On the Semi-Simplicity of Galois Actions.

Bruno Kahn (*)

Let K be a finitely generated field and X be a smooth projective variety over K; let G_K denote the absolute Galois group of K and l a prime number different from char K. Then we have

Conjecture 1 (Grothendieck-Serre). The action of G_K on the l-adic cohomology groups $H^*(X, \mathbb{Q}_l)$ is semi-simple.

There is a weaker version of this conjecture:

Conjecture 2 ($S^n(X)$). For all $n \geq 0$, the action of G_K on the l-adic cohomology groups $H^{2n}(X, \mathbb{Q}_l(n))$ is «semi-simple at the eigenvalue 1», i.e. the composite map

$$H^{2n}(X, \mathbb{Q}_l(n))^{G_K} \hookrightarrow H^{2n}(X, \mathbb{Q}_l(n)) \to H^{2n}(X, \mathbb{Q}_l(n))^{G_K}$$

is bijective.

If K is a finite field, then Conjecture 2 implies Conjecture 1. This is well-known and was written-up in [8] and [4], manuscript notes distributed at the 1991 Seattle conference on motives. Strangely, this is the only result of op. cit. that was not reproduced in [10]. We propose here a simpler proof than those in [8] and [4], which does not involve Jordan blocks, representations of SL_2 or the Lefschetz trace formula.

We also show that Conjecture 2 for K finite implies Conjecture 1 for any K of positive characteristic. The proof is exactly similar to that in [3, pp. 212-213], except that it relies on Deligne’s geometric semi-simplicity theorem [2, cor. 3.4.13]; I am grateful to Yves André for explaining it to me. This gives a rather simple proof of Zarhin’s semi-simplicity theorem

(*) Indirizzo dell'A.: Institut de Mathématiques de Jussieu, 175-179 rue du Chevaleret, 75013 Paris, France. E-mail: kahn@math.jussieu.fr
Bruno Kahn

for abelian varieties (see Remark 8.1). There is also a small result for \(K \) of characteristic 0 (see Remark 8.2). Besides, this paper does not claim much originality.

In order to justify later arguments we start with a well-known elementary lemma:

Lemma 3. Let \(E \) be a topological field of characteristic 0 and \(G \) a topological group acting continuously on some finite-dimensional \(E \)-vector space \(V \). Suppose that the action of some open subgroup of finite index \(H \) is semi-simple. Then the action of \(G \) is semi-simple.

Proof. Let \(W \subseteq V \) be a \(G \)-invariant subspace. By assumption, there is an \(H \)-invariant projector \(e \in \text{End}(V) \) with image \(W \). Then

\[
e' = \frac{1}{(G : H)} \sum_{g \in G/H} geg^{-1}
\]

is a \(G \)-invariant projector with image \(W \). \(\square \)

Lemma 4. Let \(K \) be a field of characteristic 0, \(A \) a finite-dimensional semi-simple \(K \)-algebra and \(M \) an \(A \)-bimodule. Let \(\mathfrak{g} \) be the Lie algebra associated to \(A \), and let \(\mathfrak{m} \) be the \(\mathfrak{g} \)-module associated to \(M \) (\(\text{ad}(a)m = am - ma \)). Then \(\mathfrak{m} \) is semi-simple.

Proof. Since \(K \) has characteristic 0, \(A \otimes_K A^{\text{op}} \) is semi-simple. We may reduce to the case where \(K \) is algebraically closed by a trace argument, and then to \(M \) simple (as a left \(A \otimes_K A^{\text{op}} \)-module). Write \(A = \prod_i \text{End}_K(V_i) \); then \(A \otimes_K A^{\text{op}} = \prod_i \text{End}_K(V_i \otimes V_i^*) \) and \(M \) is isomorphic to one of the \(V_i \otimes V_i^* \). We distinguish two cases:

a) \(i = j \). We may assume \(A = \text{End}(V) \) (\(V = V_i \)). Then \(\mathfrak{g} = \mathfrak{gl}(V) = \mathfrak{sl}(V) \times K \), and \(\mathfrak{sl}(V) \) is simple. By [9, th. 5.1], to see that \(\mathfrak{m} = V \otimes V^* \) is semi-simple, it suffices to check that the action of \(K = \text{Cent}(\mathfrak{g}) \) can be diagonalised. But \(a \in \mathfrak{g} \) acts by

\[
\text{ad}(a)(v \otimes w) = a(v) \otimes w - v \otimes a(w)
\]

and if \(a \) is a scalar, then \(\text{ad}(a) = 0 \).

b) \(i \neq j \). We may assume \(A = \text{End}(V) \times \text{End}(W) \) (\(V = V_i \), \(W = V_j \)). This time, \(\mathfrak{g} = \mathfrak{gl}(V) \times \mathfrak{gl}(W) = \mathfrak{sl}(V) \times \mathfrak{sl}(W) \times K \times K \). The action of \(\mathfrak{g} \)
onto $\mathcal{W} = V \otimes W^*$ is given by the formula
\[
ad(a, b)(v \otimes w) = a(v) \otimes w - v \otimes b(w).
\]

Hence the centre acts by $\ad(l, m) \otimes \zeta = l \otimes m$ and the conditions of [9, th. 5.1] are again verified.

