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Let {an: j=1,44., neN§ be an infinitesimgl array of real rv's

i.e. such that maiji\anl>d+o for every €0 (or maij(L(an),So)
»0, where P is Prokhorov's distance) and such that for each neWN,
an,...,xnkn are independent. And let Sn=Zanj. The general ceatral
1i1it theorem (CLT) in the line is escentially the answer tc the fol-
lowing question: what are the possible limits of {£(S '} and under
what conditions does iL(Sn)} (perhaps suitably centered) converre to
a given limit law? The possible limit laws are exactly the infinite-
ly divisible, i.e. the probability measures which have n-th root with
respect to convolution for every neN. In a sense the most natursl
infinitely divicsible laws are the so called Poisson laws: if v is

a nositive finite measure, Pois»H:exp(V-rﬂSO); then, (Pois
= exp{(V—lVISO)/n}. If the total variation distance between ,f(an)

and 80 is small, then a simple Ranach algebra arsument shows that

L(Sn) is near in total variation to Pois ZjL(an). hat happens if

the Prokhorov's distance between L(an) and 80 is small, or what is
the same, if the system is infinitesimal? It turns out that in this
case, if either {L(Snﬁ or {Pois:ZjL(an)} are relatively shift cor-
nact, the Prokhorov's distance between adequate shifts of the n-th
terms of both sequences tends to zero as nsw, Classically, the proof
of the general CLT consists of: (i) this fact, together with (ii)
necessary and sufficient conditions for convergence of Poisson

(or more generally, infinitely divisible) measures. It turns out

that one can prove the general CLT in the line (and its analogues

in Banach spaces) using only elementary results about Poisson

laws. However, the problem of the relation between {L(Sn)} and
{Pois‘ZjL(an)} is interesting in its own right, and we will consi-
der it as part of the general CLT in Banach. The measures PoisZ&£(an)

are called the accompanying Poisson laws for the triangular array {anL

In this note I will describe several results on: (a) w*-relative
compactness and convergence of Poisson measures, (b) relation between
relative convactness of row sums in triangular arrays and relative
compactness of their accompanying Poisson laws, and (c¢) necessary and
sufficient conditions for converzence of row sums of infinitesimal

arrays of Panach space valued random variables.

Mainly, thecc are rerults contained in (3], and also in [p) anc
[7]. The point of departure of this work,dcne with de Acosta and
Araujo, except for results contained in (14}, is LeCam [14] and

Hof fronn-Jor encen oand Pieicer [12).
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Notation. All the Banach spaces below will be separable except other
wise stated, and will be usually denoted by B. The measures will bepo-

sitive and Borel. For each 7>0, B_=fx: (Ixyst}, if X nj is a P-valued
rv, then ant (X ) We will write {X } for {X .3—1,...,kn, neN},
=Z 5%n;s0 S’n,“c i th and 5 *Zaxna_za(xnj' Xngo

l. Poisson probatility measures. The accompanying laws Pois ZJL(XnJ)

of an infinitesimal system are exponentials of measures with total
mass increasing to infinity. Thus, one needs to -'‘Poissonize'infinite

measures.

l.1. Definition. A ¢-finite measurepon .B is a Lévy.measure if

(1) fih(f dep(x)<u for every feB' and some T>0, where

ho(£,x) = elf(X) 1101, (1),

(ii) the function ¢: B —>C defined as ¢ (£) = exp{fh(f,x)du(x)}
is the characteristic function of a tight p.m. on B. This
probability measure will be denoted by c.-Pois u, the
t-centered Poisson p.m. with Lévy measure m.

If u is symmetric C.~Poispm does not depend on * and its ch.f.
is exp {j(cos f - l)dﬁ}. It will be denoted by Pois m.

The function h is not continuous, but one could equivalently
define Lévy measure using the function h(f,x)::elf(x)-l-if(x) for

Il x|j¢l, and eif(x)-l-if(x)/uxu for uxik>1l.

The only result about Poisson measures needed in the proof of
the general central limit theorem in Section 3 below, is the follow- .
ing. It explains Definition 1.1.

1l.2. Theorem. For a ¢-finite measure p on B with p{0j=0, the following

are equivalent:

(1) pois a Lévy measure,

(ii) for every ,un‘t’a. (setwise), M, finite, and every T>O0,
the sequence {ct-Pois,Ln} converges (in the w*-topology,
to ce-Pois u),

(iii) there exists a sequence M T, M finite, such that
{ee=Pois My} is relatively shift compact (for the w*-to-
volcgy).

