \bigoplus_{i=1}^n \frac{R}{\operatorname{Ann}_R(p_i)} \cong \bigoplus_{i=1}^n p_i R \in \operatorname{Gen}(P_R).
$$

Since $\operatorname{Gen}(P_R) = \overline{\operatorname{Gen}(P_R)}$ it is $R/ \bigcap_{i=1}^n \operatorname{Ann}_R(p_i) \in \operatorname{Gen}(P_R)$. It follows that $x R \in \operatorname{Gen}(P_R)$ since $x R$ is an homomorphic image of $R/ \bigcap_{i=1}^n \operatorname{Ann}_R(p_i)$. By Theorem 2.2, B is the Hausdorff completion of (R, τ), since τ is the relative topology on $R/\operatorname{Ann}_R(P)$ of the finite topology of $\text{End}(A_P)$. Let $\bar{\tau}$ the topology of B. It is clear that $\bar{\tau}$ is the P-topology of B. For every $I \in \mathcal{F}_r$, let \bar{I} be the closure of $I/\operatorname{Ann}_R(P)$ in B. Then $\mathcal{F}_r = \{\bar{I}: I \in \mathcal{F}_r\}$ is a basis of neighbourhoods of 0 in $(B, \bar{\tau})$ and $R/I \cong B/\bar{I}$ both in $\text{Mod-}R$ and in $\text{Mod-}B$. Therefore $\operatorname{Gen}(P_R) = \overline{\operatorname{Gen}(P_B)}$.

3.2. Remark. Let P_R be a W-module, $A = \text{End}(P_R)$, $\Im(H) = \mathcal{O}(K_A)$. Then, in general, $\Im(H) \neq \mathcal{O}(K_A)$ (cf. Lemma 1.6), as the following example shows.

Example. Let P_R a generator of $\text{Mod-}R$, $A = \text{End}(P_R)$. Clearly P_R is a W-module. Assume that $\Im(H) = \mathcal{O}(K_A)$. Then by Proposition 3.2 of [Mo1], $\Im(H) = \text{Mod-A}$. (This is a generalization of Fuller’s Theorem on Equivalences [F]). It follows that the functors T and H give an
equivalence between Mod-A and Mod-R. By a well known result of Morita [M], P_R is a progenerator of Mod-R. If P_R is a generator non progenerator in Mod-R then $\text{Im}(H) \neq \mathbb{G}(K_A)$

3.3. The Remark 3.2 shows that the theory of W-modules is not trivial even if P_R is a generator of Mod-R so that $\text{Gen}(P_R) = \text{Mod-R}$. (See [WW]).

3.4. We conclude this section giving another generalization of Fuller's Theorem on Equivalences. Namely, if P_R is a W-module and if $\text{Im}(H)$ is closed under taking homomorphic images, then $\text{Im}(H) = \text{Mod-A}$. For this purpose we need some preliminar results.

3.5. Let $P_R \in \text{Mod-R}$, $A = \text{End}(P_R)$, $M \in \text{Gen}(P_R)$. Consider an epimorphism $h: P_R^{(X)} \to M \to 0$ where X is a suitable set. Clearly $h = \sum_{x \in X} h_x \in \text{Hom}_R(P_R, M)$. Therefore there exists a natural injection

$$i: \sum_{x \in X} h_x A \to \text{Hom}_R(P_R, M).$$

An Azumaya's Lemma (cf. [A], Lemma 1) guarantees that, if ρ_M is injective, then the canonical morphism

$$T(i): \left(\sum_{x \in X} h_x A \right) \otimes_A P \to \text{Hom}_R(P_R, M) \otimes_A P$$

is surjective.

3.6. LEMMA. Let P_R be a W-module, $A = \text{End}(P_R)$ and assume that $\text{Im}(H)$ is closed under taking homomorphic images. Let $M \in \text{Gen}(P_R)$ and let $h = (h_x)_{x \in X}$ an epimorphism of $P_R^{(X)}$ onto M. Then

$$\sum_{x \in X} h_x A = \text{Hom}_R(P, M).$$

PROOF. We have in Mod-A the exact sequence

$$0 \to \sum_{x \in X} h_x A \xrightarrow{i} \text{Hom}_R(P, M) \to V \to 0.$$

By assumption $V \in \text{Im}(H)$. Applying the exact functor $- \otimes_A P$ we get the exact sequence:

$$0 \to \left(\sum_{x \in X} h_x A \right) \otimes_A P \xrightarrow{T(i)} \text{Hom}_R(P, M) \otimes_A P \to V \otimes_A P \to 0.$$
Since P_R is a W-module, φ_M is an isomorphism (cf. Theorem 2.3 and Proposition 1.8). Therefore, by Azumaya's Lemma, $T(i)$ is surjective so that $V \otimes_A P = 0$. It follows $V = 0$ since the bimodule $_A P_R$ represents a category equivalence between $\text{Im}(H)$ and $\text{Gen}(P_R)$.

