W. B. JOHNSON

Complemented subspaces of L_p, which embed into $\ell_p \otimes \ell_2$

Séminaire d’analyse fonctionnelle (Polytechnique) (1979-1980), exp. n° 18, p. 1-12

<http://www.numdam.org/item?id=SAF_1979-1980___A15_0>
COMPLEMENTED SUBSPACES OF L^p WHICH EMBED INTO $l^p \oplus l^2$

W. B. JOHNSON
(Ohio State University)
In this seminar we report on joint work with Ted Odell [5] concerning the isomorphic classification of complemented subspaces of L_p, $1 < p < 2 < \infty$. There are now known to exist uncountably many mutually non-isomorphic complemented subspaces of L_p for each $1 < p < 2 < \infty$ [1]. However, there probably are only finitely many which are "small". For example, the only complemented subspace of L_p which embeds into l_p is l_p itself [6].

The question studied in [5] is "what are the complemented subspaces of L_p which embed into $l_p \oplus l_2$?" For $1 < p < 2$, the following partial answer is given:

Theorem A: If X is a complemented subspace of L_q ($1 < q < 2$) which has an unconditional basis and X embeds into $l_q \oplus l_2$, then X is isomorphic to l_q, l_2, or $l_q \oplus l_2$.

It is of course a major unsolved problem whether every complemented subspace of L_p ($1 < p \neq 2 < \infty$) has an unconditional basis.

Theorem A is an immediate consequence of the result of [6] mentioned above and:

Proposition B: Let X be a subspace of L_p ($2 < p < \infty$) which has an unconditional basis and which is isomorphic to a quotient of $l_p \oplus l_2$. Then there is a subspace U of l_p (possibly $U = \{0\}$) so that X is isomorphic to U, l_2, or $U \oplus l_2$.

The classification of complemented subspaces of L_p which embed into $L_p \oplus \ell_2$ is more complicated for $2 < p < \infty$ because of the presence of Rosenthal's space X_p [11]. However, in [5] the following is proved:

Theorem C: If X is a complemented subspace of L_p ($2 < p < \infty$) which has an unconditional basis and which embeds into $L_p \oplus \ell_2$, then X is isomorphic to ℓ_p, ℓ_2, $L_p \oplus \ell_2$, or X_p.

Below we give a more-or-less complete proof of Proposition B and outline the proof of Theorem C. Actually, Theorem A is also a consequence of Theorem C and the following result from [5] which will not be discussed in this seminar:

Theorem D: If X is a subspace of L_p ($2 < p < \infty$) which is isomorphic to a quotient of a subspace of $L_p \oplus \ell_2$, then X embeds into $L_p \oplus \ell_2$.

Proof of Proposition B: Let (x_n) be a normalized unconditional basis for X and let \mathcal{G} be a norm one operator from $L_p \oplus \ell_2$ onto X.

Claim: There exists $\varepsilon > 0$ so that for all $0 < \delta < \varepsilon$, $\{i: \delta \leq \|x_i\|_2 \leq \varepsilon\}$ is finite. (Here $\|x\|_r = (\int_0^1 |x(t)|^r dt)^{1/r}$ for $1 \leq r < \infty$.)

If the claim is false, then there are $\varepsilon_1 > \varepsilon_2 > \ldots > 0$ and infinite sets M_n of integers so that $\varepsilon_{n+1} < \|x_i\|_2 \leq \varepsilon_n$ for $i \in M_n$ and $n = 1, 2, \ldots$. Since (x_i) is unconditional, it follows from the classical results of Kadec and Pelczynski [7] that $(x_i)_{i \in M_n}$ is equivalent to the unit vector basis for ℓ_2 for each $n = 1, 2, \ldots$, hence so is
(f_i)_i ∈ M_n, if (f_i) is the sequence of biorthogonal functionals to (x_i).

But this means that for each n = 1, 2, ... the ℓ_q - contribution to the norm of (Q*f_n) tends to zero as i → ∞ in M_n, because every operator from ℓ_2 into ℓ_q is compact. Consequently, since Q* is an isomorphism, we can select i_n ∈ M_n so that (Q*f_n)_{n=1} are equivalent to the unit vector basis of ℓ_2, hence the same is true of (x_n)_n=1. But (x_n)_n=1 has a subsequence equivalent to the unit vector basis of ℓ_p because

\lim_{n→∞} ∥x_n∥_2 = 0. This completes the proof of the claim.

