REND. SEM. MAT. UNIV. PADOVA, Vol. 107 (2002)

Universally Koszul Algebras Defined by Monomials.

ALDO CONCA(*)

Let K be a field and let $R = \bigoplus_{i \in N} R_i$ be a homogeneous K-algebra, that is, an algebra of the form $K[x_1, \ldots, x_n]/I$ where I is a homogeneous ideal. The minimal R-free resolution of a graded R-module M is said to be linear if the matrices that represent the maps of the resolution have entries of degree 1. Recall that R is said to be Koszul if K has a linear R-free resolution. More generally, one says that R is universally Koszul (uk for short) if all the ideals of R generated by elements of degree 1 have a linear R-free resolution. For an updated survey on Koszul algebras we refer the reader to the recent paper of Fröberg [F]. For generalities on uk algebras we refer the reader to [C].

Our goal is to classify the uk algebras defined by monomials. We recall first a few facts. Given two homogeneous *K*-algebras $R = K[x_1, \ldots, x_n]/I$ and $S = K[y_1, \ldots, y_m]/J$ the fiber product $R \circ S$ of R and S is $K[x_1, \ldots, x_n, y_1, \ldots, y_m]/H$ where $H = I + J + (x_i y_j; i = 1, \ldots, n \text{ and } j = 1, \ldots, m)$. One has [Lemma 1.6, C]:

LEMMA 1. (a) A polynomial extension R[x] of an algebra R is uk if and only if R is uk.

(b) The fiber product $R \circ S$ of algebras R and S is uk if and only if R and S are both uk.

(c) If R is uk and I is an ideal of R generated by elements of degree 1 then R/I is uk.

Lemma 1.5 and Proposition 2.2 in [C] give two sufficient conditions for an algebra to be uk:

LEMMA 2. Let R be a homogeneous algebra.

(*) Indirizzo dell'A.: Dipartimento di Matematica, Universitá di Genova, Via Dodecaneso 35, I-16146 Genova, Italia. E-mail: conca@dima.unige.it

Aldo Conca

(a) Assume that for every non-zero element z of degree 1 in R one has that the algebra R/(z) is uk and that the ideal 0: z is generated by elements of degree 1. Then R is uk.

(b) Assume that for every non-zero element z of degree 1 in R one has hat

$$\{x \in R_1: xz = 0\} R_1 = R_2.$$

Then R is uk.

Let *I* be an ideal generated by monomials of degree 2 in a set of variables *X*. The restriction of *I* to a subset $Y \in X$ is the ideal *J* generated by those monomial generators of *I* which involve only elements of the set *Y*. If R = K[X]/I and *H* is the ideal of *R* generated by the elements in the set $X \setminus Y$, then R/H = K[Y]/J. Hence, by Lemma 1(*c*), if *I* defines a uk algebra, then its restrictions define uk algebras as well.

Given an integer $n \ge 0$ let us denote by H(n) the algebra $K[x_1, \ldots, x_n]/I$ where $I = (x_1, \ldots, x_{n-1})^2 + (x_n^2)$. Note that H(0) is simply K and $H(1) = K[x_1]/(x_1)^2$. One has:

LEMMA 3. (a) H(n) is uk for all n.

(b) Let K be a field of characteristic 2 and $R = K[x_1, ..., x_n]/I$ be such that $x_i^2 \in I$ for all i. Let x be an indeterminate. Then R is uk if and only if $R[x]/(x^2)$ is uk.

PROOF. To prove (*a*) we apply the criterion (*b*) of Lemma 2 to R = H(n). To this end, let $z = a_1 x_1 + \ldots + a_{n-1} x_{n-1} + a_n x_n$ be a non-zero element of degree 1 in R and let V be the degree 1 part of 0: z. Note that if $a_n = 0$ then V contains x_1, \ldots, x_{n-1} and if $a_n \neq 0$ then V contains $a_1 x_1 + \ldots + a_{n-1} x_{n-1} - a_n x_n$. This is enough to conclude that $R_1 V = R_2$.