Proof. (Skectch; see [ 2] for details). One shows first that:
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3 - c : Fomammr N - I3 T
(1) If M is e Livy wecasure *heon P(Pé)o" vl oevorr 0 1ot
function f ->fD f‘dp , restricted to anr hal? P{:dfé?‘:nfuszj
) -
is w*- continuouz,
(2) A f-nmily

A
if it is shift *ight -nd t%luéf 1o w¥ee-nlclotinuougs o 7

O

fooendts §4) o0 R is rel-tivel; cormect 47 -ud

n
fer scme r>C.

The proof of (1) is alucst clerricel; we will ~ive the proof of

(1). Lota thet it is enourh t2 wmrove (1) for cymmetric me-~ures (Juct
take p+p  inctead of M, with wp(4)= p(-4) for every Porel sct A).
The second assertion follows from the fact tl:t (Pois yu)" ic w*-ge-
quentially continuous, so0 w*-continuous vhen rectrictedto E’lL. If

Pn“*' > My finite, symuetric, then ITto-Nisio'z thecr-m appliecd to
(Pois py)*(Pois(p-py N . o*(Pois(p ~p. 1)) implies Pois g -=, Poirp.
Now, following L16], proof of Theorem IV.L.32, if {n'f is a suhseguen-
ce and N a neightorhood of zerc such that ,un'(l*fc)ao, define

V= (8N 7T INC. Then, Pois p_, is a factor of Poisp, and so

is Pois kvn, for every k and from some n! on. So, {Pois Vn's is rela-
tively compact ([16], Theorem III.2.2) and if 1 is a limit point,

then lk is also a factor of Poism for every k. Yence, Ak is
relatively compact, which implies that A:SO. But then, if Pois Vn"-"vr*l
we will have Pois Vn"(NC)-v A(NY=0 an¢ at the same time,

Pois v_,(N®) =™ " 22 w5, (%) /kt 2 7Ty, (1% = 7!, contradiction.

Now we can prove the theorem. (i) =(ii): As seen in the proof of
(1), fPOiS(pn+’.Ln)} converges when [N SO,{ct-Pois /“n} is relatively
shift compact for each >0. Now, if K is a compact set,

i 2 - c -CanC
fIn (e, 0fap (x) ¢ jBtf dpt(sup,_ e [£CO1 W(E®) 2k NEC)
and since the w*-topology and the topology of uniform convergence on
compact subsets of R coincide on Bl, it follows from (1) anad (2)
above that {c -Pois M.} is reletively compact. Since (ct-PoiSﬂn)A(f)
»>(c -Poispu )*(£) for each feB', it turns out that
Ce-Poisu  —», c -Poispu. (ii)=>(iii): obvious. (iii)=>(i): The proof
of (1) shows that sup ,&q(Eikw for every r >0C and that the func-

; 2, . . . .
tions f-»fp f Ap s restricted to B'S are w*-equicontinuous. This
T

implies that ﬂht(f,x)l dp(x)<oe and therefore also that fc -Pois ’uni
converges to a tisght p.m. with ch.f. exp{[ht(f,x) d,.\(x)i .0
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Let us remark that on the line the conditions in Theorem 1.2
are all equivalent to:

(iv) Imin(l,xa) dp( x)&ew
This allows for a modification to the function h which classically
is h(t,x) = erX-1-itx/(1+x°). The situation in Banach spaces is
quite different (cf. U5}):

l.3. Theorem. B is of type 2 if and only if

-IBmin(l, uxua) du(x)<® Hp is a Lévy measure.
B is of cotype 2 if and only if

p is a Lévy measure =¥ j?min(l,“xﬂa)dﬂ(x)<u:.

Power, type and cotype 2 in the above theorem can be replaced
by p ([5] and [18]).

It is easy to see that in the real line a family of ¢-finite
measures {Hj yields a relativeiy compact family of Poisson measures
{ct-POiSFhi if and only if the family of finite measures
{min(l,xa)dpu(x)} is relatively compact. This fails to be true even
in Hilbert space: if {eng is a cons of H, then Pnzna(sen/n+s-en/n)
satisfy the second condition but not the first. The next few theorems
describe the situvation of this subject in Banach spaces. Roughly,
there are necessary conditions for tightness of families of Pois-

son measures (in terms of the associated Lévy measures) in general,
but sufficient only in type p spaces.

l.4, Theorem. Let {m,} be a family of Lévy measures on B such that
{ct-Poisth is relatively shift compact. Then:

(1) U&JB;} is a family of relatively compact finite measures
for every r»> 0,
. . - 2 o
(ii) if wd’r(f)—jé f"duy,, feB', then for every r and s>0, the
family of functions {wd,rlBé} is w*-equicontinuous.

