Characterization properties for starlike and convex functions involving a class of fractional integral operators

R. K. Raina
Mamta Bolia

Rendiconti del Seminario Matematico della Università di Padova, tome 97 (1997), p. 61-71

<http://www.numdam.org/item?id=RSMUP_1997__97__61_0>
Characterization Properties for Starlike and Convex Functions Involving a Class of Fractional Integral Operators (*).

R. K. Raina (**) - Mamta Bolia (***)

ABSTRACT - This paper studies the characterization properties satisfied by a class of fractional integrals of certain analytic functions in the open unit disk to be starlike or convex. Further characterization theorems associated with the Hadamard product (or convolution) are also investigated.

1. - Introduction.

A new class of fractional integral operators with a particular case of Fox’s H-function in the kernel was introduced by Kiryakova [4] and [5] (see also [3]). Subsequently, this generalized fractional integral operator was extended and studied in a wider context on McBride spaces $F_{p,\mu}$ and $F_{p,\mu}$ by Raina and Saigo [9] (see also [12]). Recently, several classes of distortion theorems have been obtained involving certain fractional integral operators by Srivastava, Saigo and Owa [15]. Distortion inequalities associated with the new class of fractional integral operators [5] have very recently been considered by Raina and Bolia [10].

This paper is devoted to studying the sufficiency conditions satisfied by a class of fractional integral operators (defined by eq. (5) below).

(*) Dedicated to the memory of Late Professor Bertram Ross of New Haven University, U.S.A.

(**) Indirizzo dell’A.: Department of Mathematics, C.T.A.E. Campus Udaipur, Udaipur, 313 001 Rajasthan, India.

(***) Indirizzo dell’A.: Department of Mathematics, College of Science, Sukhadia University, Udaipur, 313 001 Rajasthan, India.

AMS Subject Classification (1991): 26A33, 30C45, 30C99, 33C40
of certain analytic functions in the open unit disk to be starlike or convex. Further characterization properties associated with the Hadamard product (or convolution) are also considered. The class of fractional integral operators incorporates several well-known integral operators like; the Riemann-Liouville operator, Kober fractional integral, Erdélyi fractional integral, Love fractional integral, Saigo fractional integral and their various generalizations. One may refer to [9] for comprehensive details of these above special cases. The results of this paper are widely applicable to several fractional integral operators including the one discussed in [7].

The paper is organised as follows: Section 2 gives preliminary details and definitions of starlike and convex analytic functions, and generalized fractional integral operators. In Section 3 we state first the results which are required in our sequel and then establish our main characterization properties in the form of Theorems 1 and 2. Lastly, Section 4 considers the characterization properties associated with the Hadamard product.

2. – Preliminaries and definitions.

Let \(T(n) \) denote the class of functions of the form

\[
f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \quad (n \in \mathbb{N}),
\]

which are analytic in the unit disk \(U = \{z: |z| < 1\} \). Then a function \(f(z) \in T(n) \) is said to be in the class \(S(n) \) if and only if

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in U).
\]

Further, a function \(f(z) \in T(n) \) is said to be in the class \(K(n) \) if and only if

\[
\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0 \quad (z \in U).
\]

It is easily verified that

\[
f(z) \in K(n) \iff zf'(z) \in S(n) \quad (\forall n \in \mathbb{N}),
\]

and that \(S(1) \) and \(K(1) \) are the well known classes of starlike and convex functions.

We give now below the definition of a class of fractional integral operators [3] and [4] (see also [5], [9] and [12]):
DEFINITION. Let $m \in \mathbb{N}$, $\beta_k \in \mathbb{R}_+$ and $\gamma_k, \delta_k \in \mathbb{C}$, $\forall k = 1, \ldots, m$; with $\sum_{k=1}^m \text{Re}(\delta_k) > 0$. Then the integral operator

$$I^{(\gamma_m), (\delta_m)}_{(\beta_k, \ldots, \beta_m); m} f(z) = I^{(\gamma_1, \ldots, \gamma_m), (\delta_1, \ldots, \delta_m)}_{(\beta_1, \ldots, \beta_m); m} f(z) =$$

$$= \frac{1}{z} \int_0^z H_{m, m}^{m, 0} \left[\frac{t}{z} \begin{pmatrix} (\gamma_k + \delta_k + 1 - 1/\beta_k, 1/\beta_k)^{1, m} \\ (\gamma_k + 1 - 1/\beta_k, 1/\beta_k)^{1, m} \end{pmatrix} \right] f(t) \, dt,$$

