Universally Koszul Algebras Defined by Monomials.

Aldo Conca (*)

Let K be a field and let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a homogeneous K-algebra, that is, an algebra of the form $K[x_1, \ldots, x_n]/I$ where I is a homogeneous ideal. The minimal R-free resolution of a graded R-module M is said to be linear if the matrices that represent the maps of the resolution have entries of degree 1. Recall that R is said to be Koszul if K has a linear R-free resolution. More generally, one says that R is universally Koszul (uk for short) if all the ideals of R generated by elements of degree 1 have a linear R-free resolution. For an updated survey on Koszul algebras we refer the reader to the recent paper of Fröberg [F]. For generalities on uk algebras we refer the reader to [C].

Our goal is to classify the uk algebras defined by monomials. We recall first a few facts. Given two homogeneous K-algebras $R = K[x_1, \ldots, x_n]/I$ and $S = K[y_1, \ldots, y_m]/J$ the fiber product $R \otimes S$ of R and S is $K[x_1, \ldots, x_n, y_1, \ldots, y_m]/H$ where $H = I + J + (x_i y_j : i = 1, \ldots, n \text{ and } j = 1, \ldots, m)$. One has [Lemma 1.6, C]:

Lemma 1. (a) A polynomial extension $R[x]$ of an algebra R is uk if and only if R is uk.

(b) The fiber product $R \otimes S$ of algebras R and S is uk if and only if R and S are both uk.

(c) If R is uk and I is an ideal of R generated by elements of degree 1 then R/I is uk.

Lemma 1.5 and Proposition 2.2 in [C] give two sufficient conditions for an algebra to be uk:

Lemma 2. Let R be a homogeneous algebra.

(*) Indirizzo dell'A.: Dipartimento di Matematica, Università di Genova, Via Dodecaneso 33, I-16146 Genova, Italia. E-mail: conca@dima.unige.it
(a) Assume that for every non-zero element \(z \) of degree 1 in \(R \) one has that the algebra \(R/(z) \) is uk and that the ideal \(0: z \) is generated by elements of degree 1. Then \(R \) is uk.

(b) Assume that for every non-zero element \(z \) of degree 1 in \(R \) one has that \(x_1 + \ldots + x_n \) is a non-zero element of degree 1 in \(R \) and let \(V \) be the degree 1 part of \(0: z \). Note that if \(a \neq 0 \) then \(V \) contains \(x_1, \ldots, x_n \) and if \(a = 0 \) then \(V \) contains \(x_1 + \ldots + x_n \). This is enough to conclude that \(R_1V = R_2 \).

Then \(R \) is uk.

Let \(J \) be an ideal generated by monomials of degree 1 in a set of variables \(X \). The restriction of \(I \) to a subset \(Y \subset X \) is the ideal \(J \) generated by those monomial generators of \(I \) which involve only elements of the set \(Y \). Let \(I \) be an ideal generated by monomials of degree 2 in a set of variables \(X \). The restriction of \(I \) to a subset \(Y \subset X \) is the ideal \(J \) generated by those monomial generators of \(I \) which involve only elements of the set \(Y \).

If \(R = K[X]/I \) and \(H \) is the ideal of \(R \) generated by the elements in the set \(X \), then \(R/H = K[Y]/J \). Hence, by Lemma 1(c), if \(I \) defines a uk algebra, then its restrictions define uk algebras as well.

Given an integer \(n \geq 0 \) let us denote by \(H(n) \) the algebra \(K[x_1, \ldots, x_n]/I \) where \(I = (x_1, \ldots, x_{n-1})^2 + (x_n^2) \). Note that \(H(0) \) is simply \(K \) and \(H(1) = K[x_1]/(x_1)^2 \). One has:

Lemma 3. (a) \(H(n) \) is uk for all \(n \).

(b) Let \(K \) be a field of characteristic 2 and \(R = K[x_1, \ldots, x_n]/I \) be such that \(x_i^2 \in I \) for all \(i \). Let \(x \) be an indeterminate. Then \(R \) is uk if and only if \(R[x]/(x^2) \) is uk.