To prove (b) set $S = R[x]/(x^2)$. Since S/(x) = R, the «if» part follows from Lemma 1(c). For the other implication we apply the criterion (a) of Lemma 2 and argue by induction on n. Let z be an element of degree 1 is S, say $z = L_1 + ax$ with L_1 an element of degree 1 in R and $a \in K$. We have to show that S/(z) is uk and that 0: z is generated by elements of degree 1. We discuss first the case a = 0. Then $S/(z) = R/(L_1)[x]/(x^2)$ and by induction we know that this ring is uk. Furthermore 0: z = $= (0:_RL_1)S$ and $(0:_RL_1)$ is generated in degree 1 since R is uk. Now assume $a \neq 0$. We may assume a = 1. Then $S/(z) = R/(L_1^2) = R$ since, by assumption, $L_1^2 = 0$ in R and hence S/(z) is uk. We show now that 0: z = (z). As $z^2 = 0$ in S the inclusion \supset holds. For the other inclusion let $f \in S$ be an

96

element in 0 : *z*. Clearly *f* can be written (in a unique way) as f = h + xg with *h*, $g \in R$. Since fz = 0 we have that $h + gL_1 = 0$. That is, $h = gL_1$ and then f = gz.

We have also

LEMMA 4. Let I be one of the following ideals:

(1) (xy, z^2) ,

(2) (x^2, xy, z^2) ,

(3) a monomial ideal whose squarefree generators are xy, zt,

(4) a monomial ideal whose squarefree generators are xy, yz, zt.

Then the algebra R defined by I is not uk. Furthermore the same conclusion holds if the characteristic of the base field is $\neq 2$ and I is equal to

(5) (x^2, y^2, z^2) .

PROOF. In the cases (1) and (2) we claim that (the class of) xz is a minimal generator of 0:(y+z) in R. This implies that R is not uk. That $xz \in 0:(y+z)$ is clear. It is easy to see that there are no elements of degree 1 in 0:(y+z). Hence xz is a minimal generator of 0:(y+z).

In the cases (3) and (4) we claim that xt is a minimal generator of 0:(y+z) in R. That $xt \in 0:(y+z)$ is clear. To prove that xt is a minimal generator we may assume that I is the largest possible, i.e. $I = (xy, yz, zt, x^2, y^2, z^2, t^2)$. It is easy to see that the space of the elements of degree 1 in 0:(y+z) is generated by y and z. As xt is not in the ideal generated by y, z in R we may conclude that xt is minimal generator of 0:(y+z).

Finally (5) has been observed in [Example 1.10, C].

We are in the position to state our result. For a base field of characteristic $\neq 2$ we have:

THEOREM 5. Let R be an algebra defined over a field K of characteristic $\neq 2$ by an ideal I generated by monomials of degree 2 in a set of variables X. The following are equivalent:

(1) R is uk,

(2) R is obtained from the algebras H(n) by iterated polynomial extensions and fiber products.

(3) The restriction of I to any subset of variables of X does not give an ideal of type (1)-(5) of the list of Lemma 4. In characteristic 2 we have:

THEOREM 6. Let R be an algebra defined over a field K of characteristic 2 by an ideal I generated by monomials of degree 2 in a set of variables X. The following are equivalent:

(1) R is uk,

(2) R is obtained from the field K by iterated polynomial extensions, fiber products and extension of the type of Lemma 3(b).

(3) The restriction of I to any subset of variables of X does not give an ideal of type (1) - (4) of the list of Lemma 4.

