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Universally Koszul Algebras Defined by Monomials.

ALp0o Conca (*)

Let K be a field and let R = EBNR,; be a homogeneous K-algebra, that is,

an algebra of the form K[x,, ..., x, 1/ where I is a homogeneous ideal.
The minimal R-free resolution of a graded R-module M is said to be lin-
ear if the matrices that represent the maps of the resolution have entries
of degree 1. Recall that R is said to be Koszul if K has a linear R-free
resolution. More generally, one says that R is universally Koszul (uk for
short) if all the ideals of R generated by elements of degree 1 have a lin-
ear R-free resolution. For an updated survey on Koszul algebras we re-
fer the reader to the recent paper of Froberg [F]. For generalities on uk
algebras we refer the reader to [C].

Our goal is to classify the uk algebras defined by monomials.
We recall first a few facts. Given two homogeneous K-algebras
R=Klx, ..., x,1/ and S= K[y, ..., ¥,,1/J the fiber product RoOS of
R and S is Klay, ..., %, Y1, -o» Yul/H where H=1+J+ (x;y;:
i1=1,...,mand j=1, ..., m). One has [Lemma 1.6, C]:

LEmmA 1. (a) A polynomial extension R[x] of an algebra R is uk if
and only if R is uk.

(b) The fiber product ROS of algebras R and S is uk if and only if R
and S are both uk.

(¢) If R is uk and I is an ideal of R generated by elements of degree 1
then R/I is uk.

Lemma 1.5 and Proposition 2.2 in [C] give two sufficient conditions
for an algebra to be uk:

LEMMA 2. Let R be a homogeneous algebra.
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(a) Assume that for every non-zero element z of degree 1 in R one has
that the algebra R/(z) is uk and that the ideal 0: z is generated by ele-
ments of degree 1. Then R is uk.

(b) Assume that for every non-zero element z of degree 1 in R one has
hat

{xeR;:x2=0} R = R,.
Then R is uk.

Let I be an ideal generated by monomials of degree 2 in a set of vari-
ables X. The restriction of I to a subset Y c X is the ideal J generated by
those monomial generators of I which involve only elements of the set Y.
If R = K[X]/I and H is the ideal of R generated by the elements in the
set X\Y, then R/H = K[Y]/J. Hence, by Lemma 1(c), if I defines a uk al-
gebra, then its restrictions define uk algebras as well.

Given an integer n=0 let us denote by H(n) the algebra
Klwy, ..., x,1/I where I = (xy, ..., ®,_1)* + (x2). Note that H(0) is sim-
ply K and H(1) = K[x;]/(%;)?. One has:

Lemma 3. (a) H(n) is uk for all n.

(b) Let K be a field of characteristic 2 and R = Kl[x,, ..., x,]/I be
such that x? €I for all i. Let x be an indeterminate. Then R is uk if and
only if Rlx]/(x?) is uk.

Proor. To prove (a) we apply the criterion (b) of Lemma 2 to R =
= H(n).Tothisend,letz =a,2; + ... + a,,_; 2, 1 + a, %, be anon-zero ele-
ment of degree 1 in R and let V be the degree 1 part of 0: z. Note that if
a, =0 then V contains xy, ..., «,_; and if a, # 0 then V contains a; x; +
+...+a,_1x,_1 —a,x,. This is enough to conclude that B,V = R,.

To prove (b) set S = R[x]/(x?). Since S/(x) = R, the «if» part follows
from Lemma 1(c). For the other implication we apply the criterion (a) of
Lemma 2 and argue by induction on . Let z be an element of degree 1 is
S, say z =L, + ax with L; an element of degree 1 in R and ae K. We
have to show that S/(z) is uk and that 0 : z is generated by elements of
degree 1. We discuss first the case a =0. Then S/(z) = R/(L;)[x]/(x?)
and by induction we know that this ring is uk. Furthermore 0:z =
=(0:2L7)S and (0:3 L) is generated in degree 1 since R is uk. Now as-
sume a = 0. We may assume a = 1. Then S/(z) = R/(L{) = R since, by as-
sumption, LZ = 0 in R and hence S/(z) is uk. We show now that 0 : z = (2).
As 2% =01n S the inclusion > holds. For the other inclusion let fe S be an
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element in 0 : z. Clearly f can be written (in a unique way) as f=h + xg
with &, g € R. Since fz = 0 we have that h + gL, = 0. That is, h = gL,; and
then f=gz. =

We have also

LEMMA 4. Let I be one of the following ideals:

Q) (wy, 2%,

@) (&2, xy, 2%),

(3) a monomial ideal whose squarefree generators are xy, zt,

(4) a monomial ideal whose squarefree generators are xy, yz, zt.

Then the algebra R defined by I is not uk. Furthermore the same
conclusion holds if the characteristic of the base field is #2 and I is
equal to

() (x*, y?, 2%).