Proof. To prove (a) we apply the criterion (b) of Lemma 2 to \(R = H(n) \). To this end, let \(z = a_1 x_1 + \ldots + a_{n-1} x_{n-1} + a_n x_n \) be a non-zero element of degree 1 in \(R \) and let \(V \) be the degree 1 part of \(0: z \). Note that if \(a_n = 0 \) then \(V \) contains \(x_1, \ldots, x_n \) and if \(a_n \neq 0 \) then \(V \) contains \(a_n x_n \). This is enough to conclude that \(R_1V = R_2 \).

To prove (b) set \(S = R[x]/(x^2) \). Since \(S/(x) = R \), the «if» part follows from Lemma 1(c). For the other implication we apply the criterion (a) of Lemma 2 and argue by induction on \(n \). Let \(z \) be an element of degree 1 is \(S \), say \(z = L_1 + ax \) with \(L_1 \) an element of degree 1 in \(R \) and \(a \in K \). We have to show that \(S/(z) \) is uk and that \(0: z \) is generated by elements of degree 1. We discuss first the case \(a = 0 \). Then \(S/(z) = R/(L_1)[x]/(x^2) \) and by induction we know that this ring is uk. Furthermore \(0: z = 0 + (0:xL_1)S \) and \(0:xL_1 \) is generated in degree 1 since \(R \) is uk. Now assume \(a \neq 0 \). We may assume \(a = 1 \). Then \(S/(z) = R/(L_1^2) = R \) since, by assumption, \(L_1^2 = 0 \) in \(R \) and hence \(S/(z) \) is uk. We show now that \(0: z = (z) \). As \(z^2 = 0 \) in \(S \) the inclusion \(\supset \) holds. For the other inclusion let \(f \in S \) be an
element in $0 : z$. Clearly f can be written (in a unique way) as $f = h + xy$ with $h, g \in R$. Since $fz = 0$ we have that $h + gL_1 = 0$. That is, $h = gL_1$ and then $f = gz$.

We have also

Lemma 4. Let I be one of the following ideals:

1. (xy, z^2),
2. (x^2, xy, z^2),
3. a monomial ideal whose squarefree generators are xy, zt,
4. a monomial ideal whose squarefree generators are xy, yz, zt.

Then the algebra R defined by I is not uk. Furthermore the same conclusion holds if the characteristic of the base field is $\neq 2$ and I is equal to

5. (x^2, y^2, z^2).

Proof. In the cases (1) and (2) we claim that (the class of) xz is a minimal generator of $0 : (y + z)$ in R. This implies that R is not uk. That $xz \in 0 : (y + z)$ is clear. It is easy to see that there are no elements of degree 1 in $0 : (y + z)$. Hence xz is a minimal generator of $0 : (y + z)$.

In the cases (3) and (4) we claim that xt is a minimal generator of $0 : (y + z)$ in R. That $xt \in 0 : (y + z)$ is clear. To prove that xt is a minimal generator we may assume that I is the largest possible, i.e. $I = (xy, yz, zt, x^2, y^2, z^2, t^2)$. It is easy to see that the space of the elements of degree 1 in $0 : (y + z)$ is generated by y and z. As xt is not in the ideal generated by y, z in R we may conclude that xt is a minimal generator of $0 : (y + z)$.

Finally (5) has been observed in [Example 1.10, C].

We are in the position to state our result. For a base field of characteristic $\neq 2$ we have:

Theorem 5. Let R be an algebra defined over a field K of characteristic $\neq 2$ by an ideal I generated by monomials of degree 2 in a set of variables X. The following are equivalent:

1. R is uk,
2. R is obtained from the algebras $H(n)$ by iterated polynomial extensions and fiber products.
3. The restriction of I to any subset of variables of X does not give an ideal of type (1)-(5) of the list of Lemma 4.
In characteristic 2 we have:

THEOREM 6. Let R be an algebra defined over a field K of characteristic 2 by an ideal I generated by monomials of degree 2 in a set of variables X. The following are equivalent:

1. R is uk,
2. R is obtained from the field K by iterated polynomial extensions, fiber products and extension of the type of Lemma 3(b).
3. The restriction of I to any subset of variables of X does not give an ideal of type (1) – (4) of the list of Lemma 4.

