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Characterization of Abelian-by-Cyclic
3-Rewritable Groups.

A. ABDOLLAHI (*) - A. MOHAMMADI HASSANABADI (**)

ABSTRACT - Let n be an integer greater than 1. A group G is said to be n-rewrita-
ble (or a Qn-group) if for every n elements x1 , x2 , R , xn in G there exist di-
stinct permutations s and t in Sn such that xs(1) xs(2) R xs(n)4xt(1) xt(2) R xt(n) .
In this paper we have completely characterized abelian-by-cyclic 3-rewritable
groups: they turns out to have an abelian subgroup of index 2 or the size of de-
rived subgroups is less than 6. In this paper, we also prove that G/F(G) is an
abelian group of finite exponent dividing 12, where F(G) is the Fitting sub-
group of G .

1. Introduction and results.

Let n be an integer greater than 1. A group G is said to be n-rewrita-
ble (or a Qn-group) if for every n elements x1 , x2 , R , xn in G there exist
distinct permutations s and t in Sn such that

xs(1) xs(2) R xs(n) 4xt(1) xt(2) R xt(n) .

The class of 2-rewritable groups is precisely the class of abelian groups,
while Q3 , Q4 , etc. are successively weaker properties.

In the above definition, if one of the permutations s or t can
always be chosen to be the identity then the group G is said to
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be n-permutable (or a Pn-group). Thus Pn ’Qn for all n . But for
all nD2, Pn

%
c

Qn , (see Proposition 2.10 of [5]).
We define P4 0

nD1
Pn and Q4 0

nD1
Qn , so again P’Q . A complete

classification of P-groups and Q-groups are given in [9] and [5] respecti-
vely; namely that the classes of P-groups and Q-groups both coincide
with the class of finite-by-abelian-by-finite groups.

However there exist such a nice characterization for P-groups and Q-
groups, the informations about Pn-groups and Qn-groups for various n is
very little.

Curzio, Longobardi and Maj [8] showed that a group G has the pro-
perty P3 if and only if NG 8 NG2. Also Longobardi, Maj and Stonehewer
[12, 13, 11, 10] proved that a group G has the property P4 if and only if
either NG 8 NG8 or G has an abelian subgroup of index 2 . Blyth [4] has
shown that Q4-groups are soluble and Maj [12] proved that Q3-groups are
metabelian.

Although Q2-groups are just the abelian groups, there is no classifica-
tion for Q3-groups. Recently Blyth [3] has shown that a finite group of
odd order is in Q3 if and only if NG 8 NG5. In view of this result and Lem-
ma 2.1 of [1], to study finite, nilpotent Q3-groups we need only consider
finite nilpotent 2-groups. In [1, Theorem B], we characterized all finite 2-
groups in Q3 , it is proved that a nilpotent 2-group G of class 2 lies in Q3 if
and only if Nax , y , zb8 NG4 for all x , y , z�G . Also a bound for the nilpo-
tency class of certain finite 2-groups in Q3 is given in [1, Theorem A]. The
main aim of this paper is to characterize abelian-by-cyclic groups in Q3 .
It is done as Theorem 1.1, below. It seems that toward having a complete
characterization for all Q3-groups, the first step is to characterize abe-
lian-by-cyclic groups.

The main results of this paper are as follows.

THEOREM 1.1. Let G be a finite abelian-by-cyclic group. Then G is
a 3-rewritable group if and only if either G has an abelian subgroup of
index 2 or its derived subgroup has order less than 6.

As consequence of Theorem 1.1 and using similar methods as [2], we
obtain the following result.

THEOREM 1.2. Let G be a finite 3-rewritable group. Then G/F(G) is
an abelian group of finite exponent dividing 12, where F(G) denotes the
Fitting subgroup of G .



Characterization of abelian-by-cyclic etc. 175

2. Proofs.

LEMMA 2.1. Suppose that G is a Q3-group and A is an abelian sub-
group of G containing G 8 . Let a , b�A and x�G . Then one of the fol-
lowing holds.

(i) [x , b] 41,
(ii) [a , x] 41,
(iii) [b , x 2 ] 41,
(iv) [a , x]x 4 [x , b],
(v) [x , a]x 4 [x , b],
(vi) [a , x] 4 [b , x],
(vii) [a , x] 4 [x , b]
(viii) [x , b] 4 [b , x]x [x , a]x ,

(ix) [x , b] 4 [b , x]x [a , x]x .

PROOF. It is easy to see, applying the 3-rewritability property on the
elements ax , bx and x , that the result follows. r

LEMMA 2.2. Let G4Aaxb be a Q3-group where A is a torsion abe-
lian normal subgroup of G . Let p be a prime number and let a be a p-
element of A such that [a , x 2 ] c1. Then x centralises the p-complement
of A .

