A Property of Generalized McLain Groups

Ahmet Arikant (*)

Abstract - In this short note we show that if \(S \) is a connected unbounded poset and \(R \) a ring with no zero divisors, then a generalized McLain group \(G(R, S) \) is a product of two proper normal subgroups.

1. Introduction.

McLain groups were defined in [3] for the first time. These groups are characteristically simple and locally nilpotent with some further interesting properties.

Let \(S \) be an unbounded partially ordered set (poset, in short) and \(R \) be a ring with \(1 \neq 0 \). Define the generalized McLain group \(G(R, S) \) as in [2]. Now every element of \(G(R, S) \) can be uniquely expressed as

\[
1 + \sum_{i=1}^{n} a_i e_{x_i, y_i}
\]

where \(a_i \in R, x_i, y_i \in S, x_i < y_i \) for \(i = 1, \ldots, r \) and \(n \in \mathbb{N} \).

In [5], some properties of \(G(\mathbb{F}_p, S) \) are considered for some orderings where \(\mathbb{F}_p \) is the field of \(p \) elements. The generalized McLain groups are considered in a general context in [2] and the automorphism groups of these groups are considered in [1], [2] and [4].

[2, Theorem 7.1] gives a necessary and sufficient condition to be \(G(R, S) \) indecomposable. In this short note we ask the following question:

Does \(G(R, S) \) have proper normal subgroups \(K \) and \(N \) such that \(G(R, S) = KN \)?

Two elements \(x, \beta \in S \) are called connected, if there are elements \(x_0, \ldots, x_n \in S \) such that \(x_0 = x, x_n = \beta \) and for each \(0 \leq i < n \), either

E-mail: arikan@gazi.edu.tr
\[\alpha_i \leq \alpha_{i+1} \text{ or } \alpha_{i+1} \leq \alpha_i. \text{ } S \text{ is called connected if every pair of elements in } S \text{ is connected.} \]

We shall prove the following:

Theorem. Let \(S \) be a connected unbounded poset and \(R \) a ring with no zero divisors. Then \(M := G(R, S) \) has proper normal subgroups \(K \) and \(N \) such that \(M = KN \), \(C_M(K) \neq 1 \) and \(C_M(N) = 1 \). Furthermore if \(1 + ce_{\alpha} \in M \), then \(1 + ce_{\alpha} \in K \) or \(1 + ce_{\alpha} \in N \).

2. **Proof of the Theorem.**

Lemma 2.1. Let \(S \) be a connected unbounded poset and \(R \) a ring with no zero divisors. Then every finite family of non-trivial normal subgroups of \(M \) intersects non-trivially.

Proof. Obviously it is sufficient to prove the lemma for two proper non-trivial normal subgroups of \(M \). Let \(N \) and \(K \) be such subgroups of \(M \). Assume \(N \cap K = 1 \) and follow the proof of [2, Theorem 7.1] to reach a contradiction. \(\square \)

Proof of the Theorem. Put \(M := G(R, S) \) and let \(w = 1 + ae_{\alpha} \) with \(0 \neq a \in R, \ K := C_M(\langle w^M \rangle) \) and \(N := \langle (1 + ce_{\beta})^M : 1 + ce_{\beta} \notin K, c \in R \rangle \). Then we will prove that \(M = KN \). Since \(Z(M) = 1 \), we have \(K \neq M \). Clearly

\[
\langle w^M \rangle = \left\langle (1 + ae_{\alpha})^{1+\sum_{i=1}^r a_i e_{i,\beta} + \sum_{j=1}^s b_j e_{\alpha,j}} : a, a_i, b_j \in R, 1 \leq i \leq r, 1 \leq j \leq s \right\rangle \\
= \left\langle 1 + ae_{\alpha} - \sum_{i=1}^r a a_i e_{i,\beta} + \sum_{j=1}^s b_j e_{\alpha,j} + \sum_{1 \leq i \leq s, 1 \leq j \leq r} a a_i b_j e_{i,j} : a, a_i, b_j \in R, \right. \\
\left. 1 \leq i \leq r, 1 \leq j \leq s \right\rangle.
\]