PROOF OF THEOREMS 5 and 6. (2) \Rightarrow (1) follows from Lemma 1 and 2. (1) \Rightarrow (3) follows from Lemma 4. We prove (3) \Rightarrow (2) by induction on the cardinality $\#X$ of X. If $\#X = 1$ then the assertion is clearly true. So assume that $\#X > 1$. Let V be a subset of X such that for all pairs $x, y \in V$ with $x \neq y$ one has $xy \not\in I$ and assume that V is maximal with respect to this property. Say $V = \{v_1, v_2, \ldots, v_k\}$. Set $W = X \setminus V$ and $G_j = \{x \in W: xy \in I\}$. By the definition of V we have that $W = \bigcup_{i=1}^{k} G_i$. We claim that:

(a) For $i = 1, \ldots, k$, $x \in G_i$ and $y \in W \setminus G_i$ then $xy \in I$,
(b) For $1 \leq i < j \leq k$ then either $G_i \subseteq G_j$ or $G_j \subseteq G_i$.

To prove (a), let j be such that $y \in G_j$. Since $i \neq j$ we have that I contains xv_i and yv_j and by construction does not contain v_i, v_j and $v_i y$. Hence I must contain also xy otherwise the square free part of its restriction to $\{x, y, v_i, v_j\}$ would be either xv_i, yv_j or $xv_i, yv_j, v_i y$, a contradiction since these are ideals of type (3) and (4) in the list of Lemma 4. To prove (b), assume by contradiction that there exist $x \in G_i \setminus G_j$ and $y \in G_j \setminus G_i$ and argue as in case (a).

After renumbering if needed, by (b) we may assume that

$$G_1 \subseteq G_2 \subseteq \ldots \subseteq G_k = W.$$

If $G_1 \neq \emptyset$, then by (a) and definition of the G_i we have for each $x \in G_1$ and $y \in X \setminus G_1$ then $xy \in I$. Then R is the fiber product of the algebra R_1 defined by the restriction of I to G_1 with the algebra R_2 defined by the restriction of I to $X \setminus G_1$. As R_1 and R_2 clearly satisfy condition (3) of the theorem, we may assume by induction that they also satisfy (2). As $R = R_1 \circ R_2$, also R satisfies (2) and we are done.
If instead $G_1 = \emptyset$ and $v_1^2 \notin I$ then R is a polynomial extension, and again we are done by induction.

So we are left with the case in which $G_1 = \emptyset$ and $v_1^2 \in I$. Let h be the largest index such $G_h = \emptyset$. We may also assume that $v_i^2 \in I$ for $i = 1, \ldots, h$ otherwise we conclude as above.

If $W = \emptyset$ (equivalently, $h = k$) then R is equal to $K[v_1, \ldots, v_k]/(v_1^2, \ldots, v_k^2)$. This ring is obtained by iterated extensions of the type of Lemma 3(b) if the characteristic of K is 2. If, instead, the characteristic of K is $\neq 2$, then $k = 2$ (otherwise a restriction would be of type (5)) and R is $H(2)$.

Therefore we may assume $W \neq \emptyset$ (equivalently $h < k$). Let $i > h$ and let $x \in G_i$. Then I contains v_i^2, xv_i, and does not contain v_i, xv_i. It follows that v_i^2 and x^2 must be in I otherwise I would have a restriction of type (1) or (2). In particular $x^2 \in I$ for all $x \in X$. But then, if the characteristic of K is 2, R is an extension of the type of Lemma 3(b) (with $x = v_i$). By induction, this concludes the proof in the characteristic 2 case. Assume that the characteristic of K is not 2. Since $x^2 \in I$ for all $x \in X$ and W is not empty, then $h = 1$ and $k = 2$, otherwise there would be a restriction of type (5). Now let $x, y \in W$. Since we know that $x^2, y^2, v_1^2 \in I$ and $xv_1, yv_1 \notin I$ it follows that $xy \in I$. Summing up, R is (isomorphic to) $H(n)$.

REFERENCES