ProoF. In the cases (1) and (2) we claim that (the class of) xz is a
minimal generator of 0 : (y + z) in K. This implies that R is not uk. That
xze€0:(y + 2) is clear. It is easy to see that there are no elements of de-
gree 1 in 0:(y + z). Hence xz is a minimal generator of 0 :(y + z).

In the cases (3) and (4) we claim that xf is a minimal generator of
0:(y+2)in R. That xt €0 : (y + 2) is clear. To prove that xt is a minimal
generator we may assume that [ is the largest possible, ie. 1=
= (xy, yz, 2t, 2%, y?, 2%, t2). It is easy to see that the space of the ele-
ments of degree 1in 0 : (y + z) is generated by y and z. As «t is not in the
ideal generated by ¥, z in R we may conclude that xt is minimal genera-
tor of 0:(y +z).

Finally (5) has been observed in [Example 1.10, C]. =

We are in the position to state our result. For a base field of charac-
teristic =2 we have:

THEOREM 5. Let R be an algebra defined over a field K of charac-
teristic # 2 by an ideal I generated by monomials of degree 2 in a set of
variables X. The following are equivalent:

1) R s uk,

(2) R is obtained from the algebras H(n) by iterated polynomial ex-
tensions and fiber products.

(3) The restriction of I to any subset of variables of X does not give
an ideal of type (1)-(5) of the list of Lemma 4.
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In characteristic 2 we have:

THEOREM 6. Let R be an algebra defined over a field K of charac-
teristic 2 by an ideal I generated by monomials of degree 2 in a set of
variables X. The following are equivalent:

1) R 1is uk,

(2) R 1s obtained from the field K by iterated polynomial exten-
stons, fiber products and extension of the type of Lemma 3(b).

(3) The restriction of I to any subset of variables of X does not give
an ideal of type (1) — (4) of the list of Lemma 4.

Proor oF THEOREMS 5 and 6. (2) = (1) follows from Lemma 1 and
2. (1) = (3) follows from Lemma 4. We prove (3) = (2) by induction on
the cardinality #X of X. If #X =1 then the assertion is clearly true.
So assume that #X > 1. Let V be a subset of X such that for all pairs
x, y € Vwith  # y one has xy ¢ I and assume that V is maximal with re-
spect to this property. Say V= {v, vs, ..., v;}. Set W=X\V I.C'md G;=

= {xe W: xv;el}. By the definition of V we have that W = -L—J1Gi' We
claim that: -

(@) For i=1, ..., k, xeG; and ye W\G; then xyel,
(b) For 1 <i<j<k then either G;cG; or G;CG;.

To prove (a), let j be such that y € G;. Since ¢ # j we have that I con-
tains xv; and yv; and by construction does not contain v;v; and v; . Hence
I must contain also xy otherwise the square free part of its restriction to
{2, ¥, v;, v;} would be either xv;, yv; or xv;, yv;, v;x, a contradiction
since these are ideals of type (3) and (4) in the list of Lemma 4. To prove
(b), assume by contradiction that there exist x € G;\G; and y € G; \G; and
argue as in case (a).

After renumbering if needed, by (b) we may assume that

G1cGeC...cG=W.

If Gy # ¢, then by (@) and definition of the G; we have for each x € G; and
yeX\G; then xyel. Then R is the fiber product of the algebra R;
defined by the restriction of I to G; with the algebra R, defined by the
restriction of 7 to X\G,. As R, and R, clearly satisfy condition (3) of
the theorem, we may assume by induction that they also satisfy (2). As
R =R, oR,, also R satisfies (2) and we are done.
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If instead G;=0 and vf¢l then R is a polynomial extension,
and again we are done by induction.

So we are left with the case in which G; = ¢ and vZeI. Let & be the
largest index such G,=¢. We may also assume that vZel for

1=1, ..., h otherwise we conclude as above.
If W=0 (equivalently, AZ=%k) then R is -equal to
Klv, ..., v,)/(vE, ..., v?). This ring is obtained by iterated extensions of

the type of Lemma 3(b) if the characteristic of K is 2. If, instead, the
characteristic of K is # 2, then k = 2 (otherwise a restriction would be of
type (6)) and R is H(2).

Therefore we may assume W # ¢ (equivalently & < k). Let 2> h and
let € G;. Then I contains vZ, xv; and does not contain v, v;, xv,. It fol-
lows that »? and 2% must be in I otherwise I would have a restriction of
type (1) or (2). In particular x2e [ for all x € X. But then, if the charac-
teristic of K is 2, R is an extension of the type of Lemma 3(b) (with
x =v;). By induction, this concludes the proof in the characteristic 2
case. Assume that the characteristic of K is not 2. Since x2e [ for all x e
e X and W is not empty, then 2 = 1 and k = 2, otherwise there would be a
restriction of type (5). Now let , ¥ € W. Since we know that 22, y2%, vZ e
el and xv,, yv; ¢ I it follows that xy e I. Summing up, R is (isomorphic to)
Hn). =
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