Proposition 5. Let V be a finite-dimensional vector space over a field K of characteristic 0. For u an endomorphism of V, denote by $\ad(u)$ the endomorphism $v \mapsto vu - uv$ of $\text{End}_K(V)$. Let A be a K-subalgebra of $\text{End}_K(V)$ and B its commutant. Consider the following conditions:

(i) A is semi-simple.

(ii) $\text{End}_K(V) = B \oplus \sum_{a \in A} \ad(a) \text{End}_K(V)$.

(iii) B is semi-simple.

Then (i) \Rightarrow (ii) \Rightarrow (iii), and (iii) \Rightarrow (i) if A is commutative.

Proof. (i) \Rightarrow (ii): let \mathfrak{g} be the Lie algebra associated to A. By lemma 4, $\text{End}_K(V)$ is semi-simple for the adjoint action of \mathfrak{g}. Then (ii) follows from [1, §3, prop. 6].

(ii) \Rightarrow (iii): let us show that the radical J of B is 0. Let $x \in J$. For $y \in B$, we have $xy \in J$; in particular, xy is nilpotent, hence $\text{Tr}(xy) = 0$. For $z \in \text{End}_K(V)$, and $u \in A$, we have
\[
\text{Tr}(uxz - zu) = \text{Tr}(xuz - zxu) = \text{Tr}(uxz - zxu) = 0.
\]

Hence $\text{Tr}(xy) = 0$ for all $y \in \text{End}_K(V)$, and $x = 0$.

(iii) \Rightarrow (i) supposing A commutative: let us show this time that the radical R of A is 0. Suppose the contrary, and let $x > 1$ be minimal such that $R^x = 0$; let $I = R^{x-1}$. Then $I^2 = 0$. Let $W = IV$: then W is B-invariant, hence B acts on V/W. Let
\[
N = \{ v \in B | v(V) \subseteq W \}
\]

be the kernel of this action: then N is a two-sided ideal of B and obviously $NI = IN = 0$. Let $v, v' \in N$ and $x \in V$. Then there exist $y \in V$ and $w \in I$ such that $v(x) = w(y)$. Hence
\[
v'v(x) = v'w(y) = 0
\]

and $N^2 = 0$. Since B is semi-simple, this implies $N = 0$. But, since A is commutative, $I \subseteq N$, a contradiction. □
THEOREM 6. Let X be a smooth, projective variety of dimension d over a field k of characteristic $\neq 1$. Let k_s be a separable closure of k, $G = \text{Gal}(k_s/k)$ and $\overline{X} = X \times_k k_s$. Consider the following conditions:

(i) For all $i \geq 0$, the action of G on $H^i(X, \mathbb{Q}_l)$ is semi-simple.

(ii) $S^d(X \times X)$ holds.

(iii) The algebra $H^{2d}(\overline{X} \times_k \overline{X}, \mathbb{Q}_l(d))^G$ is semi-simple.

Then (i) \Rightarrow (ii) \Rightarrow (iii), and (iii) \Rightarrow (i) if k is contained in the algebraic closure of a finite field.

PROOF. By the Künneth formula and Poincaré duality, we have the well-known Galois-equivariant isomorphism of \mathbb{Q}_l-algebras

$$H^{2d}(\overline{X} \times \overline{X}, \mathbb{Q}_l(d)) = \prod_{q=0}^{2d} \text{End}_{\mathbb{Q}_l}(H^{q}_\text{cont}(\overline{X}, \mathbb{Q}_l)).$$

For $q \in [0, 2d]$, let A_q be the image of $\mathbb{Q}_l[G]$ in $\text{End}_{\mathbb{Q}_l}(H^{q}_\text{cont}(\overline{X}, \mathbb{Q}_l))$. Then condition (i) (resp. (ii), (iii)) of theorem 6 is equivalent to condition (i) (resp. (ii), (iii)) of proposition 5 for all A_q. The conclusion follows by remarking that the A_q are commutative if k is contained in the algebraic closure of a finite field.

I don’t know how to prove (iii) \Rightarrow (i) in general in theorem 6, but in fact there is something better:

THEOREM 7. Let F be a finitely generated field over \mathbb{F}_p and let X be a smooth, projective variety of dimension d over F. Let \mathcal{O} be a valuation ring of F with finite residue field, such that X has good reduction at \mathcal{O}. Let Y be the special fibre of a smooth projective model \overline{X} of X over \mathcal{O}. Assume that $S^d(Y \times Y)$ holds. Then the Galois action on the \mathbb{Q}_l-adic cohomology of X is semi-simple.