Exercise: Where was unconditionality of (x_n) used in the proof of the claim?

Since for any ε > 0, the closed linear span of (x_i: ∥x_i∥_2 > ε) is either finite dimensional or isomorphic to ℓ_2, we can, in view of the claim, assume that ∥x_n∥_2 < 0 and hence [?] that no subsequence of (x_n) is equivalent to the unit vector basis for ℓ_2. We will show that this condition implies that X embeds into ℓ_p.

Let f_i = g_i ⊕ e_i ∈ ℓ_q ⊕ ℓ_2 (1/p + 1/q = 1) be a normalized sequence which is equivalent to the biorthogonal functionals to (x_i). In view of Lemma 1 below, we can assume that (g_i) is a monotonely unconditional basic sequence in ℓ_q', and (h_i) is orthogonal in ℓ_q. Since no subsequence of (f_i) is equivalent to the unit vector basis of ℓ_2, there exists δ > 0 and n so that ∥g_i∥ ≥ δ for all i ≥ n. Letting P denote the natural projection of ℓ_q ⊕ ℓ_2 onto ℓ_q, we complete the proof by observing that P is an isomorphism when restricted to [(f_i)_i=n], the closed linear span of (f_i)_i=n. Indeed, since (g_i) is monotonely unconditional, we have for all scalars (a_i) that (∑ |a_i|^2)^{1/2} ≤ K_q δ^{-1} ∥P a_i g_i∥ where K_q is
XVIII.4

Khintchine's constant for L_q. Hence for any $f = \sum_{i=1}^{\infty} a_i f_i \in \{(f_i)_{i=1}^{\infty}\}$,

$$\|Pf\| \leq \|f\| = \max(\|\sum a_i g_i\|, \|\sum a_i h_i\|) \leq \max(\|Pf\|, (\sum_{i=1}^{\infty} |a_i|^{1/2})^2) \leq K_q b_q^{-1} \|Pf\|. \quad \square$$

In the proof of Proposition B, we used:

Lemma 1: Let (x_i) be an unconditional basic sequence in $\ell_p \oplus \ell_2$ ($1 < p < \infty$). Then there is a monotonely unconditional basic sequence (u_i) in ℓ_p and an orthogonal sequence (v_i) in ℓ_2 so that (x_i) is equivalent to $(u_i \oplus v_i)$ in $\ell_p \oplus \ell_2$.

Proof. The proof uses an idea of Schechtman's [13]. Note that by a perturbation argument we can assume that, if (e_n) denotes the natural basis for $\ell_p \oplus \ell_2$, then for any $n = 1, 2, \ldots$, only finitely many of the x_i's have a non-zero nth coordinate when x_i is expanded in terms of (e_n). We can represent (e_n) in $\ell_p [-1,1]$ by having $(e_{2n})_{n=1}^{\infty}$ be a sequence of ℓ_p-normalized indicator functions of disjoint subsets of $[-1,0)$ and letting $(e_{2n-1})_{n=1}^{\infty}$ be the Rademacher functions on $[0,1]$. Write $x_i = y_i + z_i$ with $y_i \in [(e_{2n})_{n=1}^{\infty}]$ and $z_i \in [(e_{2n-1})_{n=1}^{\infty}]$. The sequence (x_i) is easily seen to be equivalent to the sequence $(r_i \otimes y_i + r_i \otimes z_i)$ in $\ell_p ([0,1] \times [-1,1])$, where (r_i) is the usual sequence of Rademacher functions. Of course, $(r_i \otimes z_i)$ is equivalent to an orthogonal sequence; the point is that the terms of the monotonely unconditional sequence $(r_i \otimes y_i)$ are measurable with respect to a purely atomic sub-sigma field of $[0,1] \times [-1,0]$ so that $[(r_i \otimes y_i)]$ embeds isometrically into ℓ_p. \quad \square
Throughout the rest of this seminar, we let $2 < p < \infty$ and let (e_n) (respectively, (δ_n)) denote the unit vector basis for ℓ_p (respectively, ℓ_2). Given $z = y \oplus z \in \ell_p \oplus \ell_2$, we let $|x|_p = |y|$ and $|x|_2 = |z|$.