3.7. **Definition.** Recall that a module $P_R \in \text{Mod-}R$ is Σ-quasi-projective if for every diagram with exact row

$$
\begin{array}{c}
P_R \\
\downarrow f \\
P_R^{(X)} \rightarrow M \rightarrow 0
\end{array}
$$

there exists $\alpha \in \text{Hom}_R(P_R, P_R^{(X)})$ such that $f = h \circ \alpha$.

3.8. **Definition.** Let $P_R \in \text{Mod-}R$, $A = \text{End}(P_R)$. Recall that P_R is self-small if for every set $X \neq \emptyset$ we have

$$
\text{Hom}_R(P_R, P_R^{(X)}) \cong \text{Hom}_R(P_R, P_R^{(X)}) = A^{(X)}
$$
canonically.

3.9. **Proposition.** Let $P_R \in \text{Mod-}R$, $A = \text{End}(P_R)$. The following conditions are equivalent:

(a) For every $M \in \text{Gen}(P_R)$ and for every epimorphism $h = (h_x)_{x \in X} : P_R^{(X)} \rightarrow M \rightarrow 0$ we have:

$$
\sum_{x \in X} h_x A = \text{Hom}_R(P, M)
$$

(b) P_R is Σ-quasi-projective and self-small.

Proof. (a) \Rightarrow (b). Consider the diagram (1) of 3.7. By assumption we have $f = \sum_{x \in X} h_x a_x$, with $a_x \in A$ and almost all a_x's vanish. Consider the morphism $g : P \rightarrow P_R^{(X)}$ given by $g = (a_x)_{x \in X}$. Then $f = h \circ g$. Therefore P_R is Σ-quasi-projective. Let us show that P_R is self-small. Let $i_x : P_R \rightarrow P_R^{(X)}$ the x-th inclusion and consider the diagram with exact row

$$
\begin{array}{c}
P_R \\
\downarrow f \\
0 \rightarrow P_R^{(X)} \rightarrow P_R^{(X)} \rightarrow 0
\end{array}
$$
We have \(f = \sum_{x \in X} i_x a_x \) with \(a_x \in A \) and almost all \(a_x \)'s vanish. Let \(g = (a_x)_{x \in X} \). Then \(g \in A^{(X)} \) and \(f = i \circ g \), hence \(\text{Hom}_R(P_R, P_R^{(X)}) \cong A^{(X)} \).

(b) \(\Rightarrow \) (a). Let \(f \in \text{Hom}_R(P, M) \) and let \(h: P_R^{(X)} \to M \to 0 \) be an epimorphism. Then there exists a morphism \(g: P_R \to P_R^{(X)} \) such that \(f = h \circ g \). On the other hand \(g = (a_x)_{x \in X} \) with \(a_x \in A \) and almost all \(a_x \)'s vanish, hence \(f \in \prod_{x \in X} h_x A \).

3.10. THEOREM. Let \(P_R \) be a \(W \)-module, \(A = \text{End}(P_R) \) and assume that \(\text{Im}(H) \) is closed under taking homomorphic images. Then \(\text{Im}(H) = \text{Mod-}A \).

PROOF. We have \(T(A^{(X)}) = A^{(X)} \otimes_A P \cong P_R^{(X)} \) in a natural way. By Lemma 3.6 and Proposition 3.9 \(P_R \) is self-small, hence \(H(P_R^{(X)}) = \text{Hom}_R(P_R, P_R^{(X)}) \cong A^{(X)} \). Thus \(A^{(X)} \in \text{Im}(H) \). Let \(L \in \text{Mod-}A \). There exists an exact sequence \(A^{(X)} \to L \to 0 \), so that \(L \in \text{Im}(H) \).

4. The torsion theory \((\text{Im}(T), \omega(K_A))\).

From now on we assume the reader familiar with some elementary facts on torsion theories. See [St] or [N].

4.1. In all this section \(P_R \) is a \(W \)-module with \(A = \text{End}(P_R) \). Set, as usual, \(T = - \otimes_A P \) and \(H = \text{Hom}_R(P_R, -) \). The bimodule \(_A P_R \) represents an equivalence between \(\text{Im}(H) \) and \(\text{Gen}(P_R) = \overline{\text{Gen}(P_R)} \).

4.2. Consider the following subcategory of \(\text{Mod-}A \)

\[\text{Ker}(T) = \{ L \in \text{Mod-}A : L \otimes_A P = 0 \} . \]

Clearly \(\text{Im}(H) \cap \text{Ker}(T) = 0 \).

4.3. LEMMA. \(\text{Ker}(T) \) is a localizing subcategory of \(\text{Mod-}A \), i.e. \(\text{Ker}(T) \) is the torsion class for a hereditary torsion theory on \(\text{Mod-}A \).