(5)

$$= f(z), \quad \delta_1 = \ldots = \delta_m = 0,$$

is said to be a multiple fractional integral operator of Riemann-Liouville type of multiorder $\delta = (\delta_1, \ldots, \delta_m)$. Here and elsewhere, the set of nonnegative integers is denoted by \mathbb{N}. \mathbb{R} means the real field and $\mathbb{R}_+ = (0, \infty)$, and \mathbb{C} denotes the complex number field.

The H-function involving in (5) is a special case of Fox's $H_{p, q}^{m, n}$-function [2] (see also [8, Sect. 8.3]) which is defined as follows:

Let $m, n, p, q \in \mathbb{N}$ such that $0 \leq m \leq q$, $0 \leq n \leq p$, and $a_j, b_i \in \mathbb{C}$ and $\alpha_i, \beta_j \in \mathbb{R}_+$ ($j = 1, \ldots, q$; $i = 1, \ldots, p$). The H-function occurring in the paper is defined by ([2, p. 408]):

$$H_{p, q}^{m, n} [z] = H_{p, q}^{m, n} \left[z \begin{pmatrix} (a_j), (\alpha_j)_{1, p} \\ (b_j), (\beta_j)_{1, q} \end{pmatrix} = \right.$$

$$= \frac{1}{2\pi i} \int_L \theta(s) z^s \, ds, \quad i = \sqrt{-1},$$

(6)

where

$$\theta(s) = \frac{\prod_{j=1}^m \Gamma(b_j - \beta_j s) \prod_{j=1}^n \Gamma(1 - a_j + \alpha_j s)}{\prod_{j=m+1}^q \Gamma(1 - b_j + \beta_j s) \prod_{j=n+1}^p \Gamma(a_j - \alpha_j s)},$$

(7)

the contour L is suitably chosen and an empty product, if it occurs, is taken to be one. The details of this function may be found in [1], [6, Chapter 1], [8, Sect. 8.3] and [14, Chapter 2]. The symbol $(\lambda)_k$ denotes
3. - Characterization properties.

We first introduce a class of fractional integral operators as follows:

The fractional integral operator $R^{(\gamma_m)}_{(\beta_m); m} f(z)$ is defined by

$$R^{(\gamma_m)}_{(\beta_m); m} f(z) = \prod_{j=1}^{m} \left\{ \frac{\Gamma(\beta_j + \gamma_j + \delta_j + 1)}{\Gamma(\beta_j + \gamma_j + 1)} \right\} I^{(\gamma_m)}_{(\beta_m); m} f(z),$$

where $m \in N$, $\beta_j, \delta_j \in R_+$ and $\gamma_j \in R$, $\forall j = 1, \ldots, m$; such that

$$\min \{ 1 + \beta_j + \gamma_j + \delta_j, 1 + \beta_j + \gamma_j \} > 0 \quad (\forall j = 1, \ldots, m),$$

and n is a positive integer so chosen that

$$\prod_{j=1}^{m} \left\{ \frac{(1 + \gamma_j + \beta_j(n + 1)\beta_j)}{(1 + \gamma_j + \delta_j + \beta_j(n + 1))\beta_j} \right\} \leq 1.$$

In order to establish the characterization properties satisfied by the operator (8) of certain analytic functions, we require the following results:

Lemma 1. If the function $f(z)$ defined by (1) satisfies

$$\sum_{k=n+1}^{\infty} k |a_k| \leq 1 \quad (n \in N),$$

then $f(z) \in S(n)$. The equality in (11) is attained by the function

$$g_1(z) = z + \frac{z^k}{k} \quad (k \geq n + 1; n \in N).$$

Lemma 2. If the function $f(z)$ defined by (1) satisfies

$$\sum_{k=n+1}^{\infty} k^2 |a_k| \leq 1 \quad (n \in N),$$
then \(f(z) \in K(n) \). The equality in (13) is attained by the function

\[
g_2(z) = z + \frac{z^k}{k^2} \quad (k \geq n + 1; \ n \in \mathbb{N}).
\]

Lemmas 1 and 2 stated in [7, p. 420] are easy consequences of the corresponding results due to Silverman [13].

