On the Semi-Simplicity of Galois Actions.

Bruno Kahn (*)

Let K be a finitely generated field and X be a smooth projective variety over K; let G_K denote the absolute Galois group of K and l a prime number different from char K. Then we have

Conjecture 1 (Grothendieck-Serre). The action of G_K on the l-adic cohomology groups $H^*(X, \mathbb{Q}_l)$ is semi-simple.

There is a weaker version of this conjecture:

Conjecture 2 ($S^n(X)$). For all $n \geq 0$, the action of G_K on the l-adic cohomology groups $H^{2n}(X, \mathbb{Q}_l(n))$ is «semi-simple at the eigenvalue 1», i.e. the composite map

$$H^{2n}(X, \mathbb{Q}_l(n))^{G_K} \hookrightarrow H^{2n}(X, \mathbb{Q}_l(n)) \twoheadrightarrow H^{2n}(X, \mathbb{Q}_l(n))^{G_K}$$

is bijective.

If K is a finite field, then Conjecture 2 implies Conjecture 1. This is well-known and was written-up in [8] and [4], manuscript notes distributed at the 1991 Seattle conference on motives. Strangely, this is the only result of op. cit. that was not reproduced in [10]. We propose here a simpler proof than those in [8] and [4], which does not involve Jordan blocks, representations of SL_2 or the Lefschetz trace formula.

We also show that Conjecture 2 for K finite implies Conjecture 1 for any K of positive characteristic. The proof is exactly similar to that in [3, pp. 212-213], except that it relies on Deligne’s geometric semi-simplicity theorem [2, cor. 3.4.13]; I am grateful to Yves André for explaining it to me. This gives a rather simple proof of Zarhin’s semi-simplicity theorem.

(*) Indirizzo dell'A.: Institut de Mathématiques de Jussieu, 175-179 rue du Chevaleret, 75013 Paris, France. E-mail: kahn@math.jussieu.fr
for abelian varieties (see Remark 8.1). There is also a small result for K
of characteristic 0 (see Remark 8.2). Besides, this paper does not claim
much originality.

In order to justify later arguments we start with a well-known elementary lemma:

Lemma 3. Let E be a topological field of characteristic 0 and G a
topological group acting continuously on some finite-dimensional E-
vector space V. Suppose that the action of some open subgroup of finite
index H is semi-simple. Then the action of G is semi-simple.

Proof. Let $W \subseteq V$ be a G-invariant subspace. By assumption, there is
an H-invariant projector $e \in \text{End}(V)$ with image W. Then

$$e' = \frac{1}{(G : H)} \sum_{g \in G \setminus H} geg^{-1}$$

is a G-invariant projector with image W. ■

Lemma 4. Let K be a field of characteristic 0, A a finite-dimensiona-
semi-simple K-algebra and M an A-bimodule. Let \mathfrak{g} be the Lie al-
gebra associated to A, and let \mathfrak{N} be the \mathfrak{g}-module associated to M
$(\text{ad}(a)m = am - ma)$. Then \mathfrak{N} is semi-simple.

Proof. Since K has characteristic 0, $A \otimes_K A^{\text{op}}$ is semi-simple.
We may reduce to the case where K is algebraically closed by a trace
argument, and then to M simple (as a left $A \otimes_K A^{\text{op}}$-module). Write

$$A = \prod_i \text{End}_K(V_i); \quad A \otimes_K A^{\text{op}} = \prod_{i,j} \text{End}_K(V_i \otimes V_j^*)$$

and M is isomorphic to one of the $V_i \otimes V_j^*$. We distinguish two cases:

a) $i = j$. We may assume $A = \text{End}(V) \ (V = V_i)$. Then $\mathfrak{g} = \mathfrak{gl}(V) =
= \mathfrak{sl}(V) \times K$, and $\mathfrak{sl}(V)$ is simple. By [9, th. 5.1], to see that $\mathfrak{N} = V \otimes V^*$ is
semi-simple, it suffices to check that the action of $K = \text{Cent}(\mathfrak{g})$ can be
diagonalised. But $a \in \mathfrak{g}$ acts by

$$\text{ad}(a)(v \otimes w) = a(v) \otimes w - v \otimes a(w)$$

and if a is a scalar, then $\text{ad}(a) = 0$.

b) $i \neq j$. We may assume $A = \text{End}(V) \times \text{End}(W) \ (V = V_i, W = V_j)$.
This time, $\mathfrak{g} = \mathfrak{gl}(V) \times \mathfrak{gl}(W) = \mathfrak{sl}(V) \times \mathfrak{sl}(W) \times K \times K$. The action of \mathfrak{g}

$$\text{ad}(a)(v \otimes w) = a(v) \otimes w - v \otimes a(w)$$

and if a is a scalar, then $\text{ad}(a) = 0$.

for abelian varieties (see Remark 8.1). There is also a small result for K
of characteristic 0 (see Remark 8.2). Besides, this paper does not claim
much originality.