PROOF. It is obvious that \(\text{Ker}(T) \) is closed under taking homomorphic images, direct sums and extensions. On the other hand, since \(_A P \) is flat, \(\text{Ker}(T) \) is closed under taking submodules.

The Gabriel filter \(I' \) canonically associated to the localizing subcate-
gory $\text{Ker}(T)$ is given by setting
\[\Gamma = \left\{ I \leq A_A : \frac{A}{I} \in \text{Ker}(T) \right\}. \]

Clearly
\[\Gamma' = \left\{ I \leq A_A : IP = P \right\}. \]

Let $L \in \text{Mod-A}$. The torsion submodule $t_T(L)$ of L is defined by setting
\[t_T(L) = \left\{ x \in L : \text{Ann}_A(x) \in \Gamma \right\}. \]

Then the category of torsion-free modules is
\[\mathcal{S}_T = \left\{ L \in \text{Mod-A} : t_T(L) = 0 \right\}. \]

For every $L \in \text{Mod-A}$, $L/t_T(L)$ is torsion free. If no confusion arises, we write $t(L)$ instead of $t_{t_T(L)}$.

Let Q_R be a fixed, but arbitrary, injective cogenerator of Mod-R, $K_A = \text{Hom}_R(P_R, Q_R)$, $\mathcal{O}(K_A)$ the subcategory of Mod-A, cogenerated by K_A. Since A_P is flat, K_A is injective in Mod-A.

4.4. LEMMA.
\[\text{Ker}(T) = \left\{ L \in \text{Mod-A} : \text{Hom}_A(L, K_A) = 0 \right\}. \]

PROOF. For every $L \in \text{Mod-A}$ we have the canonical isomorphisms:
\[\text{Hom}_A(L, K_A) = \text{Hom}_A(L, \text{Hom}_R(P, Q)) \cong \text{Hom}_R(L \otimes_A P, Q_R). \]

Since Q_R is a cogenerator in Mod-R we have
\[\text{Hom}_A(L, K_A) = 0 \iff L \otimes_A P = 0 \iff L \in \text{Ker}(T). \]

4.5. PROPOSITION.
\[\mathcal{S}_T = \mathcal{O}(K_A). \]

PROOF. Let $L \in \mathcal{S}_T$. Then $t_T(L) = 0$. Let $l \in L$, $l \neq 0$. Then $lA \notin \text{Ker}(T)$ hence, by Lemma 4.4, $\text{Hom}_A(lA, K_A) \neq 0$. Let $f : lA \to K_A$ a non zero morphism. Since K_A is injective in Mod-A, f extends to a morphism $\tilde{f} : L \to K_A$ and $\tilde{f}(l) \neq 0$. It follows $L \in \mathcal{O}(K_A)$.

Conversely let $L \in \mathcal{O}(K_A)$ and let $L' \leq L$ such that $L' \in \text{Ker}(T)$. By
Lemma 4.4 we have $\text{Hom}_A(L', K_A) = 0$. On the other hand there exists an exact sequence $0 \to L \to K_A^X$ where X is a suitable set. Then $L' = 0$, so that $L \in \mathcal{T}_\Gamma$.

4.6. **Corollary.** (a) The torsion theory $(\text{Ker}(T), \mathcal{O}(K_A))$ is cogenerated by the injective module K_A.

(b) Since $\text{Im}(H) \subseteq \mathcal{O}(K_A)$, the modules in $\text{Im}(H)$ are torsion-free.

4.7. **Proposition.** For every $L \in \text{Mod}-A$ consider the canonical morphism $\sigma_L: L \to \text{Hom}_R(P_R, L \otimes_A P)$. Then:

$$t_\Gamma(L) = \text{Ker}(\sigma_L).$$

Proof. We have:

\[
\text{Ker}(\sigma_L) = \{l \in L: l \otimes p = 0, \forall p \in P\} = \{l \in L: lA \otimes_A P = 0\} = \\
= \{l \in L: lA \in \text{Ker}(T)\} = t_\Gamma(L).
\]

4.8. Let $L \in \text{Mod}-A$, $I, J \in \Gamma$, $I \geq J$. Consider the natural morphism

$$\text{Hom}_A(I, L) \to \text{Hom}_A(J, L)$$

given by restrictions. For every $L \in \text{Mod}-A$ set:

$$L_\Gamma = \lim_{I \in \Gamma} \text{Hom}_A(I, \frac{L}{t_\Gamma(L)})$$

and, since A is torsion-free

$$A_\Gamma = \lim_{I \in \Gamma} \text{Hom}_A(I, A).$$

It is well known that L_Γ is a right A-module, A_Γ is a ring and moreover L_Γ is a right A_Γ-module.

A_Γ is called the ring of quotients of A and L_Γ the module of quotients of L with respect to the Gabriel filter Γ. For every $L \in \text{Mod}-A$, L_Γ is also called the localization of L at Γ.