The proof is essentially contained in the proof of Theorem 1.2.
See [3] for details. A useful corollary is:

l.5. Corollary. 1If {Ct'POiSHu‘ is relatively shift compact, then it
is relatively compact.

This fact was first observed in [4]. Next we give some psrtial
converses to Theorcm 1.4 (cf. [3]). '
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1.6. Theorem. Let PR and E be Rancch spaces, w:T »E a continucus

linear map of tyre p, and fFJ a fanily of ¢-finite pecitive meacsurec
on R such that:
. c - c R . .
(1) ’&(Er)<m for all r>0 and thli is relatively coruact,

(ii) for every feB', sup, By T7¢ py <00,
ﬂ*mon51onal
(iii) there exists a sequence ?F ﬁ of finiteYsubspaces of E such

that

limnsup“ ]éldp(x,u_l(Fn))dpu(x)=().

Then, M,ou = is a Lévy measure for every o« and {ct-Pois(rhou-l)B

is relatively compact.

Proof. By (i) and 1.5 we may assume pm, symmetric and Hﬂ(B;)‘—' 0

Let Hd"“u‘Bl/r and for each o and reWV, {Z“J}J’l independent
B-valued rv's such that L(Z} ;= Pa/lpgl  if po#0 and 8 other-
wise, and let F be a finite dlmen510nal subspace of E and G=u" (F).
Then, since the induced map u:P/G - E/F is of type p with the same
type p constant C of u,

Ed (Zaslu(ZdJ) F) <CZJ=1 d (z .,G) =CkEd®(2 1)
Hence,

{aP(x,F) dPois(;«:ou-l)(x) = exp(- Ipg ) Z;l(k!)-lnglkEdp(i};ﬂu(sz),F)
gexp(-lﬂf')CEdp(ZflgG) Z w_lll*flk/(k-l)! =dep(x G)dy.i(x)

So, by Chebyshev's inequality, the family {Pois p,ou } is flat-
ly concentrated (cf. [1]). Also, if geB',

JgadPOiS(P:ou- ):jg d(h‘ou' ‘):j(gou) dpy
as one can show with computations similar to the above. Hence,
{Pois(piou” )og § is tight. Therefore, by (1), Theorem 2.3,

{Pois(pyeu” )} is tlght and Meu "1 is Lévy by Theorem 1.2; again
by (1) 2.3, "POJ.s,udou j is tight. D

Remarks. (1) This theorem implies the first part of Theorem 1.3 in
one direction; hence, if conditions (i)-(iii) for u=I imply tight-
ness of the Poisson measures, R is of type p. (2) Together with
results in the next section this theorem also implies a general CLT
in type p spaces (which for instance contains the direct part of
the CLT in [12] -the Gaussian domain of normal attrmction- and in
(6)-the stable domains of attraction). (3) Assume that in Theorem
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1.6, u is of type 2 from B into EK’ the Banach spzce generated ty »
compact convex symmetric subset of E; then conditions (ii) and (iii)

there can be replaced by:
2
(ii)* supy, Blllxﬂ‘"diud(x)<oo ,

and still have rclative compactnecs:. of the Poisson measures. The proof
is as that of 1.6 but one works with the Minkowski functional of K
instend of the distances to subspaces. This type of result has appli-
cation to the CLT in C(S), Gaussian and non-Gaussian convergence cases,
for not necessarily identically distributed rv's. (cf. [3]1).

Some complements to the previous results:

1l.7. Theorem. Let {png be a sequence of Lévy measures on B such that
c.~Pois ™ vV . Then:
(i) there exists a Lévy measure p such that pnlB piB. for

every T such that u@B}=0,

(ii) there exists a centered Gaussian measure)such that

} ffdp = [£Pay
lim

for every feB',

(iii) V=Y¥wc.-Poispu.
The proof of this theorem is similar to that of 3.3 and so it is
postponed. A simple corollary to 1.6 and 1.7 is the following result

proved in [17] for the symmetric case; it ‘is useful in the study of
stable domains of attraction in Banach spaces.

lim sup
lim {

80

1.8. Corollary. Let B be of type p, and let {p } be a sequence of
0-finite measures on B which 1ntegrate min(1, "xup) and such that:

(1) there existspo-finite such that pnlB-ev IB whenever P(QB )=0,
. . . Y -
(ii) 11m8¢011m sup B;xu dpn(x)..o

Then, p is Lévy and for every ©>0, c,-Pois P % CoPois pr.