In order to justify later arguments we start with a well-known elementary lemma:

Lemma 3. Let E be a topological field of characteristic 0 and G a
topological group acting continuously on some finite-dimensional E-
vector space V. Suppose that the action of some open subgroup of finite
index H is semi-simple. Then the action of G is semi-simple.

Proof. Let $W \subseteq V$ be a G-invariant subspace. By assumption, there is
an H-invariant projector $e \in \text{End}(V)$ with image W. Then

$$e' = \frac{1}{(G : H)} \sum_{g \in G \setminus H} geg^{-1}$$

is a G-invariant projector with image W. ■

Lemma 4. Let K be a field of characteristic 0, A a finite-dimensiona-
semi-simple K-algebra and M an A-bimodule. Let \mathfrak{g} be the Lie al-
gebra associated to A, and let \mathfrak{N} be the \mathfrak{g}-module associated to M
$(\text{ad}(a)m = am - ma)$. Then \mathfrak{N} is semi-simple.

Proof. Since K has characteristic 0, $A \otimes_K A^{\text{op}}$ is semi-simple.
We may reduce to the case where K is algebraically closed by a trace
argument, and then to M simple (as a left $A \otimes_K A^{\text{op}}$-module). Write

$$A = \prod_i \text{End}_K(V_i); \quad A \otimes_K A^{\text{op}} = \prod_{i,j} \text{End}_K(V_i \otimes V_j^*)$$

and M is isomorphic to one of the $V_i \otimes V_j^*$. We distinguish two cases:

a) $i = j$. We may assume $A = \text{End}(V) \ (V = V_i)$. Then $\mathfrak{g} = \mathfrak{gl}(V) =
= \mathfrak{sl}(V) \times K$, and $\mathfrak{sl}(V)$ is simple. By [9, th. 5.1], to see that $\mathfrak{N} = V \otimes V^*$ is
semi-simple, it suffices to check that the action of $K = \text{Cent}(\mathfrak{g})$ can be
diagonalised. But $a \in \mathfrak{g}$ acts by

$$\text{ad}(a)(v \otimes w) = a(v) \otimes w - v \otimes a(w)$$

and if a is a scalar, then $\text{ad}(a) = 0$.

b) $i \neq j$. We may assume $A = \text{End}(V) \times \text{End}(W) \ (V = V_i, W = V_j)$.
This time, $\mathfrak{g} = \mathfrak{gl}(V) \times \mathfrak{gl}(W) = \mathfrak{sl}(V) \times \mathfrak{sl}(W) \times K \times K$. The action of \mathfrak{g}
onto \(\mathfrak{g} = V \otimes W^* \) is given by the formula

\[
\text{ad}(a, b)(v \otimes w) = a(v) \otimes w - v \otimes b(w).
\]

Hence the centre acts by \(\text{ad}(\lambda, \mu) = \lambda - \mu \) and the conditions of [9, th. 5.1] are again verified.

Proposition 5. Let \(V \) be a finite-dimensional vector space over a field \(K \) of characteristic 0. For \(u \) an endomorphism of \(V \), denote by \(\text{ad}(u) \) the endomorphism \(v \mapsto uv - vu \) of \(\text{End}_K(V) \). Let \(A \) be a \(K \)-subalgebra of \(\text{End}_K(V) \) and \(B \) its commutant. Consider the following conditions:

(i) \(A \) is semi-simple.

(ii) \(\text{End}_K(V) = B \oplus \sum_{a \in A} \text{ad}(a) \text{End}_K(V) \).

(iii) \(B \) is semi-simple.

Then (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (iii), and (iii) \(\Rightarrow \) (i) if \(A \) is commutative.

Proof. (i) \(\Rightarrow \) (ii): let \(\mathfrak{g} \) be the Lie algebra associated to \(A \). By lemma 4, \(\text{End}_K(V) \) is semi-simple for the adjoint action of \(\mathfrak{g} \). Then (ii) follows from [1, §3, prop. 6].

