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Universally Koszul Algebras Defined by Monomials.

ALDO CONCA (*)

Let K be a field and let R4 5
i�N

Ri be a homogeneous K-algebra, that is,

an algebra of the form K[x1 , R , xn ] /I where I is a homogeneous ideal.
The minimal R-free resolution of a graded R-module M is said to be lin-
ear if the matrices that represent the maps of the resolution have entries
of degree 1 . Recall that R is said to be Koszul if K has a linear R-free
resolution. More generally, one says that R is universally Koszul (uk for
short) if all the ideals of R generated by elements of degree 1 have a lin-
ear R-free resolution. For an updated survey on Koszul algebras we re-
fer the reader to the recent paper of Fröberg [F]. For generalities on uk
algebras we refer the reader to [C].

Our goal is to classify the uk algebras defined by monomials.
We recall first a few facts. Given two homogeneous K-algebras
R4K[x1 , R , xn ] /I and S4K[y1 , R , ym ] /J the fiber product RiS of
R and S is K[x1 , R , xn , y1 , R , ym ] /H where H4I1J1 (xi yj :
i41, R , n and j41, R , m). One has [Lemma 1.6, C]:

LEMMA 1. (a) A polynomial extension R[x] of an algebra R is uk if
and only if R is uk.

(b) The fiber product RiS of algebras R and S is uk if and only if R
and S are both uk.

(c) If R is uk and I is an ideal of R generated by elements of degree 1
then R/I is uk.

Lemma 1.5 and Proposition 2.2 in [C] give two sufficient conditions
for an algebra to be uk:

LEMMA 2. Let R be a homogeneous algebra.
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(a) Assume that for every non-zero element z of degree 1 in R one has
that the algebra R/(z) is uk and that the ideal 0: z is generated by ele-
ments of degree 1. Then R is uk.

(b) Assume that for every non-zero element z of degree 1 in R one has
hat

]x�R1 : xz40( R1 4R2 .

Then R is uk.

Let I be an ideal generated by monomials of degree 2 in a set of vari-
ables X . The restriction of I to a subset Y%X is the ideal J generated by
those monomial generators of I which involve only elements of the set Y .
If R4K[X] /I and H is the ideal of R generated by the elements in the
set X0Y , then R/H4K[Y] /J . Hence, by Lemma 1(c), if I defines a uk al-
gebra, then its restrictions define uk algebras as well.

Given an integer nF0 let us denote by H(n) the algebra
K[x1 , R , xn ] /I where I4 (x1 , R , xn21 )2 1 (xn

2 ). Note that H(0) is sim-
ply K and H(1) 4K[x1 ] /(x1 )2 . One has:

LEMMA 3. (a) H(n) is uk for all n.
(b) Let K be a field of characteristic 2 and R4K[x1 , R , xn ] /I be

such that xi
2 �I for all i. Let x be an indeterminate. Then R is uk if and

only if R[x] /(x 2 ) is uk.

PROOF. To prove (a) we apply the criterion (b) of Lemma 2 to R4

4H(n). To this end, let z4a1 x1 1R1an21 xn21 1an xn be a non-zero ele-
ment of degree 1 in R and let V be the degree 1 part of 0 : z . Note that if
an 40 then V contains x1 , R , xn21 and if an c0 then V contains a1 x1 1

1R1an21 xn21 2an xn . This is enough to conclude that R1 V4R2 .
To prove (b) set S4R[x] /(x 2 ). Since S/(x) 4R , the «if» part follows

from Lemma 1(c). For the other implication we apply the criterion (a) of
Lemma 2 and argue by induction on n . Let z be an element of degree 1 is
S , say z4L1 1ax with L1 an element of degree 1 in R and a�K . We
have to show that S/(z) is uk and that 0 : z is generated by elements of
degree 1 . We discuss first the case a40. Then S/(z) 4R/(L1 )[x] /(x 2 )
and by induction we know that this ring is uk. Furthermore 0 : z4

4 (0 :R L1 )S and (0 :R L1 ) is generated in degree 1 since R is uk. Now as-
sume ac0. We may assume a41. Then S/(z) 4R/(L1

2 ) 4R since, by as-
sumption, L1

2 40 in R and hence S/(z) is uk. We show now that 0 : z4 (z).
As z 2 40 in S the inclusion & holds. For the other inclusion let f�S be an
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element in 0 : z . Clearly f can be written (in a unique way) as f4h1xg
with h , g�R . Since fz40 we have that h1gL1 40. That is, h4gL1 and
then f4gz . r

We have also

LEMMA 4. Let I be one of the following ideals:

(1) (xy , z 2 ),
(2) (x 2 , xy , z 2 ),
(3) a monomial ideal whose squarefree generators are xy , zt ,
(4) a monomial ideal whose squarefree generators are xy , yz , zt.
Then the algebra R defined by I is not uk. Furthermore the same

conclusion holds if the characteristic of the base field is c2 and I is
equal to

(5) (x 2 , y 2 , z 2 ).