Let \(\alpha < \sigma < \tau < \beta \), then we have \(1 + de_{\alpha} \in K \) with \(0 \neq a \in R \) by [2, Lemma 2.2]. Since a generator \(1 + ce_{\beta} \) of \(N \) is not contained in \(K \), it must be of the form \(1 + ce_{\beta} \) or \(1 + ce_{\beta} (\mu > \beta) \) or \(1 + ce_{\gamma} \) or \(1 + ce_{\lambda} (\lambda < \alpha) \) and its conjugates must be of the form:

\[
(1 + ce_{\beta})^{1+\sum_{i=1}^r a_i e_{i,\beta} + \sum_{j=1}^s b_j e_{\alpha,j}} = 1 + ce_{\beta} - \sum_{i=1}^r a a_i e_{i,\beta} + \sum_{j=1}^s b_j e_{\alpha,j} + \sum_{1 \leq i \leq s, 1 \leq j \leq r} a a_i b_j e_{i,j}.
\]
or

\[(1 + ce^{\mu\delta})^{1+\sum_{i=1}^r a_i e_i + \sum_{j=1}^s b_j e_{\mu_j}} = 1 + ce^{\mu\delta} - \sum_{i=1}^r a_i e_i + \sum_{j=1}^s b_j e_{\mu_j} + \sum \frac{ca_i b_j e_{\delta i}}{1+i}$

or

\[(1 + ce^{\gamma^2})^{1+\sum_{i=1}^r a_i e_i + \sum_{j=1}^s b_j e_{\mu_j}} = 1 + ce^{\gamma^2} - \sum_{i=1}^r a_i e_i + \sum_{j=1}^s b_j e_{\mu_j} + \sum \frac{ca_i b_j e_{\gamma i}}{1+i}$

or

\[(1 + ce^{\gamma^2})^{1+\sum_{i=1}^r a_i e_i + \sum_{j=1}^s b_j e_{\mu_j}} = 1 + ce^{\gamma^2} - \sum_{i=1}^r a_i e_i + \sum_{j=1}^s b_j e_{\mu_j} + \sum \frac{ca_i b_j e_{\gamma i}}{1+i}$

For all terms \(e_{\theta e}\) that appear in each case, \(\theta \notin [x, \beta] \) or \(e \notin [x, \beta] \). Hence we have that there is no product of these elements which equals \(1 + e_{\sigma i} \), i.e., \(1 + e_{\sigma i} \notin N \). Hence \(N \neq M \) and obviously \(M = KN \).

Clearly we have \(C_M(K) \neq 1 \). Assume \(C_M(N) \neq 1 \), then \(C_M(K) \cap \cap C_M(N) \neq 1 \) by Lemma 2.1. But since \(Z(M) = 1 \), this is a contradiction. The final part of the theorem follows by the construction of \(K \) and \(N \). Now the proof is complete.

Corollary 2.2. Let \(S \) be a connected unbounded poset and \(R \) a ring with no zero divisors. Put \(M := G(R, S) \) and let \(N \) be the subgroup defined in the theorem. Then

\[
C_M(\langle x^M \rangle) / C_M(\langle x^M \rangle) \cap N
\]

is perfect for every generator \(x \) of \(M \) of the form \(1 + ae_{\delta^2} \) (\(a \in R \)).

Corollary 2.3. Let \(S \) be a connected unbounded poset and \(R \) a ring with no zero divisors. Put \(M := G(R, S) \). Then \(M \) has a decomposable non-trivial epimorphic image.

The author is grateful to the referee for careful reading and many valuable suggestions.
REFERENCES

Manoscritto pervenuto in redazione il 13 novembre 2007.