(ii) \(\Rightarrow \) (iii): let us show that the radical \(J \) of \(B \) is 0. Let \(x \in J \). For \(y \in B \), we have \(xy \in J \); in particular, \(xy \) is nilpotent, hence \(\text{Tr}(xy) = 0 \). For \(z \in \text{End}_K(V) \), and \(u \in A \), we have

\[
\text{Tr}(xz - zu)) = \text{Tr}(xuz - xzu) = \text{Tr}(uxz - xzu) = 0.
\]

Hence \(\text{Tr}(xy) = 0 \) for all \(y \in \text{End}_K(V) \), and \(x = 0 \).

(iii) \(\Rightarrow \) (i) supposing \(A \) commutative: let us show this time that the radical \(R \) of \(A \) is 0. Suppose the contrary, and let \(r > 1 \) be minimal such that \(R' = 0 \); let \(I = R^{r-1} \). Then \(I^2 = 0 \). Let \(W = IV \); then \(W \) is \(B \)-invariant, hence \(B \) acts on \(V/W \). Let

\[
N = \{ v \in B | v(V) \subseteq W \}
\]

be the kernel of this action: then \(N \) is a two-sided ideal of \(B \) and obviously \(NI = IN = 0 \). Let \(v, v' \in N \) and \(x \in V \). Then there exist \(y \in V \) and \(w \in I \) such that \(v(x) = w(y) \). Hence

\[
v' v(x) = v' w(y) = 0
\]

and \(N^2 = 0 \). Since \(B \) is semi-simple, this implies \(N = 0 \). But, since \(A \) is commutative, \(I \subseteq N \), a contradiction.
THEOREM 6. Let X be a smooth, projective variety of dimension d over a field k of characteristic $\neq 1$. Let k_s be a separable closure of k, $G = \text{Gal}(k_s/k)$, and $\overline{X} = X \times_k k_s$. Consider the following conditions:

(i) For all $i \geq 0$, the action of G on $H^i(X, \mathbb{Q}_l)$ is semi-simple.

(ii) $S^d(X \times X)$ holds.

(iii) The algebra $H^{2d}(\overline{X} \times_k \overline{X}, \mathbb{Q}_l(d))^G$ is semi-simple.

Then (i) \Rightarrow (ii) \Rightarrow (iii), and (iii) \Rightarrow (i) if k is contained in the algebraic closure of a finite field.

PROOF. By the Künneth formula and Poincaré duality, we have the well-known Galois-equivariant isomorphism of \mathbb{Q}_l-algebras

$$H^{2d}(\overline{X} \times \overline{X}, \mathbb{Q}_l(d)) = \mathbb{Q}_l \otimes_{\mathbb{Q}_l} H^{2d}_{\text{cont}}(\overline{X} \times \overline{X}, \mathbb{Q}_l(d)).$$

For $q \in [0, 2d]$, let A_q be the image of $\mathbb{Q}_l[G]$ in $\text{End}_{\mathbb{Q}_l}(H^{2d}_{\text{cont}}(\overline{X} \times \overline{X}, \mathbb{Q}_l(d)))$. Then condition (i) (resp. (ii), (iii)) of theorem 6 is equivalent to condition (i) (resp. (ii), (iii)) of proposition 5 for all A_q. The conclusion follows by remarking that the A_q are commutative if k is contained in the algebraic closure of a finite field. \blacksquare

I don’t know how to prove (iii) \Rightarrow (i) in general in theorem 6, but in fact there is something better:

THEOREM 7. Let F be a finitely generated field over \mathbb{F}_p and let X be a smooth, projective variety of dimension d over F. Let \mathcal{O} be a valuation ring of F with finite residue field, such that X has good reduction at \mathcal{O}. Let Y be the special fibre of a smooth projective model \overline{X} of X over \mathcal{O}. Assume that $S^d(Y \times Y)$ holds. Then the Galois action on the \mathbb{Q}_l-adic cohomology of X is semi-simple.

PROOF. For the proof we may assume that X is geometrically irreducible. By Lemma 3 we may also enlarge F by a finite extension and hence, by de Jong [5, Th. 4.1], assume that it admits a smooth projective model T over \mathbb{F}_p. By the valuative criterion for properness, \mathcal{O} has a centre u on T with finite residue field k. Up to extending the field of constants of T to k, we may also assume that u is a rational point. Now
spread X to a smooth, projective morphism

$$f : \mathcal{X} \to U$$

over an appropriate open neighbourhood U of u (in a way compatible to \mathcal{X}).