(It is easy to see that condition (ii) implies conditions (ii)
and (iii) in 1.6, so that the Poisson p.m.'s are tight; then 1.7
together with (ii) identify the limit). Note that Theorem 1.3 for
p instead of 2 proves that: if (i) and (ii) in 1.8 imply convergen-
ce of the Poisson measures, then R is of type v.
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2. Tightness of row sums and their accompanying laws. As in Section 1

we start with the results needed in the CIT, and then continue to

complete the theory as much as we can.
In the next theorem, {.{i fenotes the total variation nornm.

2.1. Theorem. Let {Xiﬂ be a finite set of independent B-valued rv's
and let s:ZiXi‘ Then,

1L(s) - Pois ZLx)N € 2 2,P4{x, #0}.

Proof. (Partial). We give a very simple proof cf the inequality with
a larger constant. For the real proof see LeCam C13]. By Fubini's
theorer, [|L(X)*...2 (X)) - (Poisf(X{))*...#(Pois[(X )]

siilli(xi) - PoisL(Xi)ﬂ , but

MKy - exp(L(x) -8 € WK -8,17 T, 257 %/ut 2 2e°Po{x,%0} . O

This theorem is basic, and is attributed to Khinchin by LeCam [13).
The next basic theorem is the weskest version of the classical Linde-
berg theorem. For probability measures in the line, define
d5(s,V) = sup { ffratp-): feCi(R), ZfaONf(i)mfl}. Then it is clear that
d3 metrizes weak-star convergence in the set of p.m.'s on R. We
have:
2.2. Theorem. Let {Xi} be a finite set of independent, centered, real
valued rv's such that ess sup in"sc for each i1, and let 6? =EX§,
%= Z52 =Es®. Then,

a5(L(5),7(0,52)) <6~ 1(1+(8/m) B c?
d5(L(5),PoisZ [ (X,)) & Ca™/2.

Proof. Let ¥, be indepentent with [(¥,)=N(0,82) (L(¥,)=Poisi(X,)),
and EiYizT. The first terms in the inequalities above are
d3({(s),L(T)) by the well known composition properties of Normal and
Poisson laws; by Fubini, they are bounded by zidB(I(xi)’l(Yi))’ and
since the first two moments of X, and Y., coincide, Taylor's formula
gives IE(f(Xi)'f(Yi))iS Mf(3%~(E|Xi|§+E|Yi|3), and this yields the
theorem.D

These two results are useful in the general case because there
is a way of patching them together: under certain conditions (infi-
. . 5
nitesimality and shift compactness of the sums), L(sn)ﬁﬁ*[(sn,s)*L(sn)’
as the next proposition shows.

2.3. Proposition. Let {an} be a triangular array of row-wise independent
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v'., Then, for every $>0 and ne€N, there exist random variables

Ly and W such thsat:
n$’ 'ns nd

(1) L(sﬂ):J:(Un15 -+vn8+wne,
(ii) U,s and vrS are independent and J[(U ) L(S
LV o) .C(Ss)

(iii) Eu.ﬂsugﬂuijEX

,S
anMZjP{HanH>SL
Proof. Take Uﬂj and Vﬁj independent with laws

P{U;ljeA}:P{aneAnEs}/P{anePSS, P{v: M= PiX, eA(\BSS/Pix eBsf

nj
if the denominators are different from zero, and if one of them is

zero, talre the correcovonding variable equal to zero. Let SLj and
th be independent real rv's, independent of the previous ones,
Bernoulli with parameters pﬁj'=P{aneBs}.'Then it is easy to see
that the variables

..f ?nJ nj? Vn$=zj(1._¥nj)vr'1j and Wns-: ZJ(Y )U'

nJ_?nJ
satlsfy the required conditions.

This decomposition is due to LeCam [13] [14]. He calls it
the découpage de Lévy. '

. Before studying the problem of accompanying laws in all its ge-
nerality, we state without proof a theorem about necessary integra-
bility conditions for shift compactness of sums and about centering
shift compact sequences of sums. The proof, mainly based on the Levy
and converse Kolmogorov inequalities ([2]) and the tightness condition
in (1), can be found in [ 3].

2.4. Theorem. Let {xnj} be a triangular array of row-wise independent
B-valued rv's such that {L(Sn)} is relatively shift compact. Then:

(i) 4if the an are centered and uniformly bounded, then
(i1) suanasnnPaovfor all p>0,
(i2) if F cB are finite dimensional subspaces such that
UF, =B, lim sup Ed®(S ,F)=0 for all p»0;
(ii) if {Z%L(an)lBg} is relatively compact for some $»0, then so
< .
are {{(ST)}, iL(sn,t-Esn,t)‘ and {L(Sn-Esn t)} for every

]
T%.