Lemma 3 [5, p. 261]. Let

\[
\gamma_j > - \frac{\mu}{\beta_j} - 1, \quad \delta_j \geq 0, \quad \forall j = 1, \ldots, m.
\]

Then the operator \(I_{(\beta_m); m}^{(\gamma_m), (\delta_m)} \) maps the class \(A_{\mu}(G) \) into itself preserving the power functions \(f(z) = z^p \) up to a constant multiplier, namely:

\[
I_{(\beta_m); m}^{(\gamma_m), (\delta_m)} \{z^p\} = \prod_{j=1}^{m} \left\{ \frac{\Gamma(p/\beta_j + \gamma_j + 1)}{\Gamma(p/\beta_j + \gamma_j + \delta_j + 1)} \right\} z^p, \quad p \geq \mu.
\]

We prove now the following:

Theorem 1. Under the conditions stated in (8), (9), and (10), let the function \(f(z) \) defined by (1) satisfy

\[
\sum_{k=n+1}^{\infty} k |a_k| \leq \prod_{j=1}^{m} \left\{ \frac{(\beta_j + \gamma_j + \delta_j + 1)_{n \beta_j}}{(\beta_j + \gamma_j + 1)_{n \beta_j}} \right\} \quad (n \in \mathbb{N}).
\]

Then

\[
R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z) \in S(n).
\]

Proof. Applying suitably Lemma 3, we have from (1) and (8):

\[
R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z) = z + \sum_{k=n+1}^{\infty} \psi(k) a_k z^k,
\]

where

\[
\psi(k) = \prod_{j=1}^{m} \left\{ \frac{(\beta_j + \gamma_j + 1)(k-1)_{\beta_j}}{(\beta_j + \gamma_j + \delta_j + 1)(k-1)_{\beta_j}} \right\} \quad (k \geq n + 1; \ n \in \mathbb{N}).
\]
The function $\psi(k)$ is a non-increasing function of k, since we observe that

\begin{equation}
0 < \psi(k) \leq \psi(n + 1) = \prod_{j=1}^{m} \left\{ \frac{(\beta_j + \gamma_j + 1)_{n \beta_j}}{(\beta_j + \gamma_j + \delta_j + 1)_{n \beta_j}} \right\} (n \in N),
\end{equation}

under the conditions stated in (8), (9), and (10). Now (17) and (20) gives

\begin{equation}
\sum_{k=n+1}^{\infty} k \psi(k) |a_k| \leq \psi(n + 1) \sum_{k=n+1}^{\infty} k |a_k| \leq 1.
\end{equation}

Therefore, by Lemma 1, we conclude that

$$R_{(\psi_m), (\delta_m)}(f(z)) \in S(n),$$

and the theorem is proved.

REMARK 1. A function $f(z)$ satisfying (17) can be considered to be of the form

\begin{equation}
g_3(z) = z + \frac{1}{k} \prod_{j=1}^{m} \left\{ \frac{(\beta_j + \gamma_j + \delta_j + 1)_{(k-1) \beta_j}}{(\beta_j + \gamma_j + 1)_{(k-1) \beta_j}} \right\} z^k
\end{equation}

\((k \geq n+1; n \in N, z \in U).\)

In an analogous manner, we can prove with the help of Lemma 2 the following result which characterizes the class $K(n)$:

THEOREM 2. Under the constraints stated in (8), (9) and (10), let the function $f(z)$ defined by (1) satisfy

\begin{equation}
\sum_{k=n+1}^{\infty} k^2 |a_k| \leq \prod_{j=1}^{m} \left\{ \frac{(\beta_j + \gamma_j + \delta_j + 1)_{n \beta_j}}{(\beta_j + \gamma_j + 1)_{n \beta_j}} \right\} (n \in N).
\end{equation}