Given a sequence $w = (w_n)$ of non-negative weights, the space $X_{p,w}$ is defined to be the subspace $[e_n \oplus w_n \delta_n]$ of $\ell_p \oplus \ell_2$. We use (b_n) to denote the natural basis $(e_n \oplus w_n \delta_n)$ for a generic $X_{p,w}$ space; if confusion is likely to result, we use $|\cdot|_{2,w}$ to denote the ℓ_2-part of the norm in $X_{p,w}$, so that for $x = \sum a_n b_n \in X_{p,w}$, $|x|_{2,w} = (\sum |a_n w_n|^2)^{1/2}$.

No matter what the weight sequence w is, the space $X_{p,w}$ is isomorphic to ℓ_2, ℓ_p, $\ell_p \oplus \ell_2$ or the space X_p introduced by Rosenthal [11]. Rosenthal showed that $X_{p,w}$ is isomorphic to X_p if and only if for each $\varepsilon > 0$,

$$\sum w_n \wedge \frac{p}{p-2} = \infty.$$

X_p is isomorphic to a complemented subspace of ℓ_p but is not isomorphic to a complemented subspace of $\ell_p \oplus \ell_2$. It has become clear during the last ten years that, rather than being a pathological example, X_p plays a fundamental role in the study of ℓ_p (cf., e.g. [2], [4], and [12]).

There are three important steps in the proof of Theorem C:

Proposition 2: Let X be a subspace of $\ell_p \oplus \ell_2$ ($2 < p < \infty$) and let T be an operator from ℓ_p into X. Then T factors through X_p.

Proposition 3: If X is isomorphic to a complemented subspace of X_p and X_p is isomorphic to a complemented subspace of X, then X is isomorphic to X_p.
Proposition 4: Let X be a subspace of $\ell_p \oplus \ell_2$ ($2 < p < \infty$) with a normalized basis $x_n = y_n \oplus z_n$, where (y_n) (respectively, (z_n)) is a basic sequence in ℓ_p (respectively, ℓ_2). Assume that $|z_n|_2 \to 0$ as $n \to \infty$. Then either X embeds into ℓ_p or X_p is isomorphic to a complemented subspace of X.

Notice that Proposition 2 implies that a complemented subspace of ℓ_p which embeds into $\ell_p \oplus \ell_2$ is isomorphic to a complemented subspace of X_p. Suppose now that X is a complemented subspace of ℓ_p which embeds into $\ell_p \oplus \ell_2$ and X has normalized unconditional basis which in $\ell_p \oplus \ell_2$ can be represented as $x_n = y_n \oplus z_n$, where by Lemma 1 we can assume that (y_n) is unconditional in ℓ_p and (z_n) is orthogonal in ℓ_2. Suppose that

\[
(*) \quad \begin{cases}
M_n = \{i: \varepsilon_{n+1} \leq |z_i|_2 < \varepsilon_n\} \text{ is infinite.}
\end{cases}
\]

We can then use a standard gliding hump and perturbation argument to find infinite $M'_n \subseteq M_n$ so that, setting $M = \bigcup_{n=1}^{\infty} M'_n$, we have that

$(y_i)_{i \in M}$ is equivalent to the unit vector basis of ℓ_p and $(z_i)_{i \in M}$ is equivalent to an orthogonal sequence in ℓ_2. Thus by Rosenthal's characterization of X_p mentioned earlier, $[(x_i)_{i \in M}]$ is isomorphic to X_p and is complemented in X because (x_1) is unconditional, hence by Propositions 2 and 3, X is isomorphic to X_p.

If $(*)$ is false, then there is $c > 0$ and $A \subseteq \mathbb{N}$ so that

$|z_i|_2 \geq c$ for $i \notin A$ and $\lim_{i \to \infty} |z_i|_2 = 0$.

$\bigcup_{i \in A}$
By Proposition 4, either X_p is complemented in $[(x_i)_{i \in A}]$ and hence in X, so that, by Proposition 3, X and X_p are isomorphic, or $[(x_i)_{i \in A}]$ embeds into ℓ_p, and so is finite dimensional or isomorphic to ℓ_p since it embeds into L_p as a complemented subspace. Of course, $[(x_i)_{i \notin A}]$ is isomorphic to a Hilbert space and so if $[(x_i)_{i \in A}]$ embeds into ℓ_p', then X is isomorphic to ℓ_p, $\ell_p \cong \ell_2$, or ℓ_2 if, respectively, $\mathbb{N} \sim A$ is finite, A and $\mathbb{N} \sim A$ are infinite, or A is finite.