For shifts of Poisson measures we have ( [7], proof of 2.4):
2.5. Lemma. Let {xnj} be a triangular array of row?wise 1ndepen§gnt
R-v-=lued rv's such that for some §>0, max. "PX l-)O Then 1f
{Poisf_jL(x j)} is shift tight, {PoisZ L(x EX js)} is relatiVely \
compact.
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2.6. Theorem. Let an be an infinitesimal system of B-valued
rv's, If {Pois Zﬁi(xnj-Exnjs)S and {I(sn-ESn,s)} are relatively
compact for some $>0, then

(2.1) Lim d[L(5 -ES) (),PoisZyL(X ;-F nas)]‘

for any distance d metrizing w*-convergence of p.m.'s on B.

Proof. It is enough to prove that both seguences have the same limits
through the same subsequences. For this, it is enough to prove the
same for {Pois Z.[(f(X M} and {L(£(S -ES_))} for

J nj nJS n,d
every feB'. The theorems 2.1,2,3 give that for O<8<t-

1£eecsd -Es“ o)) -PoisZ L(s(xE, -EXgJ,c))ll < 2 2P| 80X, 1> §-2(EX

d}[L(f(Sn’s- n’s»,POlSE.L(f(X .. =B ' ))] Sés'uflszf (ans- xnjs)
s-ESS )]
<[[|flmax WEX ;42 PIX n>5}]J‘°

where Uns and Vn6 are as in 2.3, and dpr is the dlstance in probabi-
lity dpr(X,Y)r- inf{e:P{|X-YI>€}<e}. Noting that dz is smaller that
{-4 and dpr’ and that by Theorem l.4 and by infinitesimality the

last terms in the three inequalities above give zero if one takes

a3,

a . Cf(s -BS ), £(U -BS )+i(V

n,t

first 1lim sup, and then limSJO’ we get
a5 [L(E(S B, . ),Pois Z L(£(X j~BX ;0] = 0 as nvew. a

The general problem of the accompanying Poisson laws is reduced,
by 2.4,5,6, to a question on the relation between shift tightness of
row sums and their exponentials. This simplifies the proof of the
main theorem (which collects results in (14), (7} and (3]):

2.7. Theorem. Let {Xn4} be a triangular array of row-wise independent
J

B-valued random variables. Then:

(1) If {Pois Z L(x )} is relatively shift compact, then
{L(S -ES ,3) 1s relatively compact for every §>0; if
moreover maijEansu—yO as n->»o for some $§>0, then also
{PoisZﬁL(an—Eans)} is relatively compact; and if the
system is infinitesimal, then the limit (2.1) holds.

(ii) 1If c, is not finitely representable in B, then there exist
symmetric infinitesimal systems {an} in B such that
{L(5 )} is relatively compact but {PoisZ%L(an)} is not.

(iii) Let R be a Ranach space such that for some q20 (=22)

and some sequence of finite dimeasional subspaces FKCB, Fk1,
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with UT?UCE, the spaces }?/Fk ars of cctrpe g with constants
stisfying sup ¢y <w; thes, if for some &>0, n‘;axjﬂEan‘"-)O,
{Z.L(X ,)\Dg ic relatively ccmpact and {i(Sn)} is relatively
shift comnoct (heace{i(s ES, )} relatively compact), we have
that {PoisZ [(X .

3+ 057055
{anf is infinitesimal, then (2.1) is satisfied.

)} is rslatlveWJ compact. If moreover

Proof. e will outline the main steps. To prove (i), in view of 2.4~
2.6, it is enough to see that shift tightnesc of the Poisson laws
implies shift tightness of the sums. We take the proof of this from
LeCam [14). If X_..=0, X 351, euyky, 16N, and Nos, 371,e.0,k

njO= > "nji?
3 ‘3 /1 ™ - g H
are indepen’ent, I(Nnj)-Pois §, and L(ani) L(an), then
(2.2) Pois ij;(xnj) =L (z':j zianjxnji) .

Using this representation one easily sees that PoisZ’L(X 3 -X) L nexN,
where X' 1is independent of and distributed like X J,are the laws
of the dl%ferencesof two Variables with laws the original Poisson,
and therefore make a relatiVely shift compact sequence. So, we may
assume the an_ symmetric, Let a =1log 2 and Nﬁk independent

and independeht of the ani’ with law Pois(a Sl), and let

fhk==min(1,N£k) (hence, Thg 2re Bernoulli with expectation p=1).

Then, if T}=Z zisN;lkxnji, f£(T1)} is tight. Define S =%5% cgn5¥n3

and Rﬁ::Ta-Sﬁ. By symmetry, for every compact convex symmetric éet
K we have

' C s Cc
P{S£+R£§K 'Nﬁjsthjs3=1s~0°,k j=Pis]-RleK ‘N"=thj’ R
Cc C
>3PISIERC (N =7, 4y 31,000 kg
Therefore, {{(5!)} is also tight. But S,z annJ+2‘ (1-3 )x

and both sums have the distribution of s;l, so ;.c(sn)} is t:l.ght.