PROOF Let b�A be a p 8-element. Then it follows from Lemma 2.1,
using the elements a , b and x , that [b , x] 41. r

LEMMA 2.3. Let G be a Q3-group and let A be an abelian normal
subgroup of G . Suppose also that G4Aaxb. If [a , x 2 ] c1 for some ele-
ment a�A , then G 84 a[a , x]bG .

PROOF. Since [a , x 2 ] c1, [a , x] c1. Let b�A and use Lemma 2.1
and the fact that G 84 [A , x] to establish the lemma. r

In view of Lemma 2.2, to characterize finite abelian-by-cyclic Q3-
groups, we need only consider groups G4Aaxb where A is an abelian
normal p-group for some prime p . In what follows G is a finite abelian-
by-cyclic 3-rewritable group and p is a prime number, A a normal abelian
p-subgroup of G and x an element of G such that G4Aaxb. To characteri-
ze groups G4Aaxb where A is an abelian normal p-subgroup, we need
the following.
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LEMMA 2.4. Let G4Aaxb where A is an abelian normal p-sub-
group. Let a�A be such that [a , x 2 ] c1. Then one of the following
holds:

1) [a , x]x 2
4 [a , x]21

2) [a , x]x 2
4 [a , x]

3) [a , x]x 4 [a , x]
4) [a , x]x 4 [a , x]21

5) [a , x]x 2
4 [a , x]x [a , x]

6) [a , x 3 ] 41.

PROOF. It follows easily from Lemma 2.1 by replacing a by a x and b
by a . r

LEMMA 2.5. Let G4Aaxb where A is an abelian normal p-sub-
group of G and a�A is such that [a , x 2 ] c1. Then one of the following
holds:

I) [a , x]2 41
II) [a , x]2x 4 [a , x]21

III) [a , x]2x 4 [a , x]
IV) [a , x]3 41
V) [a , x]x 4 [a , x]

VI) [a , x]3x 4 [a , x]21.

PROOF. Replacing a by a 2 and b by a in Lemma 2.1 the result follows
easily. r

LEMMA 2.6. Let G4Aaxb where A is an abelian normal p-sub-
group of G . Let a�A be such that [a , x 2 ] c1, then one of the following
holds:

(A) [a , x]x 4 [a , x]
(B) [a , x]x 2

4 [a , x]x [a , x]21

(C) [a , x]2x 4 [a , x]
(D) [a , x]x 2

4 [a , x]2x [a , x]
(E) [a , x]x 2

4 [a , x]21

PROOF. Applying the 3-rewritability property on the elements
ax , a x and xa one sees that the result follows. r
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LEMMA 2.7. Let G be a Q3-group, A a normal abelian p-subgroup of
G and x an element of finite order in G such that G4Aaxb. If [A, x 4]41,
then either [A , x 2 ] 41 or NG 8NG4.

PROOF. Applying the 3-rewritability property on the elements
ax , ax 2 and ax 3 , where a is any element in A , we have either [a , x 2 ] 41
or [a , x]x 2

4 [a , x].
Suppose that there exists a�A such that [a , x 2 ] c1. Then [a , x]x 2

4

4 [a , x] and by Lemma 2.3, G 84 a[a , x], [a , x]x b. Let x4yz where y
is a 2-element, z is a 28-element and [y , z] 41. Then we have
G 84 a[a , y], [a , y]y b.

Now if p42 then G is a finite 2-group and by [1, Lemma 2.4] NG 8NG

G4. So suppose that pc2. Then by exercise 6, page 282 of [14], A4

4CA (y)3 [A , y] and so y 2 �A which gives a contradiction. r

LEMMA 2.8. Let G be a finite Q3-group, A a normal abelian sub-
group of G and x an element of finite order such that G4Aaxb. If
[a , x 2 ]c1 for some element a�A and [a , x]x4[a , x], then NG 8NG5.

PROOF. By Lemma 2.3, G 84 a[a , x]baxb and by the hypothesis G 84

4 a[a , x]b GZ(G) and so G is nilpotent of class at most 2. Thus G4P3Q;
where P is the Sylow 2-subgroup and Q is the Sylow 28-subgroup of G .
By [1, Lemma 2.1], either P or Q is abelian. If P is abelian, then G 84Q 8

and by the main Theorem of [3, Lemma 2.1], NG 8 NG5. If Q is abelian,
then G 84P 8 , and P is an abelian-by-cyclic 2-group in Q3 . In this case,
Lemma 2.4 of [1] completes the proof. r

LEMMA 2.9. Let G4Aaxb be in Q3 where A is an abelian normal p-
subgroup of G . If a�A is such that [a , x 2 ] c1 and [a , x]7 41 4 [a , x 3 ],
then G is abelian.