For every $L \in \text{Mod}-A$ there exists a canonical morphism $\varphi_L: L \to L_\Gamma$
such that
\[
\text{Ker}(\varphi_L) = t_r(L), \quad \frac{L^r}{\varphi_L(L)} \in \text{Ker}(T), \quad \varphi_L(L) \in \mathcal{O}(K_A)
\]

\(\varphi_A: A \to A^r\) is a ring morphism.

4.9. Lemma. Let \(I \in \Gamma\).

Then \(\text{Hom}_A(A/I, A) = 0\) and \(\text{Ext}_A^1(A/I, A) = 0\).

Proof. See [WW] Proposition 1.2.

4.10. Corollary. The canonical morphism \(\varphi_A: A \to A^r\) is a ring isomorphism.

Proof. By Corollary 4.6 \(A\) is torsion-free. Let \(I \in \Gamma\) and let \(\alpha_I: I \to A\) be the canonical inclusion. By Lemma 4.9 the exact sequence

\[0 \to I \xrightarrow{\alpha_I} A \to A/I \to 0\]

gives rise to the exact sequence:

\[0 = \text{Hom}_A(A/I, A) \to \text{Hom}_A(A, A) \xrightarrow{\alpha_I^*} \text{Hom}_A(I, A) \to \text{Ext}_A^1(A/I, A) = 0.
\]

Therefore \(\alpha_I^*: \text{Hom}_A(A, A) \to \text{Hom}_A(I, A)\) is an isomorphism i.e. any morphism \(I \to A\) extends uniquely to an element of \(A\). Then, if \(I, J \in \Gamma\) and \(I \geq J\), the restriction map \(\text{Hom}_A(I, A) \to \text{Hom}_A(J, A)\) is an isomorphism.

4.11. Definitions. Recall that a module \(L \in \text{Mod}-A\) is \(\Gamma\)-injective if for every \(I \in \Gamma\) the restriction morphism

\[(1) \quad \text{Hom}_A(A, L) \to \text{Hom}_A(I, L)\]

is surjective.

\(L\) is \(\Gamma\)-injective if and only if \(\text{Ext}_A^1(N, L) = 0\) for every \(N \in \text{Ker}(T)\).

A module \(L \in \text{Mod}-A\) is called \(\Gamma\)-closed if for every \(I \in \Gamma\) the above morphism (1) is an isomorphism.

The following results are classical in torsion theories.

4.12. Theorem. Let \(L \in \text{Mod}-A\). The following conditions are equivalent:

(a) \(L\) is \(\Gamma\)-closed;
(b) $L \in \mathcal{O}(K_A)$ and L is Γ-injective;

(c) for every morphism $\alpha: U \to V$ in $\text{Mod-}A$ such that $\text{Ker}(\alpha) \in \text{Ker}(T)$ and $\text{Coker}(\alpha) \in \text{Ker}(T)$, the transposed morphism $\text{Hom}_A(V, L) \to \text{Hom}_A(U, L)$ is an isomorphism;

(d) the canonical morphism $\varphi_L: L \to L_{\Gamma}$ is an isomorphism.

4.13. COROLLARY. For every $L \in \text{Mod-}A$, L_{Γ} is Γ-closed.

5. A characterization of $\text{Im}(H)$.

5.1. In all this section we work in situation 4.1.

Denote by $\text{Mod-}(A, \Gamma)$ the subcategory of $\text{Mod-}A$ whose objects are all the Γ-closed modules in $\text{Mod-}A$. By Theorem 4.12 we can write

$$\text{Mod-}(A, \Gamma) = \{ L \in \text{Mod-}A : L = L_{\Gamma} \} .$$

Our main result is the following theorem which, together with Theorem 2.6, gives easily the Popescu-Gabriel Theorem in our setting.

5.2. THEOREM. Let $P_R \in \text{Mod-}R$ be a W-module, $A = \text{End}(P_R)$, $H = \text{Hom}_R(P_R, -)$, $T = - \otimes_A P$. Then for every $L \in \text{Mod-}A$ we have

$$L_{\Gamma} = HT(L) .$$

PROOF. For every $L \in \text{Mod-}A$, we have

$$(1) \quad T(L_{\Gamma}) = T(L) .$$

Indeed, consider the exact sequence

$$0 \to t_{\Gamma}(L) \to L \xrightarrow{\varphi_L} L_{\Gamma} \to L_{\Gamma}/\varphi_L(L) \to 0 .$$

Tensoring by $A P$ and since $t_{\Gamma}(L)$ and $L_{\Gamma}/\varphi_L(L)$ are in $\text{Ker}(T)$, we get (1).

We now prove that, for every $L \in \text{Mod-}A$, $L_{\Gamma} \in \text{Im}(H)$ from which it will follow

$$L_{\Gamma} \cong HT(L)$$

by Theorem 2.3.