To indicate how to prove Proposition 2, we need to recall the concept of a blocking of a finite dimensional decomposition (f.d.d., in short). Given an f.d.d. (E_n) for some space Z, a blocking of (E_n) is an f.d.d. for Z of the form (E'_n), where for $k = 1, 2, \ldots$, $E'_k = [(E_i)_{i = n(k)}^{n(k+1)-1}]$ for some sequence $1 = n(1) < n(2) < \ldots$ of integers. The simplest version of the blocking method, introduced in [6] (cf. also Proposition 1.g.4 in [8]) can be stated qualitatively as follows: If Z has a shrinking f.d.d. (E_n), Y has an f.d.d. (F_n), and $T: Z \to Y$ is an operator, then there are blockings (E'_n) of (E_n) and (F'_n) of (F_n) so that for all $n = 1, 2, \ldots$, $T E'_n$ is "essentially" contained in $F'_n + F'_{n+1}$. ("Essentially" means: given any $\varepsilon_n \downarrow 0$, (E'_n) and (F'_n) may be chosen so that for $x \in E'_n$, $d(Tx, F'_n + F'_{n+1}) \leq \varepsilon_n \|x\|$. An easy consequence of this blocking principle is:

Lemma 5: If (E_n) is a shrinking f.d.d. for Z, (F_n) is an f.d.d. for Y, and $T: Z \to Y$ is an operator, then there are blockings (E'_n) of (E_n) and (F'_n) of (F_n) so that $T: (\sum_{n=1}^{\infty} E'_n)_p \to (\sum_{n=1}^{\infty} F'_n)_p$ is bounded.

We are now ready to prove Proposition 2. By a change of density on the underlying measure space, we can by one of Maurey's theorems [9]
assume that T is bounded as an operator from L^2 into $(X, \| \cdot \|_2)$, i.e., for all $x \in L^p$, $|Tx|_2 \leq K \|x\|_2$ for some constant K. Secondly, by Lemma 5, we can find a blocking (H_n) of the Haar basis so that T is bounded as an operator from $(\sum_{n=1}^{\infty} (H_n, \| \cdot \|_p))_p$ into $(X, \| \cdot \|_p)$. (To see this, embed $(X, \| \cdot \|_p)$ into L^p and block the unit vector basis for L^p.) Consequently, if for $x \in L^p$, $x = \sum x_n (x_n \in E_n)$, we define $\| x \| = \max (\| x_n \|_p^{1/p}, \| x \|_2)$ then we have that T is bounded as an operator from $(L^p, \| \cdot \|)$ into X. The identity mapping from L^p into $(L^p, \| \cdot \|)$ is bounded because the Haar basis, being unconditional, admits a lower L^p-estimate. Thus the operator $T: L^p \rightarrow X$ factors through $(L^p, \| \cdot \|)$. To complete the proof of Proposition 2 we only need to observe that the completion of $(L^p, \| \cdot \|)$ is isomorphic to a complemented subspace of $X_{p,w}$ for some weight sequence w. This is done by seeing that the completion of $(L^p, \| \cdot \|) = (\sum H_n, \| \cdot \|)$ is norm one complemented in $(\sum E_n, \| \cdot \|)$ by the orthogonal projection, where for $n = 1, 2, \ldots$, $E_n = \{(h_1)_{i=1}^{2^k(n)}\}$ and $k(n)$ is chosen so that $H_n \subseteq E_n$. If $f^m_i \in E_n$ denotes the L^p-normalized indicator function of the interval $[(i-1)2^{-k(n)}, i2^{-k(n)}]$ for $1 \leq i \leq 2^k(n)$; $n = 1, 2, \ldots$, then one can easily see that $(f^m_i)_{i=1}^{n} \in (\sum E_n, \| \cdot \|)$ is equivalent to the natural basis of $X_{p,w}$ for the weight sequence $w = (\| f^m_i \|_2)_{i=1}^{2^k(n)}_{n=1}^{\infty}$.