PROOF. For the proof we may assume that X is geometrically irreducible. By Lemma 3 we may also enlarge F by a finite extension and hence, by de Jong [5, Th. 4.1], assume that it admits a smooth projective model T over \mathbb{F}_p. By the valuative criterion for properness, \mathcal{O} has a centre u on T with finite residue field k. Up to extending the field of constants of T to k, we may also assume that u is a rational point. Now
spread X to a smooth, projective morphism

$$f : \mathcal{X} \to U$$

over an appropriate open neighbourhood U of u (in a way compatible to \overline{X}).

The action of G_{F} on $H^{*}(\mathcal{X}, \mathbb{Q}_{l})$ factors through $\pi_{1}(U)$. Moreover u yields a section σ of the homomorphism $\pi_{1}(U) \to \pi_{1}(\text{Spec } k)$; in other terms, we have a split exact sequence of profinite groups

$$1 \to \pi_{1}(U) \to \pi_{1}(U) \to \pi_{1}(\text{Spec } k) \to 1.$$

Let $i \geq 0$, $V = H^{i}(\mathcal{X}, \mathbb{Q}_{l})$, $\Gamma = G L(V)$ and $\rho : \pi_{1}(U) \to \Gamma$ the monodromy representation. Denote respectively by A, B, C the Zariski closures of the images of $\pi_{1}(U)$, $\pi_{1}(U)$ and $\sigma(\pi_{1}(\text{Spec } k))$. Then A is closed and normal in B, and $B = A C$.

By [2, cor. 3.4.13], $\pi_{1}(U)$ acts semi-simply on V; this is also true for $\sigma(\pi_{1}(\text{Spec } k))$ by the smooth and proper base change theorem and Theorem 6 applied to Y. It follows that A and C act semi-simply on V; in particular they are reductive. But then B is reductive, hence its representation on V is semi-simple and so is that of $\pi_{1}(U)$.

REMARKS 8. 1. If X is an abelian variety, we recover a result of Zarhin [11, 12]. Theorem 7 applies more generally by just assuming that Y is of abelian type in the sense of [6], for example is an abelian variety or a Fermat hypersurface [7]. (Recall, e.g. [6, Lemma 1.9], that the proof of semi-simplicity for an abelian variety X over a finite field boils down to the fact that Frobenius is central in the semi-simple algebra $\text{End}(X) \otimes \mathbb{Q}_{l}$.)

2. If F is finitely generated over \mathbb{Q}, this argument gives the following (keeping the notation of Theorem 7). Let F_{0} be the field of constants of F. Assume that $S^{d}(Y \times Y)$ holds and that, moreover, the action of $\text{Gal}(\overline{K}/K^{ab})$ on the \mathbb{Q}_{l}-adic cohomology of Z is semi-simple, where Z is the special fibre of $\overline{X} \otimes_{F_{0}} \mathcal{O}$ and K is the residue field of F_{0}. Then the conclusion of theorem 7 still holds.

To see this, enlarge F as before so that it has a regular projective model $g : T \to \text{Spec } A$ (where A is the ring of integers of F_{0}), this time by [5, Th. 8.2]. Let u be the centre of \mathfrak{O} on T and U an open neighbourhood of u, small enough so that X spreads to a smooth projective morphism $f : \mathcal{X} \to U$. Let $S = g(U)$ and $s = g(u)$. Up to extending F_{0} and then shrinking S, we may assume that $g : U \to S$ has a section σ such that $u = \sigma(s)$, that $\mu_{2} \subset \Gamma(S, \mathcal{O}^{\underline{s}})$ and that $\mu_{1}^{-1}(\sigma(s)) = \mu_{1}^{-1}(S)$.

Let S_{∞} be a connected component of $S \otimes_{F} \mathbb{Z}[\mu_{1}]$ and $U_{\infty} = U \times_{S} S_{\infty}$.
We then have two short exact sequences

\[1 \to \pi_1(\mathcal{U}) \to \pi_1(U_\mathbb{Q}) \to \pi_1(S_\mathbb{Q}) \to 1 \]

\[1 \to \pi_1(U_\mathbb{Q}) \to \pi_1(U) \xrightarrow{\chi} \mathbb{Z}^p \]

where \(\chi \) is the cyclotomic character. The first sequence is split by \(\sigma \); the second one is almost split in the sense that \(\chi(\pi_1(u)) = \chi(\pi_1(U)) \). By assumption, \(\pi_1(S_\mathbb{Q}) \) acts semi-simply on the cohomology of the generic geometric fibre of \(Z \) and (using theorem 6) \(\pi_1(u) \) acts semi-simply on the cohomology of \(Y \). Arguing as in the proof of theorem 7, we then get that \(\pi_1(U_\mathbb{Q}) \), and then \(\pi_1(U) \), act semi-simply on \(H^*_{\text{cont}}(X, \mathbb{Q}) \). (To justify applying the smooth and proper base change theorem to \(Y \), note that \(gf : X \to S \) is smooth at \(s \) by the good reduction assumption.)

REFERENCES

Manoscritto pervenuto in redazione il 21 settembre 2003.