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Algebraic Sum of Unbounded Normal Operators
and the Square Root Problem of Kato.

TOKA DIAGANA (*)

ABSTRACT - We prove that the algebraic sum of unbounded normal operators sat-
isfies the square root problem of Kato under appropriate hypotheses. As ap-
plication, we consider perturbed Schrödinger operators.

1. Introduction.

Let C be a normal operator (not necessarily bounded) in a (complex)
Hilbert space H. Using the spectral theorem for unbounded normal op-
erators, it is well-known that C can be expressed as

C4C1 2 iC2 ,(1.1)

with C1 , C2 unbounded selfadjoint operators on H (see, e.g. [13, pp. 348-
355]). If one supposes C1 , C2 to be nonnegative operators, then iC is m-
accretive (see, e.g, [12, Corollary 4.4, p. 15]).

Let A , B be normal operators on H. Recall the algebraic sum
S4A1B of A and B is defined as

(u�D(S) 4D(A)OD(B) , Su4Au1Bu .(1.2)

In this paper we are concerned with the square root problem of Kato for
the sum of operators A and B .
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In section 2, we prove that the algebraic sum S satisfies the square
root problem of Kato under suitable hypotheses, that is:

D(S 1/2 ) 4D(A 1/2 )OD(B 1/2 ) 4D(S *1/2 ) .(1.3)

Also, since the algebraic sum S is is not always defined (see, e.g., [5, 8]).
We shall define a «generalized» sum A5B of A and B . One can then
prove that such a «generalized» sum satisfies the square root problem of
Kato under suitable hypotheses. As application we shall consider per-
turbed Schrödinger operators.

Recall that more details about the well-known square root problem of
Kato can be found in [1, 4, 7, 9, 11].

Throughout this paper we assume that A and B can be decomposed
as A4A1 2 iA2 and B4B1 2 iB2 . We denote by V4V(A)OV(B)
where

V(A) 4D(NAN1/2 ) 4D(A1
1/2 )OD(A2

1/2 ) ,

V(B) 4D(NBN1/2 ) 4D(B1
1/2 )OD(B2

1/2 ) .

The following assumptions will be made

(H1 ) Ak , Bk are nonnegative (k41, 2 )

(H2 ) D(A)OD(B) 4 H

(H3 ) there exists cD0, aA2 u , ub GcaA1 u , ub, (u�V(A)

(H4 ) there exists c 8D0, aB2 u , ub Gc 8 aB1 u , ub, (u�V(B)

(H5 ) V 4 H

(H6 ) V is closed in the interpolation space [V , H]1/2

Consider the sesquilinear forms associated with A and B:

f(u , v) 4 aA1
1/2 u , A1

1/2 vb2 iaA2
1/2 u , A2

1/2 vb, ( u , v�V(A)

c(u , v) 4 aB1
1/2 u , B1

1/2 vb2 iaB2
1/2 u , B2

1/2 vb ( u , v�V(B)

Set

j(u , v) 4f(u , v)1c(u , v), (u , v�V .(1.4)

According to Bivar-Weinholtz and Lapidus (see, e.g., [2 , pp. 451]) the
«Generalized» sum A5B of A and B is defined with the help of the
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sesquilinear form j as follows: u�D(A5B) iff vKj(u , v) is continuous
for the H-Topology, and (A5B) u defined to be the vector of H given by
the Riesz-Representation theorem

a(A5B) u , vb 4j(u , v) (v�V .(1.5)

Applying (H2 ) to (1.4), we see that j admits the following representa-
tion

j(u , v) 4 a(A1B) u , vb, (u�D(A)OD(B), (v�V .(1.6)

2. Square root problem of Kato.

In this section we show the algebraic sum S4A1B satisfies the
square root problem of Kato under suitable conditions. We also show the
same conclusion still holds if we consider the square root problem of Ka-
to for the «generalized» sum defined above.