Indeed assume $L = L_{\Gamma}$. Since $L \in \mathcal{O}(K_A)$ (cf. Theorem 4.12), σ_L is injective. Consider the exact sequence

$$(2) \quad 0 \to L \xrightarrow{\varphi_L} HT(L) \to \text{Coker}(\sigma_L) \to 0 .$$
Since T and H are adjoint functors there exists the commutative diagram

\[
\begin{array}{c}
T(L) \xrightarrow{T(a_L)} THT(L) \\
\downarrow T \circ p_L \\
T(L)
\end{array}
\]

Since $T(L) \in \text{Gen}(P_R)$, $\varphi_{T(L)}$ is an isomorphism hence $T(\sigma_L)$ is an isomorphism too. Applying T in (2) we get the exact sequence

\[0 \to T(L) \xrightarrow{T(\sigma_L)} THT(L) \to T(\text{Coker}(\sigma_L)) = 0.\]

It follows $\text{Coker}(\sigma_L) \in \text{Ker}(T)$. Since L is I'-injective, the exact sequence (2) splits hence:

\[HT(L) \cong L \oplus \text{Coker}(\sigma_L);\]

therefore $\text{Coker}(\sigma_L) = 0$ because $HT(L)$ is torsion-free. Thus σ_L is an isomorphism and $L \in \text{Im}(H)$.

5.3. COROLLARY. Under the assumptions of Theorem 5.2

\[\text{Im}(H) = \text{Mod} - (A, I').\]

PROOF. Let $L \in \text{Im}(H)$. Then $L \cong HT(L)$, hence $L = L_{I'}$. If $L = L_{I'}$ then $L = HT(L)$, hence $L \in \text{Im}(H)$.

6. The trace ideal of A^P in A.

6.1. Let P_R be a W-module, $A = \text{End}(P_R)$. Define the trace ideal τ of A^P in A by setting

\[\tau = \sum \{\text{Im}(f): f \in \text{Hom}_A(P, A)\};\]

τ is a two-sided ideal of A.

6.2 LEMMA ([WW], Proposition 1.5 and Theorem 1.6). Let P_R be a W-module, $A = \text{End}(P_R)$. Then $\tau \subseteq \bigcap_{I \in \Gamma} I$.

If moreover P_R is a generator of $\text{Mod}-R$, then:

a) $\tau P = P$ so that $I \in \Gamma$ if and only if $I \supseteq \tau$;

b) $\tau^2 = \tau$;
c) the left annihilator of \(\tau \) is 0;

d) \(\tau \) is finitely generated as a two-sided ideal;

e) \(\tau \) is essential as a right ideal.

6.3 COROLLARY. Let \(P_R \) be a generator of \(\text{Mod-}R \), \(A = \text{End} (P_R) \). Then for every \(L \in \text{Mod-A} \)

\[
L_r = \text{Hom} \left(\tau, \frac{L}{t_r(L)} \right).
\]

7. An example: closed spectral subcategories of \(\text{Mod-}R \).

7.1. Let \(\mathcal{S}_R \) be a closed subcategory of \(\text{Mod-}R \), \(P_R \) a generator of \(\mathcal{S}_R \), \(A = \text{End} (P_R) \). Set, as usual, \(T = - \otimes_A P \), \(H = \text{Hom}_R (P_R, -) \). Let \(\Gamma \) be the Gabriel filter associated to the hereditary torsion theory \((\text{Ker} (T), \mathcal{O}(KA)) \). Then \(\mathcal{S}_R \) is naturally equivalent to the subcategory \(\text{Im} (H) = \text{Mod-} (A, \Gamma) \) of \(\text{Mod-A} \).

Recall that the subcategory \(\text{Mod-} (A, \Gamma) \) is closed under taking injective envelopes and direct products in \(\text{Mod-A} \).

7.2. We are interested in finding conditions in order that every module \(L \in \text{Mod-} (A, \Gamma) \) is injective in \(\text{Mod-} (A, \Gamma) \) or, equivalently, in \(\text{Mod-A} \).

7.3 LEMMA. The sequence in \(\text{Mod-} (A, \Gamma) \)

\[
0 \to L \to^f M \to^g N \to 0
\]

is exact in \(\text{Mod-} (A, \Gamma) \) if and only if

1) \(f \) is injective;

2) \(\text{Im} (f) = \text{Ker} (g) \);

3) \(N/\text{Im} (g) \in \text{Ker} (T) \).