(ii) 1f ¢, 1s ° finitely representable in B, it is possible to
construct an infinitesimal system of symmetric rv's such that
ess sup (IS H-?O and that for every >0, (PoisZ&L(an))(Bi)é?l.

o
We refer to C?] for such an example.

(iii) Using (2.2), Fubini and that if {X, }are eouﬂdlstrlbuted and
independent of X,, then ENET_ X, e Elx +nX, I3, it is easy to
prove that in any Panach space,

I
JuuPatrois Z,L(x ) (x) £ Bz 212

if the Xj’ Nj are inderendent and £(Nj)= Pcis Sl. Wow,'Corollary

1.3 in [15] shows that if P is of cotype q for some g, and the random
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variables Xj are independent and symmetric,

j“xuzd(Poiszj

where C does not depend on the Xj’ and depends on R only through

2
L(xj))(x) < CEuzjxjt\

its cotype q constant. This inequality can be desymmetrized. If

B satisfies the hypothesis stated in (iii), it is clear that this
inequality together with 2.4(i) will imply tightness of

{Pois Zj,((xnjs-nxnjs)i if {L(sn)} is relatively shift compact. But
it turns out that this is enough to yield tightness of

{Pois Z,((X ;-EX .)} by virtue of 1.4(i) and 2.1. a

Contained in the previous proof is the following characterisa-

tion of spaces where s is not finitely representable ([7]):

2.8. Theorem. ¢, 1s not finitely representable in B if and only if

for every finite set {Xi} of symmetric B-valued rv's,

fuxvZa(PoisZL(x,)) (x) ¢ cEUZ;X N

for some C4®@ independent of the Xi.

And also ([7]):

2.9. Corollary. Let B be a Banach space with a Schauder basis. Then
<, is not finitely representable in B if and only if

{L(Sn)} relatively compact <& {PoistL(an)} relatively compact

for triangular arrays of row-wise independent symmetric B-valued
rv's ixnjf.

2.9 can be stated for infinitesimal arrays.

2.10. Problem. Is 2.9 true without any additional assumption on B?

The solution of this problem would give possibly a complete

picture of the subject of accompanying laws in Banach spaces.

2. The general central limit theorem. The general limit theorem

that we will give in this section has the disadvantage that one of

the conditions depends on the trumcated sums rather than on the indi-
vidual variables directly, but the advaﬁtage that many known limit
theorems in Banach follow from it quite directly. All the ingredients
for the proof of these theorems have been given above except for the
following result of LeCam [14] which is basic in the converse CLT
(but is not needed for the direct part). The troof here is as in

(3).
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2,1. Theorem. If {X 4 is a triangular array of row-wise independent

B-valued rv's ana {L(Snﬂ is relatively shift compact, then for ever
€0 theore coxwist a comvact set K'sc:Beand {Xn"e,‘CB such that
J

{7, L(x

Proof. Here, as in the 'converse' tightness theorem 2.4(i), thc T.évy

c . .
nj-xnje)lKCg is relatively comvact.

and the converse Kolmororov inequalities are the basic tools. Let
1% j§ be independent symmetrisations of the an, S 2' X nj’ and let
K be a compact symmetric set such that Pis eKC}< u(<% Then, the Lé-
vy inequality applied to the Minkowski functlonal of K yields

¥ c % ,wC .
(2.1) sup, ZjP{aneKei 5-log(1-asupnP{sneK })< -log(l-2a) = T<0o,
We will show that Kt=B£nK satisfy the conditions of the theorem.
First we must see that

~ c

(3.2) sup ZjP{aneKt}<oo

for every €>0. By (3.1) it is enough to prove this for Y ng = j (X ).
Observing that the open sets {x: [£(x)|>¢€/2}, fe¢Bl, are an open cover
of B

z

ZE/B"K’ we obtain that for some finite subset FcB:'L,
2 2
jp{ n;j*Kefffj ZeF Pt\f(Ynj)b e/2} ¢ (£/2)°Z, LEf (ijnj).

Now (3.2) follows from the converse Kolmogorov inequality because
{ZjL(Y )} is relatively compact (it is easy to see that for every
convex symmetric set Q, sz’ Y eQ j <2P{5 eQ §, as observed in[10)).