We have

THEOREM 2.1. Let A4A1 2 iA2 and B4B1 2 iB2 be unbounded
normal operators on H. Assume that assumptions (H1 ), (H2 ), (H3 ), and
(H4 ) are satisfied and that the operator A1B is maximal. Then we
have

D( (A1B)1/2 ) 4D(A 1/2 )OD(B 1/2 ) 4D( (A1B)*1/2 ) .

PROOF. Consider the sesquilinear form j4f1c given by (1.6). Let
V j4 (V , V . Vj ) be the pre-Hilbert space V equipped with the inner
product given as

au , vbj4 au , vbH 1Dej(u , v), (u , v�V .

Since the sum form A1 5B1 is a nonnegative selfadjoint operator. It easi-
ly follows that V j is a Hilbert space, and therefore j is a closed sesquilin-
ear form. Moreover, D(j) 4V is dense on H (D(A)OD(B) %V and
D(A)OD(B) 4 H). Thus j is a closed densely defined sesquilinear form.
Assumptions (H3 ) and (H4 ) clearly imply that: there exists a constant
const . 4 max (c , c 8 ) D0 such that

N4mj(u , u)NGconst . Dej(u , u), (u�V .
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Therefore j is a sectorial sesquilinear form. In summary, j is a closed
densely defined sectorial form. According to Kato’s first representation
theorem (see, e.g., [9, Theorem 2.1, pp. 322]): there exists a unique
m-sectorial operator associated with j (m-sectorial extension of A1B).
Since A1B is maximal and j is sectorial. Then A1B is m-sectorial, and
it is the m-sectorial operator associated with j . Since D(A) 4D(A *) and
D(B) 4D(B *). It easily follows that D(A1B) %D( (A1B)*). Therefore
D( (A1B)1/2 ) %D( (A1B)*1/2 ). According to [10, Theorem 5.2, p. 238], we
have

D( (A1B)1/2 ) %D(j) %D( (A1B)*1/2 ) .(2.1)

In the same way, for the conjugate j* of j we have

D( (A1B)*1/2 ) %D(j*) %D( (A1B)1/2 ) .(2.2)

Since D(j) 4D(j*) 4V and from (2.1), (2.2). It follows that

D( (A1B)*1/2 ) 4V4D( (A1B)1/2 ) .

We now consider our investigation related to the square root problem
of Kato for the «generalized» sum of operators defined above. We show
that the same conclusion still holds under appropriates assumptions.

We have

THEOREM 2.2. Let A4A1 2 iA2 and B4B1 2 iB2 be unbounded
normal operators on H. Assume that assumptions (H1 ), (H3 ), (H4 ),
(H5 ), and (H6 ) are satisfied. Then there exists a unique m-sectorial op-
erator A5B satisfying the square root problem of Kato:

D( (A5B)1/2 ) 4V(A)OV(B) 4D( (A5B)*1/2 ) .

Also A5B and A1B coincide if A1B is maximal.

PROOF. Consider the sesquilinear form j4f1c given by (1.4). Clearly
j is a closed densely defined sequilinear form. Also since De j(u, u)4
4V(A1 5B1 )1/2 uV

2 (u�V and 4m j(u , u) 42V(A2 5B2 )1/2 uV

2 u�V . It
easily follows j is a sectorial sesquilinear form. Thus there exists a
const4 max(c , c 8 ) D0 such that N4mj(u , u)NGconst . Dej(u , u). Ac-
cording to Kato’s first representation theorem: there exists a unique
m-sectorial operator A5B associated with j such that

j(u , v) 4 a(A5B) u , vb u�D(A5B), v�V ,
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and in addition D(A5B), D( (A5B)*) %D(j) 4V4V j . Since V is
closed in [V , H]1/2 . Then we conclude using a result of Lions (see, e.g.,
[11, Theorem. 6.1, p. 238]), that A5B satisfies the square root problem
of Kato. It is not hard to see that A5B4 A1B if A1B is maximal. In-
deed if A1B is maximal and since A5B is an m-sectorial extension of
it. Then they coincide everywhere.