To prove Proposition 3 we need the following:

Lemma 6: There exists $M_p < \infty$ so that if T is an operator on $X_{p,w}$ for some weight sequence $w = (w_n)_{n=1}^{\infty}$, then there exists a weight sequence...
XVIII.9

\[\|T\|_{\ell^2,v} \leq M_p\|T\| \quad \text{and} \quad \|x\| = \max (\|x\|_p, \|x\|_{\ell^2,v}) \quad \text{is} \quad M_p\text{-equivalent to the usual norm on} \quad X_p^\ast. \]

The lemma can be proved by embedding \(X_p \) into \(L_\infty[-1,1] \) by identifying the nth-unit vector of \(X_p \) with the function \(f_n = g_n + w_n r_n \), where \((g_n) \) are disjointly supported unit vectors in \(L_\infty[-1,0] \), \(\|g_n\|_{\ell^2} \leq w_n \), and \((r_n) \) are the Rademacher functions on \([0,1]\). Note that \(\|\cdot\|_{\ell^2,w} \) on \(X_p \) is equivalent to \(\|\cdot\|_2 \) under this identification. Now one uses [3] to get a change of density \(\phi \geq \frac{1}{2} \) on \([-1,1]\) so that \(T \) is bounded when considered as an operator from \((f_n, \|\cdot\|_{\ell^2(\phi dm)}) \) into itself. One can check that the weight sequence \(v = (v_n) \) defined by \(v_n^2 = w_n^2 + \|g_n\|_{\ell^2(\phi dm)}^2 \) does the job.

We are now ready to prove Proposition 3. The idea is to use Pelczynski's classical proof [10] that every complemented subspace of \(A_p \) is isomorphic to \(A_p \). We need to write \(X_p \) as a symmetric sum \((X_p \oplus X_p \oplus ...) \) in such a way that \((X \oplus X \oplus ...) \) is complemented in \((X_p \oplus X_p \oplus ...) \). The problem is that \(X_p \) is not isomorphic to \((X_p \oplus X_p \oplus ...) \). However, if we represent \(X_p \) as \(X_{p,w'} \), then \(X_p \) is isomorphic to \((X_{p,w} \oplus X_{p,w} \oplus ...) \) where for \(x_n \in X_{p,w'} \) the norm in \((X_{p,w} \oplus X_{p,w} \oplus ...) \) of \(y = (x_n)_{n=1}^{\infty} \) is given by \(\|y\| = \max ((\sum |x_n|_p^{1/p})^{1/p}, (\sum |x_n|_{\ell^2,w}^2)^{1/2}) \). (One checks the isomorphism of \(X_p \) with \((X_{p,w} \oplus X_{p,w} \oplus ...) \) by observing that \((X_{p,w} \oplus X_{p,w} \oplus ...) \) is isometric to \(X_{p,w'} \) where the weight sequence \(v \) consists of all terms of the weight sequence \(w \), each repeated infinitely many times.) Unfortunately, it is not true that \((X \oplus X \oplus ...) \) must be complemented in \((X_{p,w} \oplus X_{p,w} \oplus ...) \) if \(X \) is complemented in \(X_{p,w'} \) so Pelczynski's argument does not apply. However, if the projection
P: $X_p \to X$ is bounded in both the $|\cdot|_p$ and the $|\cdot|_{2,w}$ norms on X, then $(X \oplus X \oplus \ldots)$ is complemented in $(X_{p,w} \oplus X_{p,w} \oplus \ldots)_{p,2}$ by the projection $P \oplus P \oplus \ldots$. The point of Lemma 6 is that we can assume, without loss of generality, that $|P|_{2,w} < \infty$. Of course, $|P|_p$ might be infinite, but there is by Lemma 5 a blocking (E_n) of the natural basis for $X_{p,w}$ so that P is bounded as an operator from $(\sum E_n)_{p,2}$ into itself, where each space E_n has the $X_{p,w}$ norm, $||\cdot||$, on it. If we define $||\cdot||'$ on $X_{p,w}$ by $|x|_p' = (\sum ||x_n||_p^p)^{1/p}$ (where $x = \sum x_n$, $x_n \in E_n$, $n \geq 1$), then it is easy to check that the $X_{p,w}$ norm is equivalent to the norm $||x|| = \max(|x|_p', |x|_{2,w})$. Since $|P|_p'$ and $|P|_2$ are both finite, $(X \oplus X \oplus \ldots)$ is complemented in $(X_{p,w}', ||\cdot||') \oplus (X_{p,w}, ||\cdot||) \oplus \ldots)_{p,2}$ and this letter space is easily seen to be isomorphic to X_p. This completes the sketch of the proof of Proposition 3.