I J =i Jefl,... k¢ P{XnJeK‘jG/M, then (3.2) implies
supnCard(Jn)<u; therefore, by (16], Theorem III.2.2, there exists
{%,54<B such that {Z J L(an nje)d 15 tight. So we neeg only
prove that for some {x f.’ the sequenceiZJeJc[.(an nJc)'K } is
relatively compact. By Fublni's theorem theré exist points xn;jt
such that p{xn.- MK;V% and sup, SJeJcPfx i~ %nje €K< . IFf
given re¢N we apply (3.1) and Fubin1 to .L(S DR I? ’L(S ) we obtain
that there exist {zzjch such that ZjP§X -zr eKrjsT/r for some

nj
compact convex set Kr' Hence, if r is b:Lg enough, le':j - X jeK ‘|>K£
and
c c
ZjeJc P{x 3" %n e € (ZKere) js ZjngP{an-znj eKr}5 T/r. O

3,2. Corollary. If § Xn;ﬁ is infinitesimal and {.C(sn)} relatively shift
compact, then for every €»0 there exists K£CEe compact such that

{ZjL(x )llifi is a relatively compact sequence.

The proof follows eacily from the tightness of {'[(an)?n j and
.- H
Theorcm 3.1. 7,2 is observed in [14].
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Finally we give what may be consicered as a reneral CLT in Banach.
It is taken from (3} with only minor modifications in the proof.

3.3. Theorem. Let an be infinitesimal. Then,[[(sn)} is
shift convergent if and only if:

(i) there exists a ¢-finite measurc p on P with ,40§=O such
c c -
that zji(xnj) IBS . ,AIP.8 whenever 5>0 and u(3B)=0,
(ii) the limit - :

$(£) =1imuo{1ﬁ$ f‘;?} 2=t (x EX, 35)
exists for every féw cB', W weak-star ‘total in B! (for
every feB'),

(ii1) There exists a (for all) sequence {F, § of finite dimensional

subspaces of B with U;%kzzB, ka, and. p>0 (for all $>0)

such that
. P —
llmksup Ed (S ,ﬁ Fk)-O
for some (for all) p>0.
And then,

(1) fis a Lévy measure and there exists a centered Gaussian p. m.
¥ such that [t2a¥=(f) for every feW (feB'),
(2) w*—limn,[_(s n-Esn,s) :X*csPois,A. for every $>0 such that
p(3Bg) =0,
(3) for these same values of §, w*-limni(sg) = Pois( MBg)
- - = A* Cc
and wr-lim [(S,  -ES . )=Y*c Pois(p|BS).

Proof. a) The direct part. Assume i)-iii) hold. First we will prove
that {L(Sn-ESn’s)} is relatively compact and then will identify the
limit., By infinitesimality, maij”ansu"O for every §&>0, hence (1) and
2.3 implies that {{(S -Esn 6)} is relatively compact if and only if
{L(S ,S)GL(SS)} is tlght and .both sequences have the same*limits.
Theorem 2.1 together with condition (i) .give .the tlghtness of {L(Ss»

for every §>0, and proves also that if 0<%<T and p(aBt)zp(aBs)so
then

(3.3) L, Pois(p|By) and i(s‘-Ess ) ct-Pois(Hch).

Hence, part of (3) is proved. On the other hand, fI(S )} is
flatly concentrated by (ili), and (ii) easily gives (by 1nfinitesima-
lity and (i)) that suanf (Snd}- nd})<m for every f eW. So, by
[1) Theorem 2.3, fL(sn P-ESn p) is relatively compact. Hence,

’ )
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[9)]

o is {I(Sn-ESn 3)} for any >0 (condition (i) together with Theoren
?

Next we identify the limits., Given ©>0 with R(E.)=0, let ©>5 .30 be
such thet ,A(’.)Bsn) =0 and

§

{ d [L(S;n—Esnl;lt » Cz=Pois(pl Bsn)] -0

maijﬂansn“ ZPiIx 8§ = o,

where d metrizes weak-star ccnvergence of probability mensures.
Such a sequence {8n‘ exists by (i), 2.1, and the infinitesimality
assumption. Hence, by Proposition 2.3 and [16] Theorem III.2.2,
the relative compactness of {L(s -ES )3 implies that the

sequences {{(Ssn ES_ Sn )} and {I(Sn 5 ESn ¢ )} are relatively shift
n ’n

compact. Now Theorem 1.2 proves that
J 7 is a Levy measure

(3.5) L(sin -sin 1) . Co-Polsp
fi(Sn 5 )} is relatively compact.