PROOF. Let K4 aabG axb. Then x 3 and a 7 �Z(K) so that K

Z(K)
is a

]3, 7(-group in Q3 and is nilpotent. Thus K is nilpotent. Now G 84K 8

and by lemma 2.3, K 84G 84 a[a , x]N[a , x 7 ] 41 b. But since K is nilpo-
tent K4P3Q where P is the Sylow 2-subgroup and Q is the 2-comple-
ment of K . Since Q is a finite group of odd order in Q3 , so by the main
Theorem of [3], NQ 8 NG5 and since Q 8GK 8 it follows that NQ 8 N41.
Also since P is a 2-group and P 8GK 8 , we have P 841 and the proof is
complete. r
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LEMMA 2.10. Every group containing an abelian subgroup of in-
dex 2 is in Q3 .

PROOF. Let G be a group containing an abelian subgroup A of index
2. Thus G4Aaxb for some element x�G such that x 2 �A . Suppose that
x1 , x2 and x3 are arbitrary elements in G . Then there are a1 , a2 , a3 �A
such that xi 4ai x for i41, 2 , 3 . Now it is easy to see that

(a1 x)(a2 x)(a3 x) 4 (a3 x)(a2 x)(a1 x) 4x 3 a1
x a3

x a2 .

It follows that we have x1 x2 x3 4x3 x2 x1 for all elements x1 , x2 , x3 in
G . r

PROOF OF THEOREM 1.1. Let G4Aaxb where A is an abelian normal
p-subgroup of G such that [A , x 2 ] c1. If G contains an abelian subgroup
of index 2, then Lemma 2.10 implies that G�Q3 and if NG 8 NG5, then [5,
Proposition 2.4] yields that G�Q3 .

Now assume that G�Q3 and there is an element a�A such that
[a , x 2 ] c1. Suppose, for a contradiction, that NG 8 NF5. Then by Lem-
ma 2.7, [a , x 4 ] c1. Considering the 36 cases arising from Lemmas 2.4
and 2.5 we see that one of the following must hold:

(a) [a , x]3 41 and [a , x]x 2
4 [a , x]21

(b) [a , x]3 41 and [a , x]x 2
4 [a , x]

(c) [a , x]x 2
4 [a , x] and [a , x]x 4 [a , x]

(d) [a , x]x 2
4 [a , x] and [a , x]3x 4 [a , x]21

(c) [a , x]x 4 [a , x]
(f ) [a , x]3 41 and [a , x]x 2

4 [a , x]x [a , x]
(g) [a , x 3 ] 41 and [a , x]2x 4 [a , x]
(h) [a , x 3 ] 41 and [a , x]3 41
(i) [a , x 3 ] 41 and [a , x]3x 4 [a , x]21

Now comparing each one of the cases (A)-(E) from Lemma 2.6 with
each one of the cases (a)-(i) above we have either [a , x]x 4 [a , x] or
[a , x]7 41, which cannot happen by Lemmas 2.8 and 2.9, respecti-
vely. r

PROOF OF THEOREM 1.2. First we prove that G/F(G) is an abelian
]2, 3(-group. By [12], G is metabelian and so it is clear that G/F(G) must
be abelian. Now assume G is a counterexample of minimum order with
respect to the property that G/F(G) is not a ]2, 3(-group. It follows
from [7, Satz 2.9] that G is a semidirect product of a group N by a cyclic
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group Q of order p , where p is a prime other than 2 and 3. Since p is odd
it follow from the main Theorem of [3, Satz 2.9] that N is an elementary
abelian 2-group. Furthermore G 84N4CG (N) 4F(G) is a minimal nor-
mal subgroup of G . Now by Theorem 1.1, NNNG4. Therefore G itself is a
]2, 3(-group, which is a contradiction.

Hence G/F(G) is an abelian ]2, 3(-group. Now suppose, for a contra-
diction, that G is a counterexample of least possible order subject to the
property that the Sylow 2-subgroup of G/F(G) does not have exponent
dividing 4. Thus by [7, Satz 2.9] G is a semidirect product of a group N by
a cyclic group Q4 abb of order 8 and N is an elementary abelian 28-
group. Moreover CN (b 4 ) 41 and N4G 8 . It follows from Theorem 1.1,
that NNN43 or 5 . But then the order of Aut(N) divides 4 and so b 4 41, a
contradiction. Therefore the exponent of the Sylow 2-subgroup of
G/F(G) divides 4 . By a similar argument one can prove that the Sylow 3-
subgroup of G/F(G) is elementary abelian. It completes the
proof. r
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