We complete this seminar by giving a proof of Proposition 4.

If ℓ_2 does not embed into X, then X embeds into ℓ_p by a result of Johnson and Odell (or see [2]). Thus we may assume X contains a copy of ℓ_2.

Since $|z_n|_2 \to 0$, we can assume without loss of generality that $|z_n|_2 < 1$ for each n. For a subspace Y of X, let $\delta(Y) = \sup \{ |y|_2: ||y|| = 1 \}$. Note that since X contains ℓ_2, if $\dim X/Y < \infty$, then $\delta(Y) = 1$. By the blocking technique [6] there exists $0 = k(1) < k(2) < \ldots$ such that if $E_n = [(y_1, k(n+1)]$ and $F_n = [(z_1, k(n+1)]$, then (E_n) is an ℓ_p-f.d.d. for $[(y_n)]$ and (F_n) is an ℓ_2-f.d.d. for $[(z_n)]$. Thus if $u_n \in E_n$, then $|\Sigma u_n|_p \leq (\Sigma |u_n|_p^p)^{1/p}$ and a similar statement holds for (F_n). Also by our above remark we can insure that
\[\delta([x_i]^{k(n+1)}) \geq 1/2 \] for each \(n \). Since \(|z_n|_2 \to 0 \), we can find \(q(n) \) such that if \(H_n = [(x_i)]_{k(n)+1}^{q(n)} \) then

\[1 > \delta(H_n) > 0 \] for each \(n \),

\[\sum_{n=1}^{\infty} \delta(H_n)^{2p/(p-2)} = \infty, \quad \text{and} \quad \lim_{n \to \infty} \delta(H_n) = 0. \]

Let \(e_n \in H_n \) so that \(\|e_n\| = 1 \) and \(|e_n|_2 = \delta(H_n) \). Clearly \([(e_n)] \) is isomorphic to \(X_p \). We must show it is also complemented in \(X \). Thus we wish to find \(\tilde{f}_n \in X^* \) so that \(\tilde{f}_n \) is biorthogonal to \((e_n) \) and

\[F(x) = \sum \tilde{f}_n(x) e_n \] is a bounded operator, and hence a projection onto \([(e_n)] \).

Let \(f_n \) be the functional on \(H_n \) defined by \(f_n(h) = \langle h, e_n \rangle |e_n|^{-2} \). Then

\[|f_n|_p = \max \left\{ \frac{\langle h, e_n \rangle |e_n|^{-2}}{|h|_p = 1} \right\}_{h \in H_n} \]

\[\leq \max \left\{ \frac{|h|_2 |e_n|^{-1}}{|h|_p = 1} \right\}_{h \in H_n} = 1, \]

since \(|e_n|_2 = \delta(H_n) \) and \(\|\cdot\| = \|\cdot\|_p \) on \(H_n \). Thus \(f_n \) is a norm 1 functional on \(H_n \) in the \(\ell_p \) norm. Extend \(f_n \) to a functional \(\tilde{f}_n \) on \(X \) by letting \(\tilde{f}_n(x_i) = 0 \) if \(i < k(n) \) or \(i > q(n) \). Since \((y_i) \) and \((z_i) \) are basic, we have

\[|\tilde{f}_n|_p \leq K \] and \(|\tilde{f}_n|_2 \leq K |f_n|_2 = K |e_n|^{-1} \]
where K is twice the larger basis constant of (y_i) and (z_i). Moreover, since (E_n) and (F_n) are p- and 2-f.d.d.'s, respectively, and $|e_n|_p \leq 1$, we see that $P(x) = \sum \tilde{f}_n(x) e_n$ is bounded. □

References

[6] W.B. Johnson and M. Zippin, On subspaces and quotients of $(\mathcal{C}_p \mathcal{A}G_n)_{l_p}$ and $(\mathcal{C}_p \mathcal{A}G_n)_{c_0}$, Israel J. Math. 13 (1972), 311-316.