Then

$$R_{(\psi_m), (\delta_m)}(f(z)) \in K(n).$$

REMARK 2. A function $f(z)$ satisfying (23) can be considered to be
of the form
\[
(24) \quad g_4(z) = z + \frac{1}{k^2} \prod_{j=1}^{m} \left\{ \frac{\beta_j + \gamma_j + \delta_j + 1}{(\beta_j + \gamma_j + 1)(k-1)\beta_j} \right\} z^k
\]
\[
(k \geq n + 1; \ n \in N, \ z \in U).
\]

4. – Characterization properties associated with the Hadamard product.

Let \(f_i(z) \in T_n \) \((i = 1, 2)\) be given by
\[
(25) \quad f_i(z) = z + \sum_{k=n+1}^{\infty} a_{i,k} z^k \quad (n \in N).
\]

Then the Hadamard product or convolution
\[
(26) \quad (f_1 * f_2)(z) = z + \sum_{k=n+1}^{\infty} a_{1,k} a_{2,k} z^k \quad (n \in N).
\]

We recall here the following result due to Ruscheweyh and Sheil-Small [11]:

Lemma 4. Let \(g(z), \ h(z) \) be analytic in \(U \) and satisfy the condition
\[
g(0) = h(0) = 0.
\]

Suppose also that
\[
(27) \quad g(z) * \left\{ \frac{1 + abz}{1 - bz} h(z) \right\} \neq 0 \quad (z \in U - \{0\}),
\]
for \(a \) and \(b \) on the unit circle. Then, for a function \(F(z) \) analytic in \(U \) and satisfying the inequality:
\[
\begin{cases}
\Re \{F(z)\} > 0 & (z \in U), \\
\Re \left\{ \frac{(g \ast Fh)(z)}{(g \ast h)(z)} \right\} > 0 & (z \in U).
\end{cases}
\]

By making use of Lemma 4, we prove the following:
Theorem 3. Let the conditions stated in (8), (9) and (10) hold, and suppose that the function \(f(z) \) defined by (1) is such that \(f(z) \in S(n) \) and satisfies

\[
(29) \quad w(z) \ast \left\{ \frac{1 + abz}{1 - bz} f(z) \right\} \neq 0 \quad (z \in U - \{0\}),
\]

for \(a \) and \(b \) on the unit circle, where

\[
(30) \quad w(z) = z + \sum_{k = n + 1}^{\infty} \prod_{j = 1}^{m} \left(\frac{(\beta_j + \gamma_j + 1)_{(k-1)\beta_j}}{(\beta_j + \gamma_j + \delta_j + 1)_{(k-1)\beta_j}} \right) a_k z^k \quad (n \in N).
\]

then \(R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z) \in S(n) \) also.

Proof. We observe from (18) and (30) that

\[
(31) \quad R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z) = z + \sum_{k = n + 1}^{\infty} \prod_{j = 1}^{m} \left(\frac{(\beta_j + \gamma_j + 1)_{(k-1)\beta_j}}{(\beta_j + \gamma_j + \delta_j + 1)_{(k-1)\beta_j}} \right) a_k z^k = (w \ast f)(z).
\]

This gives

\[
(32) \quad \frac{z(R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z))'}{R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z)} = \frac{z(w \ast f)'(z)}{(w \ast f)(z)} = \frac{((w \ast (zf')))(z)}{(w \ast f)(z)}.
\]

By putting \(g(z) = w(z) \), \(h(z) = f(z) \), and \(F(z) = zf'(z)/f(z) \) in Lemma 4 above, we find that

\[
(33) \quad \text{Re} \left\{ \frac{z(R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z))'}{R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z)} \right\} > 0 \Rightarrow R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z) \in S(n).
\]