The action of G_F on $H^*(\mathcal{X}, \mathbb{Q}_l)$ factors through $\pi_1(U)$. Moreover u yields a section σ of the homomorphism $\pi_1(U) \to \pi_1(\text{Spec} k)$; in other terms, we have a split exact sequence of profinite groups

$$1 \to \pi_1(U) \to \pi_1(U) \to \pi_1(\text{Spec} k) \to 1.$$

Let $i \geq 0$, $V = H^i(\mathcal{X}, \mathbb{Q}_l)$, $\Gamma = GL(V)$ and $\rho : \pi_1(U) \to \Gamma$ the monodromy representation. Denote respectively by A, B, C the Zariski closures of the images of $\pi_1(U)$ in $\pi_1(U)$ and $\sigma(\pi_1(\text{Spec} k))$. Then A is closed and normal in B, and $B = AC$.

By [2, cor. 3.4.13], $\pi_1(U)$ acts semi-simply on V; this is also true for $\sigma(\pi_1(\text{Spec} k))$ by the smooth and proper base change theorem and Theorem 6 applied to Y. It follows that A and C act semi-simply on V; in particular they are reductive. But then B is reductive, hence its representation on V is semi-simple and so is that of $\pi_1(U)$.

REMARKS 8. 1. If X is an abelian variety, we recover a result of Zarhin [11, 12]. Theorem 7 applies more generally by just assuming that Y is of abelian type in the sense of [6], for example is an abelian variety or a Fermat hypersurface [7]. (Recall, e.g. [6, Lemma 1.9], that the proof of semi-simplicity for an abelian variety X over a finite field boils down to the fact that Frobenius is central in the semi-simple algebra $\text{End}(X) \otimes \mathbb{Q})$).

2. If F is finitely generated over \mathbb{Q}, this argument gives the following (keeping the notation of Theorem 7). Let F_0 be the field of constants of F. Assume that $S^d(Y \times Y)$ holds and that, moreover, the action of $\text{Gal}(\overline{K}/K^{ab})$ on the \mathbb{Q}_l-adic cohomology of Z is semi-simple, where Z is the special fibre of $\mathcal{X} \otimes_\mathbb{Z} F_0$ and K is the residue field of F_0. Then the conclusion of theorem 7 still holds.

To see this, enlarge F as before so that it has a regular projective model $g : T \to \text{Spec} A$ (where A is the ring of integers of F_0), this time by [5, Th. 8.2]. Let u be the centre of \mathcal{O} on T and U an open neighbourhood of u, small enough so that X spreads to a smooth projective morphism $f : \mathcal{X} \to U$. Let $S = g(U)$ and $s = g(u)$. Up to extending F_0 and then shrinking S, we may assume that $g : U \to S$ has a section σ such that $u = \sigma(s)$, that $\mu_{2 \ell} \subset \Gamma(S, \mathcal{O}_S^\times)$ and that $\mu_{1 \ell}(\kappa(s)) = \mu_{1 \ell}(S)$.

Let S_∞ be a connected component of $S \otimes_\mathbb{Z} \mathbb{Z}[\mu_{1 \ell}]$ and $U_\infty = U \times_S S_\infty$.
We then have two short exact sequences

\[1 \to \pi_1(U) \to \pi_1(U_\infty) \to \pi_1(S_\infty) \to 1 \]

\[1 \to \pi_1(U_\infty) \to \pi_1(U) \xrightarrow{\chi} \mathbb{Z}/p \]

where \(\chi \) is the cyclotomic character. The first sequence is split by \(s \); the second one is almost split in the sense that \(\chi(\pi_1(u)) = \chi(\pi_1(U)) \). By assumption, \(\pi_1(S_\infty) \) acts semi-simply on the cohomology of the generic geometric fibre of \(Z \) and (using theorem 6) \(\pi_1(u) \) acts semi-simply on the cohomology of \(Y \). Arguing as in the proof of theorem 7, we then get that \(\pi_1(U_\infty) \), and then \(\pi_1(U) \), act semi-simply on \(H^*_\mathrm{cont}(X, \mathbb{Q}) \). (To justify applying the smooth and proper base change theorem to \(Y \), note that \(g| : X \to S \) is smooth at \(s \) by the good reduction assumption.)

REFERENCES

Manoscritto pervenuto in redazione il 21 settembre 2003.