PROOF OF THEOREMS 5 and 6. (2) \Rightarrow (1) follows from Lemma 1 and 2. (1) \Rightarrow (3) follows from Lemma 4. We prove (3) \Rightarrow (2) by induction on the cardinality #X of X. If #X = 1 then the assertion is clearly true. So assume that #X > 1. Let V be a subset of X such that for all pairs $x, y \in V$ with $x \neq y$ one has $xy \notin I$ and assume that V is maximal with respect to this property. Say $V = \{v_1, v_2, \ldots, v_k\}$. Set $W = X \setminus V$ and $G_j =$ $= \{x \in W: xv_j \in I\}$. By the definition of V we have that $W = \bigcup_{i=1}^{k} G_i$. We claim that:

- (a) For i = 1, ..., k, $x \in G_i$ and $y \in W \setminus G_i$ then $xy \in I$,
- (b) For $1 \leq i < j \leq k$ then either $G_i \subseteq G_j$ or $G_j \subseteq G_i$.

To prove (a), let j be such that $y \in G_j$. Since $i \neq j$ we have that I contains xv_i and yv_j and by construction does not contain v_iv_j and v_iy . Hence I must contain also xy otherwise the square free part of its restriction to $\{x, y, v_i, v_j\}$ would be either xv_i, yv_j or xv_i, yv_j, v_jx , a contradiction since these are ideals of type (3) and (4) in the list of Lemma 4. To prove (b), assume by contradiction that there exist $x \in G_i \setminus G_j$ and $y \in G_j \setminus G_i$ and argue as in case (a).

After renumbering if needed, by (b) we may assume that

$$G_1 \subseteq G_2 \subseteq \ldots \subseteq G_k = W.$$

If $G_1 \neq \emptyset$, then by (a) and definition of the G_i we have for each $x \in G_1$ and $y \in X \setminus G_1$ then $xy \in I$. Then R is the fiber product of the algebra R_1 defined by the restriction of I to G_1 with the algebra R_2 defined by the restriction of I to $X \setminus G_1$. As R_1 and R_2 clearly satisfy condition (3) of the theorem, we may assume by induction that they also satisfy (2). As $R = R_1 \circ R_2$, also R satisfies (2) and we are done.

If instead $G_1 = \emptyset$ and $v_1^2 \notin I$ then R is a polynomial extension, and again we are done by induction.

So we are left with the case in which $G_1 = \emptyset$ and $v_1^2 \in I$. Let *h* be the largest index such $G_h = \emptyset$. We may also assume that $v_i^2 \in I$ for i = 1, ..., h otherwise we conclude as above.

If $W = \emptyset$ (equivalently, h = k) then R is equal to $K[v_1, \ldots, v_k]/(v_1^2, \ldots, v_k^2)$. This ring is obtained by iterated extensions of the type of Lemma 3(*b*) if the characteristic of K is 2. If, instead, the characteristic of K is $\neq 2$, then k = 2 (otherwise a restriction would be of type (5)) and R is H(2).

Therefore we may assume $W \neq \emptyset$ (equivalently h < k). Let i > h and let $x \in G_i$. Then *I* contains v_1^2 , xv_i and does not contain v_1v_i , xv_1 . It follows that v_i^2 and x^2 must be in *I* otherwise *I* would have a restriction of type (1) or (2). In particular $x^2 \in I$ for all $x \in X$. But then, if the characteristic of *K* is 2, *R* is an extension of the type of Lemma 3(*b*) (with $x = v_1$). By induction, this concludes the proof in the characteristic 2 case. Assume that the characteristic of *K* is not 2. Since $x^2 \in I$ for all $x \in$ $\in X$ and *W* is not empty, then h = 1 and k = 2, otherwise there would be a restriction of type (5). Now let $x, y \in W$. Since we know that $x^2, y^2, v_1^2 \in$ $\in I$ and $xv_1, yv_1 \notin I$ it follows that $xy \in I$. Summing up, *R* is (isomorphic to) H(n).

REFERENCES

- [C] A. CONCA, Universally Koszul algebras, Math. Ann., 317, no. 2 (2000), pp. 329-346.
- [F] R. FRÖBERG, Koszul algebras, Advances in commutative ring theory (Fez, 1997), 337-350, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.