Theorem 4. Under the conditions stated in (8), (9) and (10), if the function \(f(z) \) defined by (1) is such that \(f \in K(n) \) and

\[
(34) \quad w(z) \ast \left\{ \frac{1 + abz}{1 - bz} zf'(z) \right\} \neq 0 \quad (z \in U - \{0\}),
\]

for \(a \) and \(b \) on the unit circle, where \(w(z) \) is given by (30), then

\[
R_{(\beta_m); m}^{(\gamma_m), (\delta_m)} f(z) \in K(n) \quad \text{also}.
\]
PROOF. From (4) and Theorem (3), it follows that
\[f(z) \in K(n) \iff zf'(z) \in S(n) \]
\[\Rightarrow R_{\beta_m; m}^{(\gamma_m), (\delta_m)} zf'(z) \in S(n) \]
\[\iff (w * zf')(z) \in S(n) \]
\[\iff z(w * f)'(z) \in S(n) \]
\[\iff z(w * f)(z) \in K(n) \]
\[\iff R_{\beta_m; m}^{(\gamma_m), (\delta_m)} f(z) \in K(n), \]
which proves Theorem 4.

Our next characterization property uses the following result:

Lemma 5 (Ruscheweyh and Sheil-Small [11]). Let \(g(z) \) be convex and let \(h(z) \) be starlike in \(U \). Then for each function \(F(z) \) analytic in \(U \) satisfies the inequality:

\[
\begin{align*}
\text{Re} \left\{ F(z) \right\} &> 0 \quad (z \in U), \\
\text{Re} \left\{ \frac{(g * Fh)(z)}{(g * h)(z)} \right\} &> 0 \quad (z \in U).
\end{align*}
\]

Theorem 5. Under the conditions (8), (9) and (10),
\[f(z) \in S(n) \text{ and } w(z) \in K(n) \Rightarrow \{ R_{\beta_m; m}^{(\gamma_m), (\delta_m)} f(z) \} \in S(n), \]
where \(w(z) \) is given by (30).

Proof. The theorem which is based upon Lemma 5 above can be proved analogously to Theorem 3.

Lastly, we also have the following:

Theorem 6. Under the conditions (8), (9) and (10),
\[f(z) \in K(n) \text{ and } w(z) \in K(n) \Rightarrow R_{\beta_m; m}^{(\gamma_m), (\delta_m)} f(z) \in K(n), \]
where \(w(z) \) is given by (30).

Remark 3. It is observed that the function \(w(z) \) defined by (30) can be expressed in terms of the generalized hypergeometric function.
\(m + 1\)F\(_m\) [6, p. 43]:

\[
 w(z) = z + \prod_{j=1}^{m} \left\{ \frac{(\beta_j + \gamma_j + 1)_n}{(\beta_j + \gamma_j + \delta_j + 1)_n} \right\}.
\]

\[
 m + 1\int_{1}^{m} \left[1, \beta_1 + \gamma_1 + n + 1, \ldots, \beta_m + \gamma_m + n + 1; \beta_1 + \gamma_1 + \delta_1 + n + 1, \ldots, \beta_m + \gamma_m + \delta_m + n + 1; z \right]
\]

which converges absolutely in \(U\). Furthermore, the series \(m + 1\int_{1}^{m} \) in (36) converges also for \(z = 1\) when \(\sum_{j=1}^{m} \delta_j > 1\).

Several classes of characterization properties for various fractional integral operators of certain analytic functions can be derived from the results given in this paper. For instance, by noting the connection ([12, p. 142]) that

\[
 I_{(0, 1; 2)}^{(\alpha, \beta)}(\zeta, \alpha + \beta) f(z) = I_{(0, 1; 2)}^{\alpha, \beta} f(z),
\]

where \(I_{(0, 1; 2)}^{\alpha, \beta}\) denotes the Saigo operator (see [9]), the results of the paper [7] would follow from the corresponding results presented in this paper.

Acknowledgement. The work of the first author was supported by Department of Science and Technology, Govt. of India, under Grant No. DST/MS/PM-001/93.

REFERENCES

[5] V. S. Kiryakova, *Generalized \(H_{m, 0}^{m, 0}\)-function fractional integration operators in some classes of analytic functions*, Math. Vesnik, 40 (1988), pp. 259-266.

Manoscritto pervenuto in redazione il 28 giugno 1995.