PROOF. In the cases (1) and (2) we claim that (the class of) xz is a
minimal generator of 0 : (y1z) in R . This implies that R is not uk. That
xz�0 : (y1z) is clear. It is easy to see that there are no elements of de-
gree 1 in 0 : (y1z). Hence xz is a minimal generator of 0 : (y1z).

In the cases (3) and (4) we claim that xt is a minimal generator of
0 : (y1z) in R . That xt�0 : (y1z) is clear. To prove that xt is a minimal
generator we may assume that I is the largest possible, i.e. I4

4 (xy , yz , zt , x 2 , y 2 , z 2 , t 2 ). It is easy to see that the space of the ele-
ments of degree 1 in 0 : (y1z) is generated by y and z . As xt is not in the
ideal generated by y , z in R we may conclude that xt is minimal genera-
tor of 0 : (y1z).

Finally (5) has been observed in [Example 1.10, C]. r

We are in the position to state our result. For a base field of charac-
teristic c2 we have:

THEOREM 5. Let R be an algebra defined over a field K of charac-
teristic c2 by an ideal I generated by monomials of degree 2 in a set of
variables X. The following are equivalent:

(1) R is uk,
(2) R is obtained from the algebras H(n) by iterated polynomial ex-

tensions and fiber products.
(3) The restriction of I to any subset of variables of X does not give

an ideal of type (1)-(5) of the list of Lemma 4.
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In characteristic 2 we have:

THEOREM 6. Let R be an algebra defined over a field K of charac-
teristic 2 by an ideal I generated by monomials of degree 2 in a set of
variables X. The following are equivalent:

(1) R is uk,
(2) R is obtained from the field K by iterated polynomial exten-

sions, fiber products and extension of the type of Lemma 3(b).
(3) The restriction of I to any subset of variables of X does not give

an ideal of type (1)2 (4) of the list of Lemma 4.

PROOF OF THEOREMS 5 and 6. (2) ¨ (1) follows from Lemma 1 and
2. (1) ¨ (3) follows from Lemma 4. We prove (3) ¨ (2) by induction on
the cardinality JX of X . If JX41 then the assertion is clearly true.
So assume that JXD1. Let V be a subset of X such that for all pairs
x , y�V with xcy one has xy�I and assume that V is maximal with re-
spect to this property. Say V4 ]v1 , v2 , R , vk (. Set W4X0V and Gj 4

4 ]x�W : xvj �I(. By the definition of V we have that W4 0
i41

k

Gi . We
claim that:

(a) For i41, R , k , x�Gi and y�W0Gi then xy�I ,
(b) For 1 G iE jGk then either Gi ’Gj or Gj ’Gi .

To prove (a), let j be such that y�Gj . Since ic j we have that I con-
tains xvi and yvj and by construction does not contain vi vj and vi y . Hence
I must contain also xy otherwise the square free part of its restriction to
]x , y , vi , vj ( would be either xvi , yvj or xvi , yvj , vj x , a contradiction
since these are ideals of type (3) and (4) in the list of Lemma 4. To prove
(b), assume by contradiction that there exist x�Gi 0Gj and y�Gj 0Gi and
argue as in case (a).

After renumbering if needed, by (b) we may assume that

G1 ’G2 ’R’Gk 4W .

If G1 c¯ , then by (a) and definition of the Gi we have for each x�G1 and
y�X0G1 then xy�I . Then R is the fiber product of the algebra R1

defined by the restriction of I to G1 with the algebra R2 defined by the
restriction of I to X0G1 . As R1 and R2 clearly satisfy condition (3) of
the theorem, we may assume by induction that they also satisfy (2). As
R4R1 i R2 , also R satisfies (2) and we are done.
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If instead G1 4¯ and v1
2 �I then R is a polynomial extension,

and again we are done by induction.
So we are left with the case in which G1 4¯ and v1

2 �I . Let h be the
largest index such Gh 4¯ . We may also assume that vi

2 �I for
i41, R , h otherwise we conclude as above.

If W4¯ (equivalently, h4k) then R is equal to
K[v1 , R , vk ] /(v1

2 , R , vk
2 ). This ring is obtained by iterated extensions of

the type of Lemma 3(b) if the characteristic of K is 2 . If, instead, the
characteristic of K is c2, then k42 (otherwise a restriction would be of
type (5)) and R is H(2).

Therefore we may assume Wc¯ (equivalently hEk). Let iDh and
let x�Gi . Then I contains v1

2 , xvi and does not contain v1 vi , xv1 . It fol-
lows that vi

2 and x 2 must be in I otherwise I would have a restriction of
type (1) or (2). In particular x 2 �I for all x�X . But then, if the charac-
teristic of K is 2 , R is an extension of the type of Lemma 3(b) (with
x4v1). By induction, this concludes the proof in the characteristic 2
case. Assume that the characteristic of K is not 2 . Since x 2 �I for all x�
�X and W is not empty, then h41 and k42, otherwise there would be a
restriction of type (5). Now let x , y�W . Since we know that x 2 , y 2 , v1

2 �
�I and xv1 , yv1 �I it follows that xy�I . Summing up, R is (isomorphic to)
H(n). r
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