Suppose now that {L(Sn, s ~ES,, )§ converges. By the converse
,n| ]

Kolmogorov inequality, for every fé¢B' and p>0, suanlf(sn, s -
9 n'

Y 2 - 241 (
)| *<o and therefore, lim ,Ef (Sn',sn. Esn',sn,)"’ (f)<so

ESy ;. ))-» N(0, §'(£)). So,

ES_.
n',Sn,

and, by Theorem 2.2, i(f(sn, g

there exists a centered Gaussian measure y' on B such that jf dy' =
¢'(f). By the previous argument and (3.5) we have then

L(sn' - ES,, ,‘t) e

Now, for the direct part of the theorem we only need to see that
b(£)=9'(£f) for every feW (hence for every f&B'). By previous
érguments, .[(Sn,,t-Es ;t)_’i* ('*ct-POiS(plBt), s0 that (again
Justifying limits under the integral sign by Kolmogorov inequality)

)

y'#c Poisp.

-— 2 -
&(f) = Lim lim  EfS(S ,  -ES

t&O,p(?Bt)zo n',t

= Lim_, o (4" () + [£2a(p|B)) » §* (1)
for every fewW.

b) The converse part. If {[(Sn)} is shift convergent, then

ff (X )iB ] is relatively compact for every §0 by Corollary 3.2.
If {ZTL(X ,3)IB$} converges then, by a diazonal procedure,we can find
a subsequence {m'lein'{ and a ¢-finite measnure p with ﬁdoi such

c c . - .
that EjL(xm,)lBt " ,;\Bt for every T>O with y(3Bt)¢0 and for t=d.
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Hence (i) is satisfied for the sequence {m'§j . By infinitesimality and
2.3, i(sn,i-Esn,s) and {L(S;)i are relatively shift compact, hence
relatively comnact by 3.2 ané 2.4(ii). In varticular 2.4(i) implies
that condition (iii) is s tisfied. . A4lso,. whenever M(3E)=0,
{1(5;2)} converges by 2.1, and therefore so does {[L(S a' T Fsm';c)
(2.4(ii)). This implies that condition (ii) is satisfied for the
cequence im'}] and for every feB! (lim Efa(sn,,f-ﬁsm},t) exists

for every ©»o with V(QB )=0 by the Kolmo~orov convorse inequality,
#znd, as a simple computation shows, lim sup,  ET (om',t Esm';t)

(lim inf) is an increasing function of T ). Then, the direct limit
theorem implies that the limit of {L(S ,-ES_, T

where J§ is determined as before. By [16), p. 1lu, if yec _-Poispe

) is §*c-Poisp, <§,

= ('sc~Pois y' then y:-y' and p=p' (outside the origin), and
from this it follows that (i) and (ii) hold in fact for the whcle

sequence {nj. 0

Remarks. (1) For type p spaces, the direct vart of the theorem is

true with condition (iii) replaced by

njs T = ©

In this case the theorem simply results from putting together the
theorems-1.6, 1.7 and 2.7(i). This result contains the direct part
of the Hoffman-Jorgensen and Pisier CLT [123} and of the theorems on
domains of attraction in (6] and in [18) (which can be desymmetrized).

C s . P _
(iii)! llmksupn ZjEd (ans EX

(2) Assume B satisfies: there exist chzB finite dimensional
with UkasB, Fk?, B/Fk of cotype p for some -p>0 (22) and constant

E such that supkc§<au Then the converse part of the theorem is true

with condition (iii) replaced by condition (iii)'. Again, in this

C

case the theorem can also be proved putting together 1.7 and 2.7(iii).

(3) If B is of cotype q, another necessary condition for the CLT
can be added, namely that sup ZjE"ang“ anlq<ﬁﬁ (Theorem 2.4(1i)).
This theorem implies the well known fact that X e CLT in cotype 2 =>

Ellx12<os

(4) Hilvert space can be characterized as the only Banach space where
Theorem 3.3 is true with condition (iii) replaced by (iii)'. In H

thi iti S m ir KoL) =

his condition takeq the ;or 1 mksupnﬁhz .r (YnJé FXnJS) o,

where rk(x) Z' _ke1$F 8 >, te} a conms. (A somewhaf similar approach
to the CLT in hilbert space is given in [10); the theorems in section

1 and 2 were proved in Hilbert space by Varadhan {17)).
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(5) A Corollary to the previous theorem, converc: part, is thc Lévy-
Khinchin representation in Panach: if p is an infinitely divisitle
p.m. on B, then theres exists 2 centered Gamssian p.m. § , a vector aeP,
and a Lévy measure. jt such that p=§ *Y¥xc -Pois . For a direct
approach, similar tc the above and independent of the one-dimensional
cace, see [6). This theorem was proved first by Arauio (4] and Dettwei-

ler E£81.

(6) Theorem 1.7 can be proved similarly to the converse part of
Theorem 3.3, but ths proof is simpler. It is omitted.
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