PROOF. Assume that (1) is exact in \(\text{Mod-} (A, \Gamma) \). Then we have the exact sequence

\[
0 \to T(L) \to^{T(f)} T(M) \to^{T(g)} T(N) \to 0 \quad \text{in } \mathcal{S}_R.
\]
Since \mathcal{S}_R is closed, (2) is exact in Mod-R. Therefore the sequence
\[0 \to HT(L) \xrightarrow{HT(f)} HT(M) \xrightarrow{HT(g)} HT(N) \]
is exact in Mod-A; thus f is injective and $\text{Im}(f) = \text{Ker}(g)$.

Assume that $N/\text{Im}(g) \not\approx \text{Ker}(T)$. Then we have the exact sequence in Mod-A:
\[0 \to L \xrightarrow{f} M \xrightarrow{g} N \to N/\text{Im}(g) \to 0. \]

Applying T we get $T(N/\text{Im}(g)) \not= 0$, in contrast with (2).

Conversely, if conditions 1), 2) and 3) hold for the sequence (1), then the sequence (2) is exact in \mathcal{S}_R and (1) is exact in Mod-$\langle A, I^\prime \rangle$.

7.4. Assume that every module in Mod-$\langle A, I^\prime \rangle$ is injective. Let
\[0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0 \]
be an exact sequence in Mod-$\langle A, I^\prime \rangle$. Since L is injective, we have
\[M = L \oplus L' \quad \text{in Mod-}A, \]
where $L' \equiv \text{Im}(g) \leq N$. Let us show that
\[L' \equiv N \text{ canonically.} \]

Observe that $L' \in \text{Mod-} (A, I^\prime)$. In fact L' is torsion free and, being injective, it is I'-injective. We have $N \equiv L' \oplus L''$, with $L'' \equiv N/\text{Im}(g)$. Since $L' \in \mathcal{O}(K_A)$ and $L'' \in \text{Ker}(T)$ we get $N \equiv L'$.

7.5 PROPOSITION. Assume that every module in Mod-$\langle A, I^\prime \rangle$ is injective. The sequence
\[0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0 \]
with $L, M, N \in \text{Mod-} (A, I^\prime)$ is exact in Mod-A if and only if it is exact in Mod-A.

In this case (1) splits.

7.6 LEMMA. Let $M \in \mathcal{S}_R = \text{Gen}(P_R)$, $N \in \text{Mod-}R$ and let $f: M \to N$ be a morphism. Then $\text{Im}(f) \leq t_P(N)$.

PROOF. Assume that $M = P^{(X)}_R$, where $X \neq \emptyset$ is a set. Let $h: P^{(X)} \to N$ be a morphism. Then $h = (h_x)_{x \in X}$, with $h_x \in \text{Hom}_R(P, N)$. Let $p \in P^{(X)}$. Then $p = (p_x)_{x \in X}$, with $p_x \in P$ and $p_x = 0$ for almost all $x \in X$.

We have
\[h(\mu) = \sum_{x \in X} h_x(p_x) \in t_p(N). \]

Let \(M \in \text{Gen}(P_R), f \in \text{Hom}_R(M, N) \). There exists a diagram
\[P^{(X)} \xrightarrow{h} M \xrightarrow{f} N \]
with \(h \) a surjective morphism. It is \(f \circ h \in \text{Hom}_R(P^{(X)}, N) \), hence
\[\text{Im}(f \circ h) \leq t_p(N) \text{ and } \text{Im}(f \circ h) = \text{Im}(f). \]

7.7 Proposition. Let \(\mathcal{S}_R \) be a closed subcategory of \(\text{Mod}-R \), \(P_R \) a generator of \(\mathcal{S}_R \), \(A = \text{End}(P_R) \). The following conditions are equivalent:

(a) every module in \(\text{Mod}-(A, I') \) is injective;

(b) \(\mathcal{S}_R \) is a spectral category.

In this case every module in \(\mathcal{S}_R \) is semisimple.

Proof. (a) \(\Rightarrow \) (b) By Proposition 7.5 every short exact sequence in \(\mathcal{S}_R \) splits. Therefore such a sequence splits in \(\text{Mod}-R \). Then every module in \(\mathcal{S}_R \) is semisimple so that \(\mathcal{S}_R \) is spectral.

(b) \(\Rightarrow \) (a) Let \(L \in \text{Mod}-(A, I') = \text{Im}(H) \). Then \(L = H(M) \), with \(M \in \mathcal{S}_R \). Since \(Q_R \) is a cogenerator in \(\text{Mod}-R \), there exists an exact sequence in \(\text{Mod}-R \)
\[0 \rightarrow M \rightarrow Q^X \]
where \(X \) is a suitable set. By Lemma 7.6, \(\text{Im}(f) \leq t_p(Q^X_R) \in \text{Gen}(P_R) = \mathcal{S}_R \). Since \(\mathcal{S}_R \) is spectral, \(M \) is a direct summand of \(t_p(Q^X_R) \). Therefore \(L = H(M) \) is a direct summand of \(H(t_p(Q^X_R)) \). On the other hand, \(H(t_p(Q^X_R)) \equiv H(Q^X_A) = K^X_A \) which is injective.