3. Applications.

In this section we give give an application related to the algebraic
sum case. Consider the algebraic sum given by a perturbation of the
Schrödinger operator SZ 42ZD1V with Z a complex number and V is a
singular complex potential. Let X%Rd be an open set and assume that
our Hilbert space H 4L 2 (X). Let F be the the sesquilinear form given
by

F Z (u , v) 4�
X

Z˜u˜vdx , (u , v�D(F) 4H 0
1 (X) ,(3.1)

where Z4a2 ib is a complex number satisfying the following condi-
tions: aD0, bD0, and bGa . The previous conditions on Z clearly that
the sesquilinear form F is sectorial.

Let V be a measurable complex function and let C be the sesquilinear
form given as

C(u , v) 4�
X

Vuvdx , (u , v�D(C) ,(3.2)

with D(C) 4 ]u�L 2 (X) : VNuN2 �L 1 (X)(. Throughout this section we

assume that the potential V�Lloc
1 (X) and that there exists u� g0, p

2
h

such that

Narg (V(x) )NGu , almost everywhere(3.3)

From (3.3) we have

N4mC(u , u)NG tan uDeC(u , u), (u�D(C) .(3.4)

In other words, the sesquilinear form C is sectorial. Under the previous
assumptions F and C are closed densely defined sectorial forms. The op-
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erators associated with both F and F are given as

D(AZ ) 4 ]u�H 0
1 (X) : ZDu�L 2 (X)(, AZ u42ZDu , (u�D(AZ )

D(B) 4 ]u�L 2 (X) : Vu�L 2 (X)(, Bu4Vu , (u�D(B) .

It is not hard to see that AZ , B are unbounded normal operators in
L 2 (X). One can decompose them as AZ 4AZ

1 2 iAZ
2 where AZ

1 42aD and
AZ

2 42bD are nonnegative selfadjoint operators, and B4BV
1 2 iBV

2

where BV
1 , BV

2 are nonnegative selfadjoint operators (that is justified by
(3.3)). Now one assumes that X4Rd . Thus the operator associated with
J4F1C (by the first representation theorem of Kato) is the closure of
the algebraic sum SZ (ie., 2ZD1V) and it is m-sectorial (see, e.g., [3]).
In fact such an operator is defined as

D(2ZD1V)4]u�H 1 (Rd) : VNuN2�L 1 (Rd) and 2ZDu1Vu�L 2 (Rd)(

2ZD1Vu42ZDu1Vu , (u�D(2ZD1V) .

Let us notice that D(AZ ) 4H 2 (Rd ), D(B) 4 ]u�L 2 (Rd ) : Vu�L 2 (Rd )(,
and their intersection is dense in L 2 (Rd ). Therefore applying Theorem
2.1 to the operators AZ and B . It easily follows that

D( (2ZD1V)1/2 ) 4H 1 (R d )OD(B 1/2 ) 4D( (2ZD1V)*1/2 ) .

For instance considering the case d41. Then we have

D( (2ZD1V)1/2 ) 4H 1 (R) 4D( (2ZD1V)*1/2 ) .

REMARK 3.1. We may illustrate theorem 2.2 by considering both AZ

and B defined above and by assuming that the potential Vc0 satisfies:
(3.3) and the following

V�L 1 (Rd ), V/�Lloc
2 (Rd ) .(3.5)

In such a case, it is not hard to show that D(AZ )OD(B) 4 ]0( (see, e.g.,
[5, 8]). Therefore the algebraic sum Sz 42ZD1V is not defined. Never-
theless, consider the sum J4F1C . Clearly J is a closed densely de-
fined sectorial form (C0

Q (Rd ) %D(F)OD(C)). According to the first
representation theorem of Kato: there exists a unique m-sectorial opera-
tor (2ZD5V) associated with J . Thus theorem 2.2 can applied to AZ

and B . Therefore it easily follows the operator (2ZD5V) satisfies the
square root problem of Kato.
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