7.8 Proposition. Let \(\mathcal{S}_R \) be a closed spectral subcategory of \(\text{Mod}-R \), \(P_R \) a generator of \(\mathcal{S}_R \) and \(A = \text{End}(P_R) \). Then:

a) for every \(L \in \text{Mod}-A \) the following conditions are equivalent:

(i) \(L \in \text{Mod}-(A, I') \);

(ii) \(L \) is a direct summand of a module of the form \(A^X \), where \(X \) is a non empty set;

b) the ring \(A \) is von Neumann regular and right self-injective.
PROOF. a) (i) ⇒ (ii) Let \(X \) be a non empty set. We show that
\(H(P_R^{(X)}) \) is a direct summand of \(A^X \). In fact:
\[
H(P_R^{(X)}) \leq H(P_R^X) \cong H(t_P(P_R^X)) \cong A^X \in \text{Mod} - (A, \Gamma').
\]
Since \(H(P_R^{(X)}) \) is injective, \(H(P_R^{(X)}) \) is a direct summand of \(A^X \). Let
\(L \in \text{Mod} - (A, \Gamma') \) be an injective module. Then \(L = H(M) \), for some
\(M \in \mathcal{S}_R \). Then \(H(M) \) is a direct summand of a module of the form
\(H(P_R^{(X)}) \), hence \(L \) is a direct summand of \(A^X \).

(ii) ⇒ (i) If \(L \) is a direct summand of \(A^X \), \(L \) is torsion free and it is
\(\Gamma' \)-injective, being injective. Therefore \(L \in \text{Mod} - (A, \Gamma') \).

b) Since \(P_R \) is semisimple, \(A \) is von Neumann regular (cf.[St],

7.9. Let \(\mathcal{S}_R \) be a closed spectral subcategory of \(\text{Mod}-R \), \(P_R \) a generator
of \(\mathcal{S}_R \) and \(A = \text{End}(P_R) \). In this case the filter \(\Gamma' \) has a nice descrip-
tion using the trace ideal of \(_A^P \) in \(_A A \).

7.10. Fix a simple module \(S \in \text{Mod}-R \) and denote by \(\Sigma(S) \) the spectral
subcategory of \(\text{Mod}-R \) consisting of all semisimple modules which
are a direct sum of copies of \(S \).

Fix a positive cardinal number \(\alpha \). Then
\[
P_R = S^{(\alpha)}
\]
is a projective generator and an injective cogenerator of \(\Sigma(S) \). Let
\(D = \text{End}(S_R) \), \(A = \text{End}(P_R) \). Then \(D \) is a division ring and \(A \) is the
ring of all \(\alpha \times \alpha \) matrices, with entries in \(D \), whose columns have only a
finite number of non zero elements. It follows that \(A \cong \text{End}(D^{(\alpha)}) \),
where \(D^{(\alpha)} \) is considered as a right vector space over the division ring
\(D \).

Let \(\Gamma \) be the usual Gabriel filter on \(A \). Let \(\tau \) be the trace ideal of \(_A^P \) in \(_A A \):
\[
\tau = \sum \{ \text{Im}(g) : g \in \text{Hom}_{_A}(A^P, A) \}.
\]

a) \(_A^P \) is a semisimple module in \(A-\text{Mod} \).

PROOF. Since \(P_R \) is an injective cogenerator of \(\Sigma(S) \), then \(P_R \) is
strongly quasi-injective in the sense of[MO1]. Applying Proposition
6.10 of[MO1] we have
\[
\text{Soc}(A^P) = \text{Soc}(P_R) = P
\]
and thus \(_A^P \) is semisimple.
Let L_ω be the minimal two-sided non zero ideal of A. As it is well known, L_ω consists of all the endomorphism of $D^{(a)}$ whose image is finite dimensional. L_ω has the following properties:

i) $L_\omega = \text{Soc}(A) = \text{Soc}(A_A)$;

ii) the right ideals of A containing L_ω are exactly the essential right ideals of A.

Therefore we have, by i),

$$\tau = \sum \{\text{Im}(g) : g \in \text{Hom}_A(A_P, L_\omega)\}.$$

Thus $\tau \leq L_\omega$.

b) The trace ideal $\tau = L_\omega$.

PROOF. Let us show that $\tau \neq 0$; it will follow that $\tau = L_\omega$, since τ is two-sided and L_ω is the minimal two-sided non zero ideal of A.

Let J be a maximal right ideal of R such that $R/J = S_R$. The exact sequence

$$0 \rightarrow J \rightarrow R \rightarrow R/J \rightarrow 0$$

gives rise, by applying $\text{Hom}_R(-, P_R)$, to the exact sequence

$$0 \rightarrow \text{Hom}_R(R/J, P_R) = \text{Ann}_P(J) \rightarrow A_P.$$

Thus

$$\text{Ann}_P(J) \cong \text{Hom}_R(S, P_R) \cong D^{(a)} \hookrightarrow A_P,$$

since S_R is finitely generated. Therefore A_P contains a direct summand of the form $\text{Ann}_P(J) \cong \text{Hom}_R(S, P_R) \cong D^{(a)}$ and it is well known that $\text{Hom}_A(D^{(a)}, A) \neq 0$.

\[c) \text{Let } f \text{ be an endomorphism of } P_R \text{ such that } \text{Im}(f) \text{ is finitely generated. Then } f \in L_\omega.\]

PROOF. In fact f may be represented by an $\alpha \times \alpha$ matrix having only a finite number of non zero rows. Then this matrix represents an endomorphism of $D^{(a)}$ whose image is finite dimensional. Therefore $f \in L_\omega$.

\[d) \text{ } L_\omega P = P; \text{ hence } L_\omega \in \Gamma \text{ and thus}\]

$$\Gamma = \{I \subseteq A_A : I \ni \tau\}.$$

PROOF. Let $x \in P_R$, $x \neq 0$, and let f be the projection of P_R onto the
submodule F generated by x, such that $f(x) = x$. Since F is finitely generated, $f \in L_\omega$. Thus $L_\omega P = P$.

The last statement follows from Lemma 6.2.

We now consider closed spectral subcategories of Mod-R in the general case.

7.11 PROPOSITION. Let S_R be a closed spectral subcategory of Mod-R, P_R a generator of S_R and $A = \text{End}(P_R)$. Let Γ be the usual Gabriel filter on A and τ be the trace of AP in $A A$. Then:

a) $\text{Soc}(A_A) = \text{Soc}(A_A) = \tau \neq 0$;

b) $\tau \in \Gamma$ and $\Gamma = \{I \subseteq A_A : I \geq \tau\}$.

Consequently Γ consists of all essential right ideals of A.

PROOF. Let $(S_\delta)_{\delta \in \Delta}$ be a system of representatives of all non isomorphic simple modules in S_R. Set $D_\delta = \text{End}_R(S_\delta)$. We have

$$P_R = \bigoplus_{\delta \in \Delta} S_\delta^{(\alpha_\delta)},$$

where the α_δ's are non zero cardinal numbers. P_R is a projective generator and an injective cogenerator of S_R. Next we have:

$$A = \text{Hom}_R(P_R, P_R) \cong \text{Hom}_R \left(\bigoplus_{\delta \in \Delta} S_\delta^{(\alpha_\delta)}, \bigoplus_{\delta \in \Delta} S_\delta^{(\alpha_\delta)} \right) \cong$$

$$\cong \prod_{\delta \in \Delta} \text{Hom}_R(S_\delta^{(\alpha_\delta)}, S_\delta^{(\alpha_\delta)}) \cong \prod_{\delta \in \Delta} A_\delta,$$

where $A_\delta = \text{End}_R(S_\delta^{(\alpha_\delta)})$.

Let τ be the trace ideal of AP in A; note that $\bigoplus_{\delta \in \Delta} A_\delta$ is essential in $A = \prod_{\delta \in \Delta} A_\delta$. Therefore:

$$\text{Soc}(A_A) = \bigoplus_{\delta \in \Delta} \text{Soc}(A_{\delta}) = \bigoplus_{\delta \in \Delta} L_{\omega}(\delta),$$

where $L_{\omega}(\delta)$ is the smallest two-sided ideal of the ring A_δ. Hence

$$\text{Soc}(A_A) = \text{Soc}(A_A).$$

Then

$$\tau = \sum \left\{ \text{Im}(g) : g \in \text{Hom}_A \left(AP, \bigoplus_{\delta \in \Delta} L_{\omega}(\delta) \right) \right\}.$$

Hence

$$\tau = \bigoplus_{\delta \in \Delta} L_{\omega}(\delta) = \text{Soc}(A_A).$$
As we know, \(\tau \subseteq \bigcap \{ I : I \in \Gamma \} \). Let us show that \(\tau \in \Gamma \). In fact
\[
\left(\bigoplus_{\delta' \in \mathcal{D}} L_{\omega}(\delta') \right) \left(\bigoplus_{\delta \in \mathcal{D}} S_{\delta}(\alpha_{\delta}) \right) = \bigoplus_{\delta \in \mathcal{D}} L_{\omega}(\delta) S_{\delta}(\alpha_{\delta}) = \bigoplus_{\delta \in \mathcal{D}} S_{\delta}(\alpha_{\delta}).
\]

7.12 REMARK. We think that a number of more interesting examples may be constructed from the recent paper of Albu and Wisbauer [AW].

REFERENCES

Manoscritto pervenuto in redazione l'11 febbraio 1993 e, in forma revisionata, il 